Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,545)

Search Parameters:
Keywords = N pools

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1476 KiB  
Systematic Review
Intramedullary Nailing vs. Plate Fixation for Trochanteric Femoral Fractures: A Systematic Review and Meta-Analysis of Randomized Trials
by Ümit Mert, Maher Ghandour, Moh’d Yazan Khasawneh, Filip Milicevic, Ahmad Al Zuabi, Klemens Horst, Frank Hildebrand, Bertil Bouillon, Mohamad Agha Mahmoud and Koroush Kabir
J. Clin. Med. 2025, 14(15), 5492; https://doi.org/10.3390/jcm14155492 (registering DOI) - 4 Aug 2025
Abstract
Background/Objectives: Trochanteric femoral fractures pose significant surgical challenges, particularly in elderly patients. Intramedullary nailing (IMN) and plate fixation (PF) are the primary operative strategies, yet their comparative efficacy and safety remain debated. This meta-analysis synthesizes randomized controlled trials (RCTs) to evaluate clinical, [...] Read more.
Background/Objectives: Trochanteric femoral fractures pose significant surgical challenges, particularly in elderly patients. Intramedullary nailing (IMN) and plate fixation (PF) are the primary operative strategies, yet their comparative efficacy and safety remain debated. This meta-analysis synthesizes randomized controlled trials (RCTs) to evaluate clinical, functional, perioperative, and biomechanical outcomes of IMN versus PF specifically in trochanteric fractures. Methods: A systematic search of six databases was conducted up to 20 May 2024, to identify RCTs comparing IMN and PF in adult patients with trochanteric femoral fractures. Data extraction followed PRISMA guidelines, and outcomes were pooled using random-effects models. Subgroup analyses examined the influence of fracture stability, implant type, and patient age. Risk of bias was assessed using the Cochrane RoB 2.0 tool. Results: Fourteen RCTs (n = 4603 patients) were included. No significant differences were found in reoperation rates, union time, implant cut-out, or mortality. IMN was associated with significantly reduced operative time (MD = −5.18 min), fluoroscopy time (MD = −32.92 s), and perioperative blood loss (MD = −111.68 mL). It also had a lower risk of deep infection. Functional outcomes and anatomical results were comparable. Subgroup analyses revealed fracture stability and nail type significantly modified operative time, and compression screws were associated with higher reoperation rates than IMN. Conclusions: For trochanteric femoral fractures, IMN and PF yield comparable results for most clinical outcomes, with IMN offering some advantages in surgical efficiency and perioperative morbidity, though functional outcomes were comparable. Implant selection and fracture stability influence outcomes, supporting individualized surgical decision making. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

25 pages, 13119 KiB  
Article
Spatial and Temporal Variability of C Stocks and Fertility Levels After Repeated Compost Additions: A Case Study in a Converted Mediterranean Perennial Cropland
by Arleen Rodríguez-Declet, Maria Teresa Rodinò, Salvatore Praticò, Antonio Gelsomino, Adamo Domenico Rombolà, Giuseppe Modica and Gaetano Messina
Soil Syst. 2025, 9(3), 86; https://doi.org/10.3390/soilsystems9030086 (registering DOI) - 4 Aug 2025
Abstract
Land use conversion to perennial cropland often degrades the soil structure and fertility, particularly under Mediterranean climatic conditions. This study assessed spatial and temporal dynamics of soil properties and tree responses to 3-year repeated mature compost additions in a citrus orchard. Digital soil [...] Read more.
Land use conversion to perennial cropland often degrades the soil structure and fertility, particularly under Mediterranean climatic conditions. This study assessed spatial and temporal dynamics of soil properties and tree responses to 3-year repeated mature compost additions in a citrus orchard. Digital soil mapping revealed strong baseline heterogeneity in texture, CEC, and Si pools. Compost application markedly increased total organic C and N levels, aggregate stability, and pH with noticeable changes after the first amendment, whereas a limited C storage potential was found following further additions. NDVI values of tree canopies monitored over a 3-year period showed significant time-dependent changes not correlated with the soil fertility variables, thus suggesting that multiple interrelated factors affect plant responses. The non-crystalline amorphous Si/total amorphous Si (iSi:Siamor) ratio is here proposed as a novel indicator of pedogenic alteration in disturbed agroecosystems. These findings highlight the importance of tailoring organic farming strategies to site-specific conditions and reinforce the value to combine C and Si pool analysis for long-term soil fertility assessment. Full article
Show Figures

Figure 1

18 pages, 881 KiB  
Systematic Review
Association of Single Nucleotide Polymorphisms in the Cyclooxygenase-2 (COX-2) Gene with Periodontal Disease—A Systematic Review with Meta-Analysis and Implications for Personalized Dentistry
by Vasiliki Savva, Ioannis Fragkioudakis and Dimitra Sakellari
J. Pers. Med. 2025, 15(8), 351; https://doi.org/10.3390/jpm15080351 (registering DOI) - 3 Aug 2025
Abstract
Background: Genetic polymorphisms in the cyclooxygenase-2 (COX-2) gene may contribute to individual susceptibility to periodontal disease. A meta-analysis assessed the association between three COX-2 single-nucleotide polymorphisms (SNPs) namely, −765 G/C (rs20417), −1195 G/A (rs689466), and 8473 T/C (rs5275), and the risk of CP. [...] Read more.
Background: Genetic polymorphisms in the cyclooxygenase-2 (COX-2) gene may contribute to individual susceptibility to periodontal disease. A meta-analysis assessed the association between three COX-2 single-nucleotide polymorphisms (SNPs) namely, −765 G/C (rs20417), −1195 G/A (rs689466), and 8473 T/C (rs5275), and the risk of CP. Methods: Following the PRISMA 2020 guidelines, we conducted a comprehensive search of five electronic databases and additional sources. The eligible studies were observational (case–control or cohort) with genotypic data comparing individuals with periodontal disease and periodontally healthy controls. Methodological quality was assessed using the Newcastle–Ottawa Scale (NOS), and the certainty of evidence was evaluated via the GRADE framework. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) were calculated under dominant genetic models. Results: Seven studies (n = 1467 participants) met the inclusion criteria. No eligible studies evaluated the 8473 T/C SNP. The meta-analysis of the −765 G/C variant revealed a significant association with periodontal disease (OR = 1.61; 95% CI: 1.12–2.32, p = 0.03; I2 = 0%). For the −1195 G/A variant, the pooled OR was 1.86 (95% CI: 1.00–3.43, p = 0.05; I2 = 35%), suggesting a borderline significant association. The certainty of evidence was graded as moderate for −765 G/C and low for −1195 G/A. Conclusions: The COX-2 −765 G/C polymorphism is significantly associated with increased CP risk, while the −1195 G/A variant shows a potential, though less certain, link. Larger, high-quality studies using standardized classifications are needed to confirm these associations. Full article
(This article belongs to the Section Omics/Informatics)
Show Figures

Figure 1

17 pages, 3193 KiB  
Article
Effects of Nitrogen and Phosphorus Additions on the Stability of Soil Carbon Fractions in Subtropical Castanopsis sclerophylla Forests
by Yunze Dai, Xiaoniu Xu and LeVan Cuong
Forests 2025, 16(8), 1264; https://doi.org/10.3390/f16081264 - 2 Aug 2025
Viewed by 95
Abstract
Soil organic carbon (SOC) pool plays an extremely important role in regulating the global carbon (C) cycle and climate change. Atmospheric nitrogen (N) and phosphorus (P) deposition caused by human activities has significant impacts on soil C sequestration potential of terrestrial ecosystem. To [...] Read more.
Soil organic carbon (SOC) pool plays an extremely important role in regulating the global carbon (C) cycle and climate change. Atmospheric nitrogen (N) and phosphorus (P) deposition caused by human activities has significant impacts on soil C sequestration potential of terrestrial ecosystem. To investigate the effects of N and P deposition on soil C sequestration and C-N coupling relationship in broad-leaved evergreen forests, a 6-year field nutrient regulation experiment was implemented in subtropical Castanopsis sclerophylla forests with four different N and P additions: N addition (100 kg N·hm−2·year−1), N + P (100 kg N·hm−2·year−1 + 50 kg P·hm−2·year−1), P addition (50 kg P·hm−2·year−1), and CK (0 kg N·hm−2·year−1). The changes in the C and N contents and stable isotope distributions (δ13C and δ15N) of different soil organic fractions were examined. The results showed that the SOC and total nitrogen (STN) (p > 0.05) increased with N addition, while SOC significantly decreased with P addition (p < 0.05), and N + P treatment has low effect on SOC, STN (p > 0.05). By density grouping, it was found that N addition significantly increased light fraction C and N (LFOC, LFN), significantly decreased the light fraction C to N ratio (LFOC/N) (p < 0.05), and increased heavy fraction C and N (HFOC, HFN) accumulation and light fraction to total organic C ratio (LFOC/SOC, p > 0.05). Contrary to N addition, P addition was detrimental to the accumulation of LFOC, LFN and reduced LFOC/SOC. It was found that different reactive oxidized carbon (ROC) increased under N addition but ROC/SOC did not change, while N + P and P treatments increased ROC/SOC, resulting in a decrease in SOC chemical stability. Stable isotope analysis showed that N addition promoted the accumulation of new soil organic matter, whereas P addition enhanced the transformation and utilization of C and N from pre-existing organic matter. Additionally, N addition indirectly increased LFOC by significantly decreasing pH; significantly contributed to LFOC and ROC by increasing STN accumulation promoted by NO3-N and NH4+-N; and decreased light fraction δ13C by significantly increasing dissolved organic C (p < 0.05). P addition had directly significant negative effect on LFOC and SOC (p < 0.05). In conclusion, six-year N deposition enhances soil C and N sequestration while the P enrichment reduces the content of soil C, N fractions and stability in Castanopsis sclerophylla forests. The results provide a scientific basis for predicting the soil C sink function of evergreen broad-leaved forest ecosystem under the background of future climate change. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

15 pages, 826 KiB  
Review
Complications Following Percutaneous Epidural Neuroplasty: A Narrative Review of Clinical Evidence and the Rationale for Post-Procedural 6 h Inpatient Monitoring Amid Limited Systematic Data
by Jae Hun Kim, Eun Jang Yoon, Sung Ho Jo, Sun Ok Kim, Dong Woo Lee and Hwan Hee Kim
Medicina 2025, 61(8), 1397; https://doi.org/10.3390/medicina61081397 - 1 Aug 2025
Viewed by 139
Abstract
Background: Percutaneous epidural neuroplasty (PEN) and related adhesiolysis procedures are widely used for managing chronic spinal pain. Although generally safe, complications—ranging from minor to life-threatening—have been reported. This review aimed to estimate the incidence and characteristics of complications following PEN and to [...] Read more.
Background: Percutaneous epidural neuroplasty (PEN) and related adhesiolysis procedures are widely used for managing chronic spinal pain. Although generally safe, complications—ranging from minor to life-threatening—have been reported. This review aimed to estimate the incidence and characteristics of complications following PEN and to evaluate the medical rationale for post-procedural inpatient monitoring. Methods: We systematically searched PubMed, Embase, and the Cochrane Library for studies published from January 2000 to April 2025 reporting complications associated with PEN. We performed a random-effects meta-analysis on five eligible cohort studies to estimate the pooled complication rate and evaluated heterogeneity. Risk of bias was assessed using the Newcastle–Ottawa Scale. Results: Five cohort studies (n = 1740) were included in the meta-analysis, with a pooled complication rate of 9.0% (95% CI: 4.8–13.1%, I2 = 97.5%). A total of 133 complications were identified from cohort studies and case reports. Mechanical and neurological complications were most common. Serious complications, including hematoma, meningitis, and cardiopulmonary arrest, were concentrated within the first 6 h post-procedure. Conclusions: This meta-analysis highlights a quantifiable risk of complications associated with PEN. Our findings support structured inpatient monitoring during the immediate post-procedural period to enhance safety and outcomes. Full article
(This article belongs to the Section Intensive Care/ Anesthesiology)
Show Figures

Figure 1

26 pages, 2591 KiB  
Systematic Review
Effect of Polyphenol-Rich Interventions on Gut Microbiota and Inflammatory or Oxidative Stress Markers in Adults Who Are Overweight or Obese: A Systematic Review and Meta-Analysis
by Álvaro González-Gómez, Martina Cantone, Ana María García-Muñoz, Desirée Victoria-Montesinos, Carmen Lucas-Abellán, Ana Serrano-Martínez, Alejandro M. Muñoz-Morillas and Juana M. Morillas-Ruiz
Nutrients 2025, 17(15), 2468; https://doi.org/10.3390/nu17152468 - 29 Jul 2025
Viewed by 339
Abstract
Background/Objectives: Being overweight and obesity are major public health concerns that demand effective nutritional strategies for weight and body composition management. Beyond excess weight, these conditions are closely linked to chronic inflammation, oxidative stress, and gut dysbiosis, all of which contribute to cardiometabolic [...] Read more.
Background/Objectives: Being overweight and obesity are major public health concerns that demand effective nutritional strategies for weight and body composition management. Beyond excess weight, these conditions are closely linked to chronic inflammation, oxidative stress, and gut dysbiosis, all of which contribute to cardiometabolic risk. Polyphenols—bioactive compounds in plant-based foods—may support improvements in body composition and metabolic health by modulating gut microbiota, reducing oxidative stress, and suppressing inflammation. This systematic review and meta-analysis aimed to evaluate the effects of polyphenol-rich interventions on gut microbiota composition, in combination with either oxidative stress or inflammatory biomarkers, and their potential impact on body composition in overweight or obese adults. Methods: A systematic search of PubMed, Scopus, Cochrane, and Web of Science was conducted through May 2025. Eligible randomized controlled trials included adults (BMI ≥ 25 kg/m2) receiving polyphenol-rich interventions, with reported outcomes on gut microbiota and at least one inflammatory or oxidative stress biomarker. Standardized mean differences (SMDs) were pooled using a random-effects model. Results: Thirteen trials (n = 670) met inclusion criteria. Polyphenol supplementation significantly reduced circulating lipopolysaccharides (LPSs; SMD = −0.56; 95% CI: −1.10 to −0.02; p < 0.04), indicating improved gut barrier function. Effects on cytokines (IL-6, TNF-α) and CRP were inconsistent. Catalase activity improved significantly (SMD = 0.79; 95% CI: 0.30 to 1.28; p < 0.001), indicating enhanced antioxidant defense. Gut microbiota analysis revealed increased butyrate (SMD = 0.57; 95% CI: 0.18 to 0.96; p < 0.001) and acetate (SMD = 0.42; 95% CI: 0.09 to 0.75; p < 0.01), supporting prebiotic effects. However, no significant changes were observed in BMI or body weight. Conclusions: Polyphenol supplementation in overweight or obese adults may reduce metabolic endotoxemia, boost antioxidant activity, and promote SCFAs production. Effects on inflammation and body weight remain unclear. Further long-term trials are needed. Full article
(This article belongs to the Special Issue Dietary Assessments for Weight Management)
Show Figures

Graphical abstract

15 pages, 2095 KiB  
Article
T-Lymphocyte Phenotypic and Mitochondrial Parameters as Markers of Incomplete Immune Restoration in People Living with HIV+ on Long-Term cART
by Damian Vangelov, Radoslava Emilova, Yana Todorova, Nina Yancheva, Reneta Dimitrova, Lyubomira Grigorova, Ivailo Alexiev and Maria Nikolova
Biomedicines 2025, 13(8), 1839; https://doi.org/10.3390/biomedicines13081839 - 28 Jul 2025
Viewed by 420
Abstract
Background/Objectives: Restored CD4 absolute counts (CD4AC) and CD4/CD8 ratio in the setting of continuous antiretroviral treatment (ART) do not exclude a low-level immune activation associated with HIV reservoirs, microbial translocation, or the side effects of ART itself, which accelerates the aging of [...] Read more.
Background/Objectives: Restored CD4 absolute counts (CD4AC) and CD4/CD8 ratio in the setting of continuous antiretroviral treatment (ART) do not exclude a low-level immune activation associated with HIV reservoirs, microbial translocation, or the side effects of ART itself, which accelerates the aging of people living with HIV (PLHIV). To delineate biomarkers of incomplete immune restoration in PLHIV on successful ART, we evaluated T-lymphocyte mitochondrial parameters in relation to phenotypic markers of immune exhaustion and senescence. Methods: PLHIV with sustained viral suppression, CD4AC > 500 and CD4/CD8 ratio >0.9 on ART (n = 39) were compared to age-matched ART-naïve donors (n = 27) and HIV(–) healthy controls (HC, n = 35). CD4 and CD8 differentiation and effector subsets (CCR7/CD45RA and CD27/CD28), activation, exhaustion, and senescence markers (CD38, CD39 Treg, CD57, TIGIT, and PD-1) were determined by flow cytometry. Mitochondrial mass (MM) and membrane potential (MMP) of CD8 and CD4 T cells were evaluated with MitoTracker Green and Red flow cytometry dyes. Results: ART+PLHIV differed from HC by increased CD4 TEMRA (5.3 (2.1–8.8) vs. 3.2 (1.6–4.4), p < 0.05), persistent TIGIT+CD57–CD27+CD28– CD8+ subset (53.9 (45.5–68.9) vs. 40.1 (26.7–58.5), p < 0.05), and expanding preapoptotic TIGIT–CD57+CD8+ effectors (9.2 (4.3–21.8) vs. 3.0 (1.5–7.3), p < 0.01) in correlation with increased CD8+ MMP (2527 (1675–4080) vs.1477 (1280–1691), p < 0.01). These aberrations were independent of age, time to ART, or ART duration, and were combined with increasing CD4 T cell MMP and MM. Conclusions: In spite of recovered CD4AC and CD4/CD8 ratio, the increased CD8+ MMP, combined with elevated markers of exhaustion and senescence in ART+PLHIV, signals a malfunction of the CD8 effector pool that may compromise viral reservoir latency. Full article
(This article belongs to the Special Issue Emerging Insights into HIV)
Show Figures

Figure 1

19 pages, 8295 KiB  
Article
Melatonin as an Alleviator in Decabromodiphenyl Ether-Induced Aberrant Hippocampal Neurogenesis and Synaptogenesis: The Role of Wnt7a
by Jinghua Shen, Lu Gao, Jingjing Gao, Licong Wang, Dongying Yan, Ying Wang, Jia Meng, Hong Li, Dawei Chen and Jie Wu
Biomolecules 2025, 15(8), 1087; https://doi.org/10.3390/biom15081087 - 27 Jul 2025
Viewed by 386
Abstract
Developmental exposure to polybrominated diphenyl ethers (PBDEs), which are commonly used as flame retardants, results in irreversible cognitive impairments. Postnatal hippocampal neurogenesis, which occurs in the subgranular zone (SGZ) of the dentate gyrus, is critical for neuronal circuits and plasticity. Wnt7a-Frizzled5 (FZD5) is [...] Read more.
Developmental exposure to polybrominated diphenyl ethers (PBDEs), which are commonly used as flame retardants, results in irreversible cognitive impairments. Postnatal hippocampal neurogenesis, which occurs in the subgranular zone (SGZ) of the dentate gyrus, is critical for neuronal circuits and plasticity. Wnt7a-Frizzled5 (FZD5) is essential for both neurogenesis and synapse formation; moreover, Wnt signaling participates in PBDE neurotoxicity and also contributes to the neuroprotective effects of melatonin. Therefore, we investigated the impacts of perinatal decabromodiphenyl ether (BDE-209) exposure on hippocampal neurogenesis and synaptogenesis in juvenile rats through BrdU injection and Golgi staining, as well as the alleviation of melatonin pretreatment. Additionally, we identified the structural basis of Wnt7a and two compounds via molecular docking. The hippocampal neural progenitor pool (Sox2+BrdU+ and Sox2+GFAP+cells), immature neurons (DCX+) differentiated from neuroblasts, and the survival of mature neurons (NeuN+) in the dentate gyrus were inhibited. Moreover, in BDE-209-exposed offspring rats, it was observed that dendritic branching and spine density were reduced, alongside the long-lasting suppression of the Wnt7a-FZD5/β-catenin pathway and targeted genes (Prox1, Neurod1, Neurogin2, Dlg4, and Netrin1) expression. Melatonin alleviated BDE-209-disrupted memory, along with hippocampal neurogenesis and dendritogenesis, for which the restoration of Wnt7a-FZD5 signaling may be beneficial. This study suggested that melatonin could represent a potential intervention for the cognitive deficits induced by PBDEs. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

20 pages, 346 KiB  
Article
Skeptical Optimism Scale (SkO): Initial Development and Validation
by Cătălina Oțoiu, Petru Lucian Curșeu and Lucia Rațiu
Behav. Sci. 2025, 15(8), 1017; https://doi.org/10.3390/bs15081017 - 27 Jul 2025
Viewed by 219
Abstract
This study introduces the Skeptical Optimism Scale (SkO) and presents preliminary evidence of its content, construct, and criterion validity. Skeptical optimism refers to dispositional tendencies of having general positive expectations about the future, conditional on critical analysis and in-depth exploration of (potential negative) [...] Read more.
This study introduces the Skeptical Optimism Scale (SkO) and presents preliminary evidence of its content, construct, and criterion validity. Skeptical optimism refers to dispositional tendencies of having general positive expectations about the future, conditional on critical analysis and in-depth exploration of (potential negative) outcomes. We developed an initial pool of 31 items that explore positive expectations in three main life domains (finding solutions to difficult problems, mastering novel and challenging tasks, and effectively dealing with general life challenges) that were subject to content analysis by eight independent raters. The remaining items were tested for criterion and predictive validity in two samples (N = 198 and N = 417 participants). Factor analyses supported a three-factor structure and the refined 17-item version of the scale showed good reliability and validity. To support applications in settings requiring brief instruments, we also developed a 9-item version, preserving the factorial structure and psychometric qualities of the original scale. The results show that the 17 as well as 9-item SkO scales have a good criterion validity as they positively and significantly correlate with the core self-evaluation scale, critical thinking disposition, and grit. Moreover, our results show that the SkO has good predictive validity as it is the only significant predictor of the creativity quotient in our sample. Full article
17 pages, 3178 KiB  
Article
Deep Learning-Based YOLO Applied to Rear Weld Pool Thermal Monitoring of Metallic Materials in the GTAW Process
by Vinicius Lemes Jorge, Zaid Boutaleb, Theo Boutin, Issam Bendaoud, Fabien Soulié and Cyril Bordreuil
Metals 2025, 15(8), 836; https://doi.org/10.3390/met15080836 - 26 Jul 2025
Viewed by 301
Abstract
This study investigates the use of YOLOv8 deep learning models to segment and classify thermal images acquired from the rear of the weld pool during the Gas Tungsten Arc Welding (GTAW) process. Thermal data were acquired using a two-color pyrometer under three welding [...] Read more.
This study investigates the use of YOLOv8 deep learning models to segment and classify thermal images acquired from the rear of the weld pool during the Gas Tungsten Arc Welding (GTAW) process. Thermal data were acquired using a two-color pyrometer under three welding current levels (160 A, 180 A, and 200 A). Models of sizes from nano to extra-large were trained on 66 annotated frames and evaluated with and without data augmentation. The results demonstrate that the YOLOv8m model achieved the best classification performance, with a precision of 83.25% and an inference time of 21.4 ms per frame by using GPU, offering the optimal balance between accuracy and speed. Segmentation accuracy also remained high across all current levels. The YOLOv8n model was the fastest (15.9 ms/frame) but less accurate (75.33%). Classification was most reliable at 160 A, where the thermal field was more stable. The arc reflection class was consistently identified with near-perfect precision, demonstrating the model’s robustness against non-relevant thermal artifacts. These findings confirm the feasibility of using lightweight, dual-task neural networks for reliable weld pool analysis, even with limited training data. Full article
(This article belongs to the Special Issue Advances in Welding Processes of Metallic Materials)
Show Figures

Figure 1

25 pages, 4344 KiB  
Article
YOLO-DFAM-Based Onboard Intelligent Sorting System for Portunus trituberculatus
by Penglong Li, Shengmao Zhang, Hanfeng Zheng, Xiumei Fan, Yonchuang Shi, Zuli Wu and Heng Zhang
Fishes 2025, 10(8), 364; https://doi.org/10.3390/fishes10080364 - 25 Jul 2025
Viewed by 258
Abstract
This study addresses the challenges of manual measurement bias and low robustness in detecting small, occluded targets in complex marine environments during real-time onboard sorting of Portunus trituberculatus. We propose YOLO-DFAM, an enhanced YOLOv11n-based model that replaces the global average pooling in [...] Read more.
This study addresses the challenges of manual measurement bias and low robustness in detecting small, occluded targets in complex marine environments during real-time onboard sorting of Portunus trituberculatus. We propose YOLO-DFAM, an enhanced YOLOv11n-based model that replaces the global average pooling in the Focal Modulation module with a spatial–channel dual-attention mechanism and incorporates the ASF-YOLO cross-scale fusion strategy to improve feature representation across varying target sizes. These enhancements significantly boost detection, achieving an mAP@50 of 98.0% and precision of 94.6%, outperforming RetinaNet-CSL and Rotated Faster R-CNN by up to 6.3% while maintaining real-time inference at 180.3 FPS with only 7.2 GFLOPs. Unlike prior static-scene approaches, our unified framework integrates attention-guided detection, scale-adaptive tracking, and lightweight weight estimation for dynamic marine conditions. A ByteTrack-based tracking module with dynamic scale calibration, EMA filtering, and optical flow compensation ensures stable multi-frame tracking. Additionally, a region-specific allometric weight estimation model (R2 = 0.9856) reduces dimensional errors by 85.7% and maintains prediction errors below 4.7% using only 12 spline-interpolated calibration sets. YOLO-DFAM provides an accurate, efficient solution for intelligent onboard fishery monitoring. Full article
Show Figures

Figure 1

25 pages, 6528 KiB  
Article
Lightweight Sheep Face Recognition Model Combining Grouped Convolution and Parameter Fusion
by Gaochao Liu, Lijun Kang and Yongqiang Dai
Sensors 2025, 25(15), 4610; https://doi.org/10.3390/s25154610 - 25 Jul 2025
Viewed by 181
Abstract
Sheep face recognition technology is critical in key areas such as individual sheep identification and behavior monitoring. Existing sheep face recognition models typically require high computational resources. When these models are deployed on mobile or embedded devices, problems such as reduced model recognition [...] Read more.
Sheep face recognition technology is critical in key areas such as individual sheep identification and behavior monitoring. Existing sheep face recognition models typically require high computational resources. When these models are deployed on mobile or embedded devices, problems such as reduced model recognition accuracy and increased recognition time arise. To address these problems, an improved Parameter Fusion Lightweight You Only Look Once (PFL-YOLO) sheep face recognition model based on YOLOv8n is proposed. In this study, the Efficient Hybrid Conv (EHConv) module is first integrated to enhance the extraction capability of the model for sheep face features. At the same time, the Residual C2f (RC2f) module is introduced to facilitate the effective fusion of multi-scale feature information and improve the information processing capability of the model; furthermore, the Efficient Spatial Pyramid Pooling Fast (ESPPF) module was used to fuse features of different scales. Finally, parameter fusion optimization work was carried out for the detection head, and the construction of the Parameter Fusion Detection (PFDetect) module was achieved, which significantly reduced the number of model parameters and computational complexity. The experimental results show that the PFL-YOLO model exhibits an excellent performance–efficiency balance in sheep face recognition tasks: mAP@50 and mAP@50:95 reach 99.5% and 87.4%, respectively, and the accuracy is close to or equal to the mainstream benchmark model. At the same time, the number of parameters is only 1.01 M, which is reduced by 45.1%, 83.7%, 66.6%, 71.4%, and 61.2% compared to YOLOv5n, YOLOv7-tiny, YOLOv8n, YOLOv9-t, and YOLO11n, respectively. The size of the model was compressed to 2.1 MB, which was reduced by 44.7%, 82.5%, 65%, 72%, and 59.6%, respectively, compared to similar lightweight models. The experimental results confirm that the PFL-YOLO model maintains high accuracy recognition performance while being lightweight and can provide a new solution for sheep face recognition models on resource-constrained devices. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

17 pages, 4790 KiB  
Article
A Comparative Study Using Reversed-Phase and Hydrophilic Interaction Liquid Chromatography to Investigate the In Vitro and In Vivo Metabolism of Five Selenium-Containing Cathinone Derivatives
by Lea Wagmann, Jana H. Schmitt, Tanja M. Gampfer, Simon D. Brandt, Kenneth Scott, Pierce V. Kavanagh and Markus R. Meyer
Metabolites 2025, 15(8), 497; https://doi.org/10.3390/metabo15080497 - 23 Jul 2025
Viewed by 442
Abstract
Background/Objectives: The emergence of cathinone-based psychostimulants necessitates ongoing research and analysis of the characteristics and properties of novel derivatives. The metabolic fate of five novel cathinone-derived substances (ASProp, MASProp, MASPent, PySProp, and PySPent) containing a selenophene moiety was investigated in vitro and [...] Read more.
Background/Objectives: The emergence of cathinone-based psychostimulants necessitates ongoing research and analysis of the characteristics and properties of novel derivatives. The metabolic fate of five novel cathinone-derived substances (ASProp, MASProp, MASPent, PySProp, and PySPent) containing a selenophene moiety was investigated in vitro and in vivo. Methods: All compounds were incubated individually with pooled human liver S9 fraction. A monooxygenase activity screening investigating the metabolic contribution of eleven recombinant phase I isoenzymes was conducted. Rat urine after oral administration was prepared by urine precipitation. Liquid chromatography–high-resolution tandem mass spectrometry was used for the analysis of all samples. Reversed-phase liquid chromatography (RPLC) and zwitterionic hydrophilic interaction liquid chromatography (HILIC) were used to evaluate and compare the metabolites’ chromatographic resolution. Results: Phase I reactions of ASProp, MASProp, MASPent, PySProp, and PySPent included N-dealkylation, hydroxylation, reduction, and combinations thereof. The monooxygenase activity screening revealed the contribution of various isozymes. Phase II reactions detected in vivo included N-acetylation and glucuronidation. Both chromatographic columns complemented each other. Conclusions: All substances revealed metabolic reactions comparable to those observed for other synthetic cathinones. Contributions from isozymes to their metabolism minimized the risk of drug–drug interactions. The identified metabolites should be considered as targets in human biosamples, especially in urine screening procedures. RPLC and HILIC can both be recommended for this purpose. Full article
(This article belongs to the Special Issue Metabolite Profiling of Novel Psychoactive Substances)
Show Figures

Figure 1

17 pages, 657 KiB  
Article
Toward Sustainable Mental Health: Development and Validation of the Brief Anxiety Scale for Climate Change (BACC) in South Korea
by Hyunjin Kim, Sooyun Jung, Boyoung Kang, Yongjun Lee, Hye-Young Jin and Kee-Hong Choi
Sustainability 2025, 17(15), 6671; https://doi.org/10.3390/su17156671 - 22 Jul 2025
Viewed by 336
Abstract
Climate change disrupts lives globally and poses significant challenges to mental health. Although several scales assess climate anxiety, many either conflate symptoms with coping responses or fail to adequately capture the core symptomatology of anxiety. Hence, this study aimed to develop and validate [...] Read more.
Climate change disrupts lives globally and poses significant challenges to mental health. Although several scales assess climate anxiety, many either conflate symptoms with coping responses or fail to adequately capture the core symptomatology of anxiety. Hence, this study aimed to develop and validate the Brief Anxiety Scale for Climate Change (BACC), a self-report measure designed to assess symptoms of climate anxiety. A preliminary pool of 21 items was generated based on the diagnostic criteria for generalized anxiety disorder and climate-related stress. Study 1 (n = 300) explored the factor structure via an exploratory factor analysis while Study 2 (n = 400) independently validated the structure via a confirmatory factor analysis (CFA). Analyses of the internal consistency, content validity, and discriminant validity helped refine the scale to a final 13-item version with two factors: cognitive and functional impairment. The CFA results indicated that all the fit indices met the recommended thresholds, and the final version demonstrated excellent internal consistency (Cronbach’s α = 0.92). Additionally, latent correlations revealed that climate anxiety was moderately associated with generalized anxiety and depression. The BACC was developed to identify individuals in the community who experience climate anxiety beyond an adaptive level, thereby promoting sustainable mental health in the context of climate change. These findings suggest that the BACC is a promising tool for assessing climate anxiety. With better identification, mental health professionals, community practitioners, and policymakers can utilize the scale to develop climate-sensitive public health programs and tailored intervention strategies. Full article
Show Figures

Figure 1

23 pages, 3725 KiB  
Systematic Review
The Value of MRI-Based Radiomics in Predicting the Pathological Nodal Status of Rectal Cancer: A Systematic Review and Meta-Analysis
by David Luengo Gómez, Marta García Cerezo, David López Cornejo, Ángela Salmerón Ruiz, Encarnación González-Flores, Consolación Melguizo Alonso, Antonio Jesús Láinez Ramos-Bossini, José Prados and Francisco Gabriel Ortega Sánchez
Bioengineering 2025, 12(7), 786; https://doi.org/10.3390/bioengineering12070786 - 21 Jul 2025
Viewed by 313
Abstract
Background: MRI-based radiomics has emerged as a promising approach to enhance the non-invasive, presurgical assessment of lymph node staging in rectal cancer (RC). However, its clinical implementation remains limited due to methodological variability in published studies. We conducted a systematic review and meta-analysis [...] Read more.
Background: MRI-based radiomics has emerged as a promising approach to enhance the non-invasive, presurgical assessment of lymph node staging in rectal cancer (RC). However, its clinical implementation remains limited due to methodological variability in published studies. We conducted a systematic review and meta-analysis to synthesize the diagnostic performance of MRI-based radiomics models for predicting pathological nodal status (pN) in RC. Methods: A systematic literature search was conducted in PubMed, Web of Science, and Scopus for studies published until 31 December 2024. Eligible studies applied MRI-based radiomics for pN prediction in RC patients. We excluded other imaging sources and models combining radiomics and other data (e.g., clinical). All models with available outcome metrics were included in data analysis. Data extraction and quality assessment (QUADAS-2) were performed independently by two reviewers. Random-effects meta-analyses including hierarchical summary receiver operating characteristic (HSROC) and restricted maximum likelihood estimator (REML) analyses were conducted to pool sensitivity, specificity, area under the curve (AUC), and diagnostic odds ratios (DORs). Sensitivity analyses and publication bias evaluation were also performed. Results: Sixteen studies (n = 3157 patients) were included. The HSROC showed pooled sensitivity, specificity, and AUC values of 0.68 (95% CI, 0.63–0.72), 0.73 (95% CI, 0.68–0.78), and 0.70 (95% CI, 0.65–0.75), respectively. The mean pooled AUC and DOR obtained by REML were 0.78 (95% CI, 0.75–0.80) and 6.03 (95% CI, 4.65–7.82). Funnel plot asymmetry and Egger’s test (p = 0.025) indicated potential publication bias. Conclusions: Overall, MRI-based radiomics models demonstrated moderate accuracy in predicting pN status in RC, with some studies reporting outstanding results. However, heterogeneity in relevant methodological approaches such as the source of MRI sequences or machine learning methods applied along with possible publication bias call for further standardization and preclude their translation to clinical practice. Full article
Show Figures

Figure 1

Back to TopTop