Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = MybA1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3299 KiB  
Article
Anthocyanin Accumulation in Grape Berry Skin Promoted by Endophytic Microbacterium sp. che218 Isolated from Wine Grape Shoot Xylem
by Yuka Teshigawara, Shiori Sato, Takayuki Asada, Masutoshi Nojiri, Shunji Suzuki and Yoshinao Aoki
Microorganisms 2024, 12(9), 1906; https://doi.org/10.3390/microorganisms12091906 - 19 Sep 2024
Viewed by 1298
Abstract
Grape berry skin coloration is a key determinant of the commercial value of red wines. Global warming caused by climate change has inhibited anthocyanin biosynthesis in berry skins, leading to poor coloration. Through two-year field experiments, the endophyte che218 isolated from grape shoot [...] Read more.
Grape berry skin coloration is a key determinant of the commercial value of red wines. Global warming caused by climate change has inhibited anthocyanin biosynthesis in berry skins, leading to poor coloration. Through two-year field experiments, the endophyte che218 isolated from grape shoot xylem promoted anthocyanin accumulation in berry skins. The che218 enhanced anthocyanin biosynthesis in grapevine cultured cells. In the 2022 growing season, applying che218 to grape bunches enhanced anthocyanin accumulation in berry skins on day 20 post-treatment. However, the anthocyanin accumulation enhancing effect of che218 became negligible at harvest. In the 2023 growing season, che218 enhanced anthocyanin accumulation in berry skins on day 15 post-treatment and at harvest (day 30 post-treatment) and also upregulated the transcription of mybA1 and UFGT, two genes that regulate anthocyanin biosynthesis in berry skins. Whole genome sequencing demonstrated that che218 is an unidentified Microbacterium species. However, it remains unknown how che218 is involved in the biosynthesis of anthocyanin in berry skins. This study provides insights into the development of an eco-friendly endophyte-mediated technique for improving grape berry skin coloration, thereby mitigating the effects of global warming on berry skin coloration. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

15 pages, 4322 KiB  
Article
Application of Synephrine to Grape Increases Anthocyanin via Production of Hydrogen Peroxide, Not Phytohormones
by Masaya Suzuki, Aoi Kimura, Shunji Suzuki and Shinichi Enoki
Int. J. Mol. Sci. 2024, 25(11), 5912; https://doi.org/10.3390/ijms25115912 - 29 May 2024
Viewed by 1253
Abstract
Global warming has caused such problems as the poor coloration of grape skin and the decreased production of high-quality berries. We investigated the effect of synephrine (Syn) on anthocyanin accumulation. Anthocyanin accumulation in cultured grape cells treated with Syn at concentrations of 1 [...] Read more.
Global warming has caused such problems as the poor coloration of grape skin and the decreased production of high-quality berries. We investigated the effect of synephrine (Syn) on anthocyanin accumulation. Anthocyanin accumulation in cultured grape cells treated with Syn at concentrations of 1 mM or higher showed no significant difference, indicating that the accumulation was concentration-independent. On the other hand, anthocyanin accumulation was dependent on the compound used for treatment. The sugar/acid ratio of the juice from berries treated with Syn did not differ from the control. The expression of anthocyanin-biosynthesis-related genes, but not phytohormones, was increased by the treatment with Syn at 24 h or later. The Syn treatment of cultured cells increased SOD3 expression and hydrogen peroxide (H2O2) production from 3 to 24 h after treatment. Subsequently, the expression of CAT and APX6 encoding H2O2-scavenging enzymes was also increased. Treatment of cultured cells with Syn and H2O2 increased the expression of the H2O2-responsive gene Chit4 and the anthocyanin-biosynthesis-related genes mybA1 and UFGT 4 days after the treatment and increased anthocyanin accumulation 7 days after the treatment. On the other hand, the treatment of berries with Syn and H2O2 increased anthocyanin accumulation after 9 days. These results suggest that Syn increases anthocyanin accumulation through H2O2 production without changing phytohormone biosynthesis. Syn is expected to improve grape skin coloration and contribute to high-quality berry production. Full article
(This article belongs to the Special Issue Molecular and Metabolic Regulation of Plant Secondary Metabolism)
Show Figures

Figure 1

17 pages, 5391 KiB  
Article
Exogenous Abscisic Acid Regulates Anthocyanin Biosynthesis and Gene Expression in Blueberry Leaves
by Bin Ma, Yan Song, Xinghua Feng, Qingxun Guo, Lianxia Zhou, Xinsheng Zhang and Chunyu Zhang
Horticulturae 2024, 10(2), 192; https://doi.org/10.3390/horticulturae10020192 - 19 Feb 2024
Cited by 3 | Viewed by 2598
Abstract
Blueberry (Vaccinium corymbosum) leaves have a positive influence on health because of their phenolic contents, including anthocyanins. Phytohormone abscisic acid (ABA) promotes anthocyanin accumulation, but the underlying mechanisms are unclear in blueberry leaves. In this study, we found that exogenous ABA [...] Read more.
Blueberry (Vaccinium corymbosum) leaves have a positive influence on health because of their phenolic contents, including anthocyanins. Phytohormone abscisic acid (ABA) promotes anthocyanin accumulation, but the underlying mechanisms are unclear in blueberry leaves. In this study, we found that exogenous ABA promotes anthocyanin accumulation in blueberry leaves and we explored the global molecular events involved in these physiological changes by treating in vitro-grown blueberry seedlings with ABA and performing transcriptome deep sequencing (RNA-seq). We identified 6390 differentially expressed genes (DEGs), with 2893 DEGs at 6 h and 4789 at 12 h of ABA treatment compared to the control. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to plant hormone signal transduction and phenylpropanoid and flavonoid biosynthesis were significantly enriched at both stages of the ABA treatment. Analysis of DEGs in plant hormone signal transduction pathways revealed that exogenous ABA affected the expression of genes from other plant hormone signaling pathways, especially brassinosteroid, auxin, and gibberellin signaling. To elucidate the mechanism driving anthocyanin biosynthesis in blueberry in response to ABA treatment, we screened anthocyanin biosynthesis structural genes (ASG) from the phenylpropanoid and flavonoid biosynthetic pathways, MYB transcription factor genes from R2R3-MYB subgroups 5, 6, and 7 and ABRE-binding factor (ABF) genes from the ABA signal transduction pathway. Pearson’s correlation coefficient (r) analysis indicated that the ABFs, MYBs, and structural genes form a network to regulate ABA-induced anthocyanin biosynthesis and MYBA1 is likely to play an important role in this regulatory network. These findings lay the foundation for improving anthocyanin biosynthesis in blueberry leaves. Full article
(This article belongs to the Special Issue Advances in Developmental Biology in Tree Fruit and Nut Crops)
Show Figures

Figure 1

16 pages, 3654 KiB  
Article
Non-Mature miRNA-Encoded Micropeptide miPEP166c Stimulates Anthocyanin and Proanthocyanidin Synthesis in Grape Berry Cells
by Mariana Vale, Hélder Badim, Hernâni Gerós and Artur Conde
Int. J. Mol. Sci. 2024, 25(3), 1539; https://doi.org/10.3390/ijms25031539 - 26 Jan 2024
Cited by 5 | Viewed by 1935
Abstract
The phenylpropanoid and flavonoid pathways exhibit intricate regulation, not only influenced by environmental factors and a complex network of transcription factors but also by post-transcriptional regulation, such as silencing by microRNAs and miRNA-encoded micropeptides (miPEPs). VviMYBC2-L1 serves as a transcriptional repressor for flavonoids, [...] Read more.
The phenylpropanoid and flavonoid pathways exhibit intricate regulation, not only influenced by environmental factors and a complex network of transcription factors but also by post-transcriptional regulation, such as silencing by microRNAs and miRNA-encoded micropeptides (miPEPs). VviMYBC2-L1 serves as a transcriptional repressor for flavonoids, playing a crucial role in coordinating the synthesis of anthocyanin and proanthocyanidin. It works in tandem with their respective transcriptional activators, VviMYBA1/2 and VviMYBPA1, to maintain an equilibrium of flavonoids. We have discovered a miPEP encoded by miR166c that appears to target VviMYBC2-L1. We conducted experiments to test the hypothesis that silencing this transcriptional repressor through miPEP166c would stimulate the synthesis of anthocyanins and proanthocyanidins. Our transcriptional analyses by qPCR revealed that the application of exogenous miPEP166c to Gamay Fréaux grape berry cells resulted in a significant upregulation in flavonoid transcriptional activators (VviMYBA1/2 and VviMYBPA1) and structural flavonoid genes (VviLDOX and VviDFR), as well as genes involved in the synthesis of proanthocyanidins (VviLAR1 and VviANR) and anthocyanins (VviUFGT1). These findings were supported by the increased enzyme activities of the key enzymes UFGT, LAR, and ANR, which were 2-fold, 14-fold, and 3-fold higher, respectively, in the miPEP166c-treated cells. Ultimately, these changes led to an elevated total content of anthocyanins and proanthocyanidins. Full article
Show Figures

Figure 1

15 pages, 3805 KiB  
Article
Integrative Transcriptomic and Metabolomic Analyses of the Mechanism of Anthocyanin Accumulation and Fruit Coloring in Three Blueberry Varieties of Different Colors
by Liwei Chu, Qianhui Du, Aizhen Li, Guiting Liu, Hexin Wang, Qingqing Cui, Zhichao Liu, Haixia Liu, Yani Lu, Yanqiong Deng and Guohui Xu
Horticulturae 2024, 10(1), 105; https://doi.org/10.3390/horticulturae10010105 - 22 Jan 2024
Cited by 4 | Viewed by 2701
Abstract
Blueberries are recognized worldwide as one of the most important healthy foods due to their anthocyanins, which have special antioxidant properties. They have become a highly produced and valuable fruit crop. Most blueberry varieties are rich in anthocyanins, which impart a beautiful blue [...] Read more.
Blueberries are recognized worldwide as one of the most important healthy foods due to their anthocyanins, which have special antioxidant properties. They have become a highly produced and valuable fruit crop. Most blueberry varieties are rich in anthocyanins, which impart a beautiful blue color; however, there are currently several blueberry varieties with different colors worldwide, and these special-colored varieties are the key to analyzing the coloring mechanism of blueberry fruit. Fruit color could be seen as an important nutritional quality trait in terms of marketing. In this study, a combination of transcriptomic and metabolomic analyses was performed on three representative blueberry varieties (‘Pink Popcorn’, ‘Chandler’, and ‘Black Pearl’) with pink, blue, and black fruits, respectively. The metabolomic results showed that the delphinium pigment is the dominant anthocyanin, which is the prerequisite for the formation of fruit color in blueberries. We identified 18 candidate structural genes in the anthocyanin biosynthesis pathway that were significantly up-regulated during three stages of fruit ripening in ‘Black Pearl’ and ‘Chandler’, but these were not found to be significantly expressed in ‘Pink Popcorn’ after combining the transcriptomic analysis results. The non-expression of the VcANS gene may lead to the pink color of the mature fruit of ‘Pink Popcorn’. The phylogenetic tree, heatmap analysis, and WGCNA analysis identified a candidate transcription factor, VcMYBA, which may regulate the differences between black and blue fruits in blueberries by regulating the expression level of multiple structural genes in the anthocyanin biosynthesis pathway. These results provide new insights into the mechanisms of anthocyanin accumulation and coloration in blueberries during fruit ripening and can help support production practices to improve fruit quality characteristics. The key candidate genes that regulate the fruit color differences among different blueberry varieties have the potential to enhance the antioxidant properties and quality characteristics of blueberries through future genomic editing. Full article
Show Figures

Figure 1

17 pages, 4270 KiB  
Article
Influence of Anthocyanin Expression on the Performance of Photosynthesis in Sweet Orange, Citrus sinensis (L.) Osbeck
by Alissar Cheaib, Lamiaa M. Mahmoud, Christopher Vincent, Nabil Killiny and Manjul Dutt
Plants 2023, 12(23), 3965; https://doi.org/10.3390/plants12233965 - 24 Nov 2023
Cited by 6 | Viewed by 2287
Abstract
Anthocyanins are a class of natural pigments that accumulate transiently or permanently in plant tissues, often in response to abiotic and biotic stresses. They play a photoprotective role by attenuating the irradiance incident on the photochemical apparatus and quenching oxyradicals through their powerful [...] Read more.
Anthocyanins are a class of natural pigments that accumulate transiently or permanently in plant tissues, often in response to abiotic and biotic stresses. They play a photoprotective role by attenuating the irradiance incident on the photochemical apparatus and quenching oxyradicals through their powerful anti-oxidative function. The objective of the current study is to understand the impact of introducing Vitis vinifera mybA1 (VvmybA1) in ‘Hamlin’ sweet orange trees on various aspects, including photosynthetic performance, pigment composition, and gene expression related to photosynthesis and light harvesting. We describe the relationship between anthocyanin accumulation and photosynthetic measurements in genetically modified ‘Hamlin’ sweet orange trees expressing the grapevine-derived Vitis vinifera mybA1 (VvmybA1). The juvenile leaves of transgenic plants displayed an intense purple color compared to the mature leaves, and microscopic visualization showed anthocyanin accumulation primarily in the leaf epidermal cells. Under optimal growth conditions, there were no significant differences in leaf gas exchange variables, suggesting normal photosynthetic performance. The chlorophyll fluorescence maximum quantum yield of PSII was slightly reduced in VvmybA1 transgenic leaves compared to the performance of the control leaves, while the total performance index per absorbance remained unaffected. Comparison of the chlorophyll and carotenoid pigment contents revealed that chlorophyllide a and carotenoid pigments, including trans-neoxanthin, trans-violaxanthin, cis-violaxanthin, zeaxanthin, antheraxanthin, and total xanthophylls were enhanced in VvmybA1 transgenic leaves. Although there were no significant changes in the rates of the gas exchange parameters, we recorded a high relative expression of the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (RuBP) and rubisco activase (RCA) in the mature leaves of transgenic plants, indicating activation of Rubisco. Our findings confirm an efficient photoacclimation of the photosynthetic apparatus, allowing the transgenic line to maintain a photosynthetic performance similar to that of the wild type. Full article
Show Figures

Figure 1

16 pages, 2835 KiB  
Essay
RNA-Seq Based Transcriptomic Analysis of Bud Sport Skin Color in Grape Berries
by Wuwu Wen, Haimeng Fang, Lingqi Yue, Muhammad Khalil-Ur-Rehman, Yiqi Huang, Zhaoxuan Du, Guoshun Yang and Yanshuai Xu
Horticulturae 2023, 9(2), 260; https://doi.org/10.3390/horticulturae9020260 - 15 Feb 2023
Cited by 2 | Viewed by 2165
Abstract
The most common bud sport trait in grapevines is the change in color of grape berry skin, and the color of grapes is mainly developed by the composition and accumulation of anthocyanins. Many studies have shown that MYBA is a key gene regulates [...] Read more.
The most common bud sport trait in grapevines is the change in color of grape berry skin, and the color of grapes is mainly developed by the composition and accumulation of anthocyanins. Many studies have shown that MYBA is a key gene regulates the initiation of bud sport color and anthocyanin synthesis in grape peels. In the current study, we used berry skins of ‘Italia’, ‘Benitaka’, ‘Muscat of Alexandria’, ‘Flame Muscat’, ‘Rosario Bianco’, ‘Rosario Rosso’, and ‘Red Rosario’ at the véraison stage (10 weeks post-flowering and 11 weeks post-flowering) as research materials. The relative expressions of genes related to grape berry bud sport skin color were evaluated utilizing RNA-Seq technology. The results revealed that the expressions of the VvMYBA1/A2 gene in the three red grape varieties at the véraison stage were higher than in the three white grape varieties. The VvMYBA1/A2 gene is known to be associated with UFGT in the anthocyanin synthesis pathway. According to the results, VvMYBA1/A2 gene expression could also be associated with the expression of LDOX. In addition, a single gene (gene ID: Vitvi19g01871) displayed the highest expressions in all the samples at the véraison stage for the six varieties. The expression of this gene was much higher in the three green varieties compared to the three red ones. GO molecular function annotation identified it as a putative metallothionein-like protein with the ability to regulate the binding of copper ions to zinc ions and the role of maintaining the internal stable state of copper ions at the cellular level. High expression levels of this screened gene may play an important role in bud sport color of grape berry skin at the véraison stage. Full article
Show Figures

Figure 1

14 pages, 3376 KiB  
Article
An R2R3-Type Transcription Factor OsMYBAS1 Regulates Seed Germination under Artificial Accelerated Aging in Transgenic Rice (Oryza sativa L.)
by Rong Wu, Yunqian Ding, Chenyong Li, Bangkui Wu, Zhongji Huang, Zhenan Li, Xiaomin Wang and Guangwu Zhao
Agronomy 2022, 12(8), 1955; https://doi.org/10.3390/agronomy12081955 - 19 Aug 2022
Cited by 7 | Viewed by 2180
Abstract
MYB-type transcription factors play an essential regulatory role in seed germination and the response to seedling establishment stress. This study isolated a rice R2R3-MYB transcription factor, OsMYBAS1, and functionally characterized its role in seed germination. There was no significant difference in the germination [...] Read more.
MYB-type transcription factors play an essential regulatory role in seed germination and the response to seedling establishment stress. This study isolated a rice R2R3-MYB transcription factor, OsMYBAS1, and functionally characterized its role in seed germination. There was no significant difference in the germination rate of each transgenic line in the standard germination test. However, compared to the germination rate of the wild type (WT) measured in the artificial accelerated aging test, the germination rates of the overexpression lines OE-OsMYBAS1-1 and OE-OsMYBAS1-2 were significantly increased by 25.0% and 21.7%, respectively. In contrast, the germination rates of the knockout mutants osmybas1-1 and osmybas1-2 were decreased by 21.7% and 33.3%, respectively. Additionally, the above data indicated that OsMYBAS1 possibly plays a positive role in rice seed germination. Moreover, the antioxidant enzyme activities of OsMYBAS1-overexpressing plants were enhanced by 38.5% to 151.0% while the superoxide dismutase (SOD) enzyme activity of osmybas1 mutants was decreased by 27.5%, and the malondialdehyde (MDA) content was increased by 24.7% on average. Interestingly, the expression of the antioxidation-related genes OsALDH3, OsAPX3, and OsCATC was enhanced in the OsMYBAS1 overexpression lines, which is consistent with the above results. Furthermore, transcriptome sequencing determined 284 differentially expressed genes (DEGs), which were mainly involved in the carbohydrate metabolic process, glycerolipid metabolism, and glycerophospholipid metabolism. Therefore, these findings provide valuable insight into the breeding of new rice varieties with high seed germination. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

19 pages, 4409 KiB  
Article
The Ethylene Response Factor ERF5 Regulates Anthocyanin Biosynthesis in ‘Zijin’ Mulberry Fruits by Interacting with MYBA and F3H Genes
by Rongli Mo, Guangming Han, Zhixian Zhu, Jemaa Essemine, Zhaoxia Dong, Yong Li, Wen Deng, Mingnan Qu, Cheng Zhang and Cui Yu
Int. J. Mol. Sci. 2022, 23(14), 7615; https://doi.org/10.3390/ijms23147615 - 9 Jul 2022
Cited by 34 | Viewed by 4355
Abstract
Ethylene promotes ripening in fruits as well as the biosynthesis of anthocyanins in plants. However, the question of which ethylene response factors (ERFs) interact with the genes along the anthocyanin biosynthesis pathway is yet to be answered. Herein, we conduct an integrated analysis [...] Read more.
Ethylene promotes ripening in fruits as well as the biosynthesis of anthocyanins in plants. However, the question of which ethylene response factors (ERFs) interact with the genes along the anthocyanin biosynthesis pathway is yet to be answered. Herein, we conduct an integrated analysis of transcriptomes and metabolome on fruits of two mulberry genotypes (‘Zijin’, ZJ, and ‘Dashi’, DS, with high and low anthocyanin abundance, respectively) at different post-flowering stages. In total, 1035 upregulated genes were identified in ZJ and DS, including MYBA in the MBW complex and anthocyanin related genes such as F3H. A KEGG analysis suggested that flavonoid biosynthesis and plant hormone signaling transduction pathways were significantly enriched in the upregulated gene list. In particular, among 103 ERF genes, the expression of ERF5 showed the most positive correlation with the anthocyanin change pattern across both genotypes and in the post-flowering stages, with a Pearson correlation coefficient (PCC) of 0.93. Electrophoresis mobility shift assay (EMSA) and luciferase assay suggested that ERF5 binds to the promoter regions of MYBA and F3H and transcriptionally activates their gene expression. We elucidated a potential mechanism by which ethylene enhances anthocyanin accumulation in mulberry fruits and highlighted the importance of the ERF5 gene in controlling the anthocyanin content in mulberry species. This knowledge could be used for engineering purposes in future mulberry breeding programs. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

13 pages, 5095 KiB  
Article
Geraniol as a Potential Stimulant for Improving Anthocyanin Accumulation in Grape Berry Skin through ABA Membrane Transport
by Norika Mikami, Mayu Konya, Shinichi Enoki and Shunji Suzuki
Plants 2022, 11(13), 1694; https://doi.org/10.3390/plants11131694 - 27 Jun 2022
Cited by 6 | Viewed by 3268
Abstract
Climate change, particularly warmer temperature, has resulted in reduced anthocyanin accumulation in grape berry skin. Because anthocyanin is a crucial determinant of red wine quality, viticulturists need to devise a solution for mitigating the poor coloration of red/black grape berry skin under elevated [...] Read more.
Climate change, particularly warmer temperature, has resulted in reduced anthocyanin accumulation in grape berry skin. Because anthocyanin is a crucial determinant of red wine quality, viticulturists need to devise a solution for mitigating the poor coloration of red/black grape berry skin under elevated temperature conditions. In this study, we investigated the effects of geraniol on anthocyanin accumulation in grape berry skins of field-grown grapevines and elucidated the molecular mechanisms of the geraniol-triggered anthocyanin accumulation. Geraniol-treated bunches showed enhanced anthocyanin accumulation in berry skins at harvest (50 days after treatment). Geraniol treatment upregulated the transcription of MybA1 and UFGT, which encode the key factors in anthocyanin biosynthesis, in berry skins. Geraniol treatment also improved anthocyanin accumulation in grape cultured cells. We isolated grape ATP-binding cassette transporter G family protein VvABCG40, encoding abscisic acid (ABA) membrane transporter, from geraniol-treated grape cultured cells. VvABCG40 transcription was upregulated in berry skins 40 days after treatment. Geraniol treatment also upregulated the transcription of VvPP2C24, which encodes ABA-responsible type 2C protein phosphatases, in berry skins, but not the transcription of VvNCED1, which encodes a key enzyme in ABA biosynthesis. Taken together, geraniol-triggered anthocyanin accumulation in berry skins is promoted by ABA membrane transport and not by ABA biosynthesis, and geraniol treatment of field-grown grape bunches may contribute to alleviating the poor coloration of berry skin as a novel technique in viticulture. Full article
Show Figures

Figure 1

14 pages, 3528 KiB  
Article
Ripening-Induced Changes in the Nutraceutical Compounds of Differently Coloured Pepper (Capsicum annuum L.) Breeding Lines
by Zsófia Kovács, Janka Bedő, Bánk Pápai, Andrea Kitti Tóth-Lencsés, Gábor Csilléry, Antal Szőke, Éva Bányai-Stefanovits, Erzsébet Kiss and Anikó Veres
Antioxidants 2022, 11(4), 637; https://doi.org/10.3390/antiox11040637 - 26 Mar 2022
Cited by 13 | Viewed by 3240
Abstract
To date, several research studies addressed the topic of phytochemical analysis of the different coloured pepper berries during ripening, but none discussed it in the case of purple peppers. In this study we examine whether the anthocyanin accumulation of the berries in the [...] Read more.
To date, several research studies addressed the topic of phytochemical analysis of the different coloured pepper berries during ripening, but none discussed it in the case of purple peppers. In this study we examine whether the anthocyanin accumulation of the berries in the early stages of ripening could result in a higher antioxidant capacity due to the elevated amount of polyphenolic compounds. Therefore, enzymatic and non-enzymatic antioxidant capacity was measured in four distinct phenophases of fruit maturity. Furthermore, the expression of structural and regulatory genes of the anthocyanin biosynthetic pathway was also investigated. An overall decreasing trend was observed in the polyphenolic and flavonoid content and antioxidant capacity of the samples towards biological ripeness. Significant changes both in between the genotypes and in between the phenophases were scored, with the genotype being the most affecting factor on the phytonutrients. An extreme purple pepper yielded outstanding results compared to the other genotypes, with its polyphenolic and flavonoid content as well as its antioxidant capacity being the highest in every phenophase studied. Based on our results, besides MYBa (Ca10g11650) two other putative MYBs participate in the regulation of the anthocyanin biosynthetic pathway. Full article
Show Figures

Figure 1

10 pages, 1410 KiB  
Article
An R2R3-MYB Transcription Factor OsMYBAS1 Promotes Seed Germination under Different Sowing Depths in Transgenic Rice
by Xiaomin Wang, Rong Wu, Tongshu Shen, Zhenan Li, Chengyong Li, Bangkui Wu, Hongye Jiang and Guangwu Zhao
Plants 2022, 11(1), 139; https://doi.org/10.3390/plants11010139 - 5 Jan 2022
Cited by 17 | Viewed by 3049
Abstract
MYB-type transcription factors play essential regulatory roles in seed germination and the response to seedling establishment stress. This study isolated a rice R2R3-MYB gene, OsMYBAS1, and functionally characterized its role in seed germination by generating transgenic rice plants with the overexpression and [...] Read more.
MYB-type transcription factors play essential regulatory roles in seed germination and the response to seedling establishment stress. This study isolated a rice R2R3-MYB gene, OsMYBAS1, and functionally characterized its role in seed germination by generating transgenic rice plants with the overexpression and knockout of OsMYBAS1. Gene expression analysis suggested that OsMYBAS1 was highly expressed in brown rice and root, respectively. Subcellular localization analysis determined that OsMYBAS1 was localized in the nucleus. No significant differences in seed germination rate were observed among wild-type (WT) and transgenic rice plants at the 0-cm sowing depth. However, when sown at a depth of 4 cm, higher germination rates, root lengths and seedling heights were obtained in OsMYBAS1-overexpressing plants than in WT. Furthermore, the opposite results were recorded between the osmybas1 mutants and WT. Moreover, OsMYBAS1-overexpressing plants significantly enhanced superoxide dismutase (SOD) enzyme activity and suppressed the accumulation of malondialdehyde (MDA) content at the 4-cm sowing depth. These results indicate that the MYB transcription factor OsMYBAS1 may promote rice seed germination and subsequent seedling establishment under deep-sowing conditions. These findings can provide valuable insight into rice seed-quality breeding to facilitate the development of a dry, direct-seeding production system. Full article
Show Figures

Figure 1

13 pages, 2226 KiB  
Article
Ethylene Induced by Sound Stimulation Enhances Anthocyanin Accumulation in Grape Berry Skin through Direct Upregulation of UDP-Glucose: Flavonoid 3-O-Glucosyltransferase
by Mone Yamazaki, Akari Ishida, Yutaka Suzuki, Yoshinao Aoki, Shunji Suzuki and Shinichi Enoki
Cells 2021, 10(10), 2799; https://doi.org/10.3390/cells10102799 - 19 Oct 2021
Cited by 19 | Viewed by 4448
Abstract
Global warming has resulted in the loss of anthocyanin accumulation in berry skin. Sound stimulation can be used as a potential method for enhancing fruit color development since many plants recognize sound vibration as an external stimulus and alter their physiological status in [...] Read more.
Global warming has resulted in the loss of anthocyanin accumulation in berry skin. Sound stimulation can be used as a potential method for enhancing fruit color development since many plants recognize sound vibration as an external stimulus and alter their physiological status in response to it. Sound stimulation (sine wave sound at 1000 Hz) enhanced anthocyanin accumulation in grape cultured cells and berry skins in field-grown grapevines at the early stage of ripening. The transcription of UFGT and ACO2, which encode the key enzymes in anthocyanin and ethylene biosynthesis, respectively, was upregulated in grape cultured cells exposed to sound stimulation. In contrast, the transcription of MybA1 and NCED1, which encode a transcription factor for UFGT and a key enzyme in abscisic acid biosynthesis, respectively, was not affected by the sound stimulation. A treatment with an ethylene biosynthesis inhibitor, aminoethoxyvinyl glycine hydrochloride, revered the enhancement of anthocyanin accumulation by sound stimulation. As the promoter assay using a GUS reporter gene demonstrated that UFGT promoter was directly activated by the ethylene-releasing compound ethephon, which enhanced anthocyanin accumulation in grape cultured cells, we conclude that sound stimulation enhanced anthocyanin accumulation through the direct upregulation of UFGT by ethylene biosynthesis. Our findings suggest that sound stimulation contributes to alleviating poor coloration in berry skin as a novel and innovative practical technique in viticulture. Full article
Show Figures

Figure 1

20 pages, 2973 KiB  
Article
Color Intensity of the Red-Fleshed Berry Phenotype of Vitis vinifera Teinturier Grapes Varies Due to a 408 bp Duplication in the Promoter of VvmybA1
by Franco Röckel, Carina Moock, Ulrike Braun, Florian Schwander, Peter Cousins, Erika Maul, Reinhard Töpfer and Ludger Hausmann
Genes 2020, 11(8), 891; https://doi.org/10.3390/genes11080891 - 5 Aug 2020
Cited by 29 | Viewed by 5640
Abstract
Grapevine (Vitis vinifera) teinturier cultivars are characterized by their typical reddish leaves and red-fleshed berries due to ectopic anthocyanin formation. Wines of these varieties have economic importance as they can be used for blending to enhance the color of red wines. [...] Read more.
Grapevine (Vitis vinifera) teinturier cultivars are characterized by their typical reddish leaves and red-fleshed berries due to ectopic anthocyanin formation. Wines of these varieties have economic importance as they can be used for blending to enhance the color of red wines. The unique and heritable mutation has been known for a long time but the underlying genetic mechanism still is not yet understood. Here we describe the association of the red-fleshed berry phenotype with a 408 bp repetitive DNA element in the promoter of the VvmybA1 gene (grapevine color enhancer, GCE). Three different clones of ‘Teinturier’ were discovered with two, three and five allelic GCE repeats (MybA1t2, MybA1t3 and MybA1t5). All three clones are periclinal chimeras; these clones share the same L1 layer, but have distinct L2 layers with different quantities of GCE repeats. Quantitative real time PCR and HPLC analysis of leaf and berry samples showed that the GCE repeat number strongly correlates with an increase of the expression of VvmybA1 itself and the VvUFGT gene regulated by it and the anthocyanin content. A model is proposed based on autoregulation of VvmybA1t to explain the red phenotype which is similar to that of red-fleshed apples. This study presents results about the generation and modes of action of three MybA1t alleles responsible for the red-fleshed berry phenotype of teinturier grapevines. Full article
(This article belongs to the Special Issue Genetics and Diversity of Grapevine)
Show Figures

Figure 1

24 pages, 5321 KiB  
Article
The Effect of Ethylene on the Color Change and Resistance to Botrytis cinerea Infection in ‘Kyoho’ Grape Fruits
by Tianyu Dong, Ting Zheng, Weihong Fu, Lubin Guan, Haifeng Jia and Jinggui Fang
Foods 2020, 9(7), 892; https://doi.org/10.3390/foods9070892 - 7 Jul 2020
Cited by 38 | Viewed by 5339
Abstract
The formation of grape quality and the mechanism of resistance against foreign pathogens affect the storage stability of fruits during post-harvest handling. Ethylene plays a crucial role in regulating the ripeness of fruits and can be used as an exogenous regulator to resist [...] Read more.
The formation of grape quality and the mechanism of resistance against foreign pathogens affect the storage stability of fruits during post-harvest handling. Ethylene plays a crucial role in regulating the ripeness of fruits and can be used as an exogenous regulator to resist exogenous pathogens. In this study, we used different concentrations of ethephon for treatment of grape fruits before veraison, analyzed the anthocyanin content, soluble solids, titratable acid, and determined fruit firmness and cell wall metabolism-related enzymes during fruit development. Results showed that exogenous ethephon promoted the early coloration of grape fruits and increased the coloring-related genes myeloblastosis A1(MYBA1), myeloblastosis A2(MYBA2), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonoid 3’-hydroxylase gene (F3’H), flavonoid 3’, 5’hydroxylase (F3’5’H), 3-O-flavonoid glucosyltransferase (UFGT), and glutathione S-transferase (GST), softening related genes Polygalacturonase(PG), pectinate lyases(PL) and Pectin methylesterase( PME, as well as ethylene metabolism pathway-related genes 1-aminocyclopropane-1-carboxylic acid synthase 1(ACS1), 1-aminocyclopropane-1-carboxylic acid oxidase 2 (ACO2), ethylene receptor gene(ETR2), and ethylene-insensitive 3 (EIN3). Ethephon treatment also increased soluble solids and decreased titratable acid in grape fruit. Fruits pretreated with ethephon were inoculated with Botrytis cinerea, which led to resistance in grape fruit through activation of the antioxidant system. The expression levels of disease resistance-related genes including VvPAD4, VvPIP1, VvNAC26, VvDREB, VvAPX, Vvpgip, VvWRKY70, VvMYC2, VvNPR1 also increased in inoculated fruit with pathogen following ethephon pretreatment. Furthermore, we monitored ethylene response factor 1(ERF1) transcription factor, which could interact with protein EIN3 during ethylene signal transduction and mediate fruit resistance against B. cinerea infection. Meanwhile, overexpression of VvERF1 vectorin strawberry fruits reduced the susceptibility to B. cinerea infection. We suggest that ethylene can induce resistance in ripened fruits after B. cinerea infection and provide adequate postharvest care. Full article
Show Figures

Figure 1

Back to TopTop