Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (116)

Search Parameters:
Keywords = Moso Bamboo (Phyllostachys edulis)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 11002 KiB  
Article
Transcriptomic Identification of Key Genes Responding to High Heat Stress in Moso Bamboo (Phyllostachys edulis)
by Qinchao Fu, Xinlan Wen, Man Tang, Xin Zhao and Fang Liu
Genes 2025, 16(8), 855; https://doi.org/10.3390/genes16080855 - 23 Jul 2025
Viewed by 276
Abstract
Background/Objectives: Moso bamboo (Phyllostachys edulis), the most widely distributed bamboo species in China, is valued for both its shoots and timber. This species often faces challenges from high-temperature stress. To cope with this stress, Moso bamboo has evolved various adaptive mechanisms [...] Read more.
Background/Objectives: Moso bamboo (Phyllostachys edulis), the most widely distributed bamboo species in China, is valued for both its shoots and timber. This species often faces challenges from high-temperature stress. To cope with this stress, Moso bamboo has evolved various adaptive mechanisms at the physiological and molecular levels. Although numerous studies have revealed that a large number of transcription factors (TFs) and genes play important roles in the regulatory network of plant heat stress responses, the regulatory network involved in heat responses remains incompletely understood. Methods: In this study, Moso bamboo was placed in a high-temperature environment of 42 °C for 1 h and 24 h, and transcriptome sequencing was carried out to accurately identify key molecules affected by high temperature and their related biological pathways. Results: Through a differential expression analysis, we successfully identified a series of key candidate genes and transcription factors involved in heat stress responses, including members of the ethylene response factor, HSF, WRKY, MYB, and bHLH families. Notably, in addition to traditional heat shock proteins/factors, multiple genes related to lipid metabolism, antioxidant enzymes, dehydration responses, and hormone signal transduction were found to play significant roles in heat stress responses. To further verify the changes in the expression of these genes, we used qRT-PCR technology for detection, and the results strongly supported their key roles in cellular physiological processes and heat stress responses. Conclusions: This study not only deepens our understanding of plant strategies for coping with and defending against extreme abiotic stresses but also provides valuable insights for future research on heat tolerance in Moso bamboo and other plants. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

12 pages, 1736 KiB  
Article
Contrasting Effects of Moso Bamboo Expansion into Broad-Leaved and Coniferous Forests on Soil Microbial Communities
by Rong Lin, Wenjie Long, Fanqian Kong, Juanjuan Zhu, Miaomiao Wang, Juan Liu, Rui Li and Songze Wan
Forests 2025, 16(7), 1188; https://doi.org/10.3390/f16071188 - 18 Jul 2025
Viewed by 233
Abstract
Soil microbes play a crucial role in driving biogeochemical cycles and are closely linked with aboveground plants during forest succession. Moso bamboo (Phyllostachys edulis) encroachment into adjacent forests of varying composition is known to alter plant diversity in subtropical and tropical [...] Read more.
Soil microbes play a crucial role in driving biogeochemical cycles and are closely linked with aboveground plants during forest succession. Moso bamboo (Phyllostachys edulis) encroachment into adjacent forests of varying composition is known to alter plant diversity in subtropical and tropical regions. However, how soil microbial communities respond to this vegetation type transformation has not fully explored. To address this knowledge gap, a time-alternative spatial method was employed in the present study, and we investigated the effect of Moso bamboo expansion into subtropical broad-leaved forest and coniferous forest on soil microbial phospholipid fatty acids (PLFAs). We also measured the dynamics of key soil properties during the Moso bamboo expansion processes. Our results showed that Moso bamboo encroachment into subtropical broad-leaved forest induced an elevation in soil bacterial PLFAs (24.78%) and total microbial PLFAs (22.70%), while decreasing the fungal-to-bacterial (F:B) ratio. This trend was attributed to declines in soil NO3-N (18.63%) and soil organic carbon (SOC) concentrations (28.83%). Conversely, expansion into coniferous forests promoted soil fungal PLFAs (40.41%) and F:B ratio, primarily driven by increases in soil pH (4.83%) and decreases in SOC (36.18%). These results provide mechanistic insights into how contrasting expansion trajectories of Moso bamboo restructure soil microbial communities and highlight the need to consider vegetation context-dependency when evaluating the ecological consequences of Moso bamboo expansion. Full article
(This article belongs to the Special Issue Forest Soil Microbiology and Biogeochemistry)
Show Figures

Figure 1

17 pages, 1455 KiB  
Article
Effects of Simulated Nitrogen Deposition on the Physiological and Growth Characteristics of Seedlings of Two Typical Subtropical Tree Species
by Zhenya Yang and Benzhi Zhou
Plants 2025, 14(14), 2153; https://doi.org/10.3390/plants14142153 - 11 Jul 2025
Viewed by 461
Abstract
Amid global environmental change, the intensification of nitrogen (N) deposition exerts critical impacts on the growth of forest vegetation and the structure and function of ecosystems in subtropical China. However, the physiological and growth response mechanisms of subtropical tree species remain poorly understood. [...] Read more.
Amid global environmental change, the intensification of nitrogen (N) deposition exerts critical impacts on the growth of forest vegetation and the structure and function of ecosystems in subtropical China. However, the physiological and growth response mechanisms of subtropical tree species remain poorly understood. This study explored adaptive mechanisms of typical subtropical tree species to N deposition, analyzing biomass accumulation, root plasticity, and nutrient/photosynthate allocation strategies. One-year-old potted seedlings of Phyllostachys edulis (moso bamboo) and Cunninghamia lanceolata (Chinese fir) were subjected to four N-addition treatments (N0: 0, N1: 6 g·m−2·a−1, N2: 12 g·m−2·a−1, N3: 18 g·m−2·a−1) for one year. In July and December, measurements were conducted on seedling organ biomass, root morphological and architectural traits, as well as nutrient elements (N and phosphorus(P)) and non-structural carbohydrate (soluble sugars and starch) contents in roots, stems, and leaves. Our results demonstrate that the Chinese fir exhibits stronger tolerance to N deposition and greater root morphological plasticity than moso bamboo. It adapts to N deposition by developing root systems with a higher finer root (diameter ≤ 0.2 mm) ratio, lower construction cost, greater branching intensity and angle, and architecture approaching dichotomous branching. Although N deposition promotes short-term biomass and N accumulation in both species, it reduces P and soluble sugars contents, leading to N/P imbalance and adverse effects on long-term growth. Under conditions of P and photosynthate scarcity, the Chinese fir preferentially allocates soluble sugars to leaves, while moso bamboo prioritizes P and soluble sugars to roots. In the first half of the growing season, moso bamboo allocates more biomass and N to aboveground parts, whereas in the second half, it allocates more biomass and P to roots to adapt to N deposition. This study reveals that Chinese fir enhances its tolerance to N deposition through the plasticity of root morphology and architecture, while moso bamboo exhibits dynamic resource allocation strategies. The research identifies highly adaptive root morphological and architectural patterns, demonstrating that optimizing the allocation of elements and photosynthates and avoiding elemental balance risks represent critical survival mechanisms for subtropical tree species under intensified N deposition. Full article
Show Figures

Figure 1

13 pages, 3859 KiB  
Article
Long-Term Fertilizer-Based Management Alters Soil N2O Emissions and Silicon Availability in Moso Bamboo Forests
by Jie Yang, Kecheng Wang, Jiamei Chen, Lili Fan, Peikun Jiang and Rong Zheng
Agronomy 2025, 15(7), 1647; https://doi.org/10.3390/agronomy15071647 - 7 Jul 2025
Viewed by 380
Abstract
Long-term intensive management practices in Moso bamboo (Phyllostachys edulis) forests, primarily characterized by repeated fertilizer application, tillage, and biomass harvesting, can alter soil nutrient cycling and ecosystem stability. This study aimed to assess how such fertilizer-based management affects soil N2 [...] Read more.
Long-term intensive management practices in Moso bamboo (Phyllostachys edulis) forests, primarily characterized by repeated fertilizer application, tillage, and biomass harvesting, can alter soil nutrient cycling and ecosystem stability. This study aimed to assess how such fertilizer-based management affects soil N2O emission potential and silicon (Si) availability. We collected soil samples (0–20 cm) from bamboo stands subjected to 0–39 years of intensive management and from adjacent natural broad-leaved forests as a reference. The Soil pH, nitrogen forms, nitrification and denitrification potential, and Si concentrations were measured. The results showed significant nitrogen accumulation and progressive soil acidification with increasing management duration. The nitrification and denitrification potentials were 5.7 and 6.0 times higher in the 39-year-old stand compared to unmanaged bamboo. Meanwhile, the available Si decreased by 20.1%, despite stable total Si levels. The available Si showed strong positive correlations with nitrogen forms and transformation rates. These findings highlight the long-term impact of fertilizer-driven bamboo management on soil biogeochemistry and emphasize the need to consider Si dynamics in sustainable nutrient strategies. Full article
(This article belongs to the Special Issue Plant Nutrition Eco-Physiology and Nutrient Management)
Show Figures

Figure 1

14 pages, 3567 KiB  
Article
Characterization of Shoot Growth and Carbon Accumulation in Moso Bamboo Based on Different Stand Densities
by Xuan Zhang, Fengying Guan, Xiao Zhou, Zheng Li, Dawei Fu and Minkai Li
Forests 2025, 16(7), 1098; https://doi.org/10.3390/f16071098 - 2 Jul 2025
Viewed by 324
Abstract
Bamboo forests are among China’s key strategic forest resources, characterized by rapid growth and high carbon sequestration efficiency. Traditional management practices primarily aim to maximize economic benefits by regulating stand density to enhance yields of bamboo culms and shoots. However, the influence of [...] Read more.
Bamboo forests are among China’s key strategic forest resources, characterized by rapid growth and high carbon sequestration efficiency. Traditional management practices primarily aim to maximize economic benefits by regulating stand density to enhance yields of bamboo culms and shoots. However, the influence of density regulation on the growth and carbon accumulation of spring bamboo shoots remains insufficiently understood. Therefore, this study focuses on moso bamboo (Phyllostachys edulis (Carrière) J. Houzeau) stands and investigates shoot emergence during the shooting period across four stand density levels: D1 (1400 stems/ha), D2 (2000 stems/ha), D3 (2600 stems/ha), and D4 (3200 stems/ha). The study analyzes the dynamics of shoot emergence, height development, and morphological traits under varying stand densities, and explores patterns of carbon accumulation during the shooting period, thereby clarifying the effects of stand density on shoot quantity, growth quality, and carbon sequestration. The main findings are as follows: the number of emerging shoots decreased with increasing stand density, ranging from 2592 to 4634 shoots per hectare. The peak shoot emergence period in the D1 stand was extended by 3 days compared to D2 and D3, while the D4 stand entered the peak emergence period 6 days later than D2 and D3. The rapid height growth phase in D1 occurred 3 days earlier than in D2 and D3, and 6 days earlier than in D4. Results from the variable exponent taper equation indicated that spring shoots in the D2 and D4 stands had larger basal diameters, following the order D4 > D2 > D3 > D1. Shoots in the D2 stand exhibited the smallest taper, with the order being D2 < D3 < D1 < D4. During the late stage of shoot emergence (3 May to 9 May), all stands entered a period of rapid carbon accumulation per individual shoot. In the early stage, carbon accumulation followed the order D1 > D2 > D4 > D3; in the middle stage, the order shifted to D4 > D3 > D2 > D1; and in the final stage, the trend was D1 > D4 > D3 > D2. Within the 30-day investigation period, the carbon storage in spring shoots reached up to one-quarter or even one-third of the total accumulation during the growth period. The D1 stand exhibited the highest rate of increase in the proportion of individual shoot carbon storage. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

14 pages, 2196 KiB  
Article
Spatial Variability and Time Stability of Throughfall in a Moso Bamboo (Phyllostachys edulis) Forest in Jinyun Mountain, China
by Chunxia Liu, Yunqi Wang, Quanli Zong, Kai Jin, Peng Qin, Xiuzhi Zhu and Yujie Han
Atmosphere 2025, 16(7), 787; https://doi.org/10.3390/atmos16070787 - 27 Jun 2025
Viewed by 215
Abstract
Moso bamboo (Phyllostachys pubescens) is one of the most common species of bamboo in East Asia, and plays a crucial role in regulating hydrological and biogeochemical processes in forest ecosystems. However, throughfall variability and its time stability in Moso bamboo forests [...] Read more.
Moso bamboo (Phyllostachys pubescens) is one of the most common species of bamboo in East Asia, and plays a crucial role in regulating hydrological and biogeochemical processes in forest ecosystems. However, throughfall variability and its time stability in Moso bamboo forests remain unclear. Here, we investigated the spatial variability and temporal stability of throughfall in a Moso bamboo forest in China, and the effects of rainfall characteristics and leaf area index (LAI) on the variability of throughfall, and tree locations on the temporal stability of throughfall were systematically evaluated. The results show that throughfall occupied 74.3% of rainfall in the forest. The coefficient of variation of throughfall (throughfall CV) for rainfall events and throughfall collectors were 18.1% and 19.5%, respectively, and the spatial autocorrelation of the throughfall CV was not significant according to the global Moran’s I. Throughfall CV had a significantly negative correlation with rainfall amount and rainfall intensity, whereas it increased with the increase in LAI. The temporal stability plot indicated that the extreme wet and dry persistence were highly stable. We also found that normalized throughfall increased with the increase in distance from the nearest tree trunk. Our findings are expected to assist in the accurate assessment of throughfall and soil water within bamboo forests. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

14 pages, 1118 KiB  
Article
Microbial-Mediated Soil Nutrient Enhancement in Moso Bamboo–Liquidambar formosana vs. Phoebe chekiangensis Mixed Plantings
by Anming Zhu, Lili Fan, Gang Lu, Liangjin Yao and Jianzhong Fan
Plants 2025, 14(12), 1868; https://doi.org/10.3390/plants14121868 - 18 Jun 2025
Viewed by 406
Abstract
This study investigated how Moso bamboo (Phyllostachys edulis)–broadleaf mixed forests influence soil properties and microbial communities to support ecological function and sustainable bamboo forest management. Three forest types were examined: pure Moso bamboo stands (MB) and mixed stands with Liquidambar formosana [...] Read more.
This study investigated how Moso bamboo (Phyllostachys edulis)–broadleaf mixed forests influence soil properties and microbial communities to support ecological function and sustainable bamboo forest management. Three forest types were examined: pure Moso bamboo stands (MB) and mixed stands with Liquidambar formosana (LB) or Phoebe chekiangensis (PB). Soil chemical properties, microbial diversity, and community composition were assessed using high-throughput sequencing, and functional taxa were correlated with soil nutrients. The results showed that mixed forests significantly influenced soil chemical properties. PB showed the lowest pH and highest total nitrogen (TN), while MB exhibited the highest soil organic matter (SOM) and total potassium (TK). LB maintained moderate TN, high SOM and TK, and stable pH, indicating a balanced nutrient profile. Although α-diversity did not differ significantly, β-diversity analysis revealed distinct microbial community structure (p < 0.01). LB was enriched with carbon-decomposing taxa (Terriglobales and Sphingomonas), PB with acid-tolerant, nitrogen-cycling groups (Candidatus Binatus), and MB with nitrogen-fixing taxa (Nitrobacteraceae and Bradyrhizobium). Co-occurrence network and functional pathway analyses indicated group-specific microbial associations and greater metabolic diversity in LB and PB. In conclusion, mixed Moso bamboo with broadleaf species significantly modified soil chemical properties and microbial community structure, with the Moso bamboo—L. formosana combination showing potential for improving soil nutrient status and microbial function. Full article
(This article belongs to the Special Issue Nutrient Management on Soil Microbiome Dynamics and Plant Health)
Show Figures

Figure 1

15 pages, 6195 KiB  
Article
Physiological and Transcriptomic Insights into Lead Uptake and Tolerance in Moso Bamboo (Phyllostachys edulis) Highlight Its Strong Lead Tolerance Capacity
by Fan Yang, Rong Xu, Chenyang Zhu, Haibao Ji, Ji Feng Shao and Kangkang Huang
Forests 2025, 16(6), 1007; https://doi.org/10.3390/f16061007 - 15 Jun 2025
Viewed by 544
Abstract
Lead (Pb) contamination in Moso bamboo forests poses a challenge in terms of sustainable development and raises concerns about the safety of bamboo shoots for consumption. However, the physiological impacts of Pb stress on Moso bamboo growth and the molecular mechanisms governing its [...] Read more.
Lead (Pb) contamination in Moso bamboo forests poses a challenge in terms of sustainable development and raises concerns about the safety of bamboo shoots for consumption. However, the physiological impacts of Pb stress on Moso bamboo growth and the molecular mechanisms governing its adaptive responses remain poorly understood. This study comprehensively investigated the physiological and transcriptomic responses of Moso bamboo to Pb stress. The results showed that low concentrations (1–10 µM) of Pb stress had minimal adverse effects on biomass accumulation and the photochemical quantum yield of PSII in Moso bamboo. However, at a high Pb concentration (50 µM), the growth of roots was significantly inhibited, while Pb accumulation in the roots and shoots reached 15,611 mg·kg−1 and 759 mg·kg−1, respectively. The uptake of Pb was increased as the external Pb concentration increased, but the xylem loading of Pb reached saturation at 57.79 µM after six-hour exposure. Pb was mainly localized in the epidermis and pericycle cells in the roots, where the thickening of cell walls in these cells was found after Pb treatment. Transcriptomic profiling identified 1485 differentially expressed genes (DEGs), with significant alterations in genes associated with metal cation transporters and cell wall synthesis. These findings collectively indicate that Moso bamboo is a Pb-tolerant plant, characterized by a high accumulation capacity and efficient xylem loading. The tolerance mechanism likely involves the transcriptional regulation of genes related to heavy metal transport and cell wall biosynthesis. Full article
Show Figures

Figure 1

15 pages, 8487 KiB  
Article
Effects of Different Management Practices on Ramet System Dynamics in Moso Bamboo (Phyllostachys edulis) Forests, China
by Guibin Gao, Xing Wen, Jinfang Qian, Yiji Huang, Zhizhuang Wu, Hao Zhong, Yanhong Pan and Xiaoping Zhang
Plants 2025, 14(12), 1835; https://doi.org/10.3390/plants14121835 - 14 Jun 2025
Viewed by 449
Abstract
Examining the ramet system in bamboo forests can provide an important theoretical basis for strategic management. Moso bamboo is an economically important species in China, and implementing the correct management measures can play a key role in improving bamboo productivity. However, the dynamics [...] Read more.
Examining the ramet system in bamboo forests can provide an important theoretical basis for strategic management. Moso bamboo is an economically important species in China, and implementing the correct management measures can play a key role in improving bamboo productivity. However, the dynamics of the Moso bamboo ramet system under timber vs. shoot forest management remain underexplored. In this study, we investigated the underground rhizome growth, bud bank structures, branch growth, and distribution patterns of bamboo ramet systems in the two main bamboo cultivation types. Shoot forest ramet systems exhibited stable early-stage rhizome renewal but instability in later stages, characterized by thin, elongated rhizomes. The opposite was observed in the timber forests. The underground bud bank of the ramet system in the shoot forest had a strong renewal ability with stable lateral bud input. However, shoot harvesting disturbed the bud bank balance. The lateral bud input in the timber forest was unstable, with the lateral buds being prone to death. The variation range and quantity of branch types in the ramet system in the shoot forest were greater than those in the timber forest. The number of branches in different parts of the ramet system was in the order of rhizome tip (RT) > middle of rhizome (RM) > rhizome base (RB). The range of variation was greater in the shoot forest. Different management methods led to growth differences in the examined bamboo ramet systems. Bamboo forest management resulted in a correlation between bud banks and ramet system renewal. Operations such as bamboo shoot harvesting significantly impacted branch growth and distribution. These findings not only provide a better understanding of the growth and management strategy of bamboo ramet systems worldwide but also provide a universal theoretical reference for the sustainable management of bamboo forests in other countries. Full article
Show Figures

Figure 1

15 pages, 2837 KiB  
Article
Spatial Reconfiguration of Living Stems and Snags Reveals Stand Structural Simplification During Moso Bamboo (Phyllostachys edulis (Carrière) J.Houz.) Invasion into Coniferbroad-Leaf Forests
by Xi Chen, Xiumei Zhou, Songheng Jin and Shangbin Bai
Plants 2025, 14(11), 1698; https://doi.org/10.3390/plants14111698 - 2 Jun 2025
Viewed by 477
Abstract
In subtropical regions of China, the expansion of Moso bamboo has become increasingly prominent, resulting in massive mortality of original trees in adjacent forest stands. Significant changes have also occurred in the population characteristics and spatial distribution patterns of these native tree species. [...] Read more.
In subtropical regions of China, the expansion of Moso bamboo has become increasingly prominent, resulting in massive mortality of original trees in adjacent forest stands. Significant changes have also occurred in the population characteristics and spatial distribution patterns of these native tree species. This study aims to examine the impacts of Moso bamboo (Phyllostachys edulis) expansion on the successional dynamics of coniferous and broad-leaved mixed forests. Three sample plots were successively set up in the transition zone from bamboo to conifer and broad-leaved forest, including conifer and broad-leaved mixed forest (CF), transition forest (TF), and Moso bamboo forest (MF); a total of 72 10 m × 10 m quadrats (24 per forest type) were included. The species composition, diameter class structure and distribution pattern of living stems and snags (dead standing stems) were studied. The results showed that during the late expansion phase of bamboo, the density of living stems and snags separately increased by 2234 stems·ha−1 and 433 stems·ha−1, basal area increments of 23.45 m2·ha−1 and 7.81 m2·ha−1. The individuals with large diameter in living stems and snags gradually decreased, and the distribution range of the diameter steps mainly narrowed to 10–15 cm. On the scale of 0–10 m, the spatial pattern of standing stems changed from random and weak aggregation distribution to strong aggregation distribution and then to weak aggregation and random distribution in the three stands, while the overall distribution of snags in the three stands was random. The spatial correlation between living stems and snags evolved from uncorrelated in CF, to significant positive correlation in TF, and then to positive correlation and uncorrelation in MF. These results indicated that the bamboo expansion accelerated the mortality rate of the original tree species, leading to the diversity of tree species decreased, the composition of diameter classes was simplified, the degree of stem aggregation increased, and intra- and inter-species competition became the main reasons for tree death. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

21 pages, 5244 KiB  
Article
Identification and Functional Validation of the PeDHN Gene Family in Moso Bamboo
by Yaqin Ye, Yanting Chang, Wenbo Zhang, Tiankui Chu, Hanchen Tian, Yayun Deng, Zehui Jiang, Yanjun Ma and Tao Hu
Plants 2025, 14(10), 1520; https://doi.org/10.3390/plants14101520 - 19 May 2025
Cited by 1 | Viewed by 593
Abstract
As climate change intensifies soil drought and salinization, enhancing the drought and salt tolerance of moso bamboo (Phyllostachys edulis) is urgent. DHN genes are crucial for plant stress responses and have gained attention in plant resistance to drought and salinity. This [...] Read more.
As climate change intensifies soil drought and salinization, enhancing the drought and salt tolerance of moso bamboo (Phyllostachys edulis) is urgent. DHN genes are crucial for plant stress responses and have gained attention in plant resistance to drought and salinity. This study identified nine DHN family members (PeDHN1PeDHN9) from moso bamboo, which were classified into K2S-type, YK2S-type, and Y2K2S-type dehydrins based on their characteristic motifs. We employed integrated bioinformatics approaches to analyze their gene structure, phylogeny, biological properties, and expression patterns under various stress conditions. Five genes (PeDHN2/4/5/6/8), which may have significant functional roles in moso bamboo, were selected for cloning. Subcellular localization experiments showed that YK2S-type dehydrins (PeDHN2/5/6) localized to both the nucleus and the plasma membrane, while K2S-type dehydrins (PeDHN4/8) were exclusively localized to the plasma membrane, indicating functional differentiation. qRT-PCR analysis revealed that the expression of PeDHN2/4/5/6/8 was significantly responsive to stress treatments with ABA, NaCl, and PEG. Additionally, overexpressing these genes in rice significantly enhanced seed germination rates and root development under salt and ABA stress, further confirming that PeDHN2/4/5/6/8 contribute to enhancing plant stress tolerance. Yeast one-hybrid assays demonstrated that two PeABF1 proteins could bind to the promoter of PeDHN4, suggesting that PeDHN4 may regulate stress responses through the ABA signaling pathway. Thus, these findings demonstrate that PeDHN2/4/5/6/8 are closely related to the response of moso bamboo to drought and saline-alkali environments. This research offers insights for moso bamboo cultivation and theoretical foundations for bamboo genetic improvement in stress environments. Full article
Show Figures

Figure 1

18 pages, 3130 KiB  
Article
Effects of Exogenous Silicon Addition on Nitrification and Denitrification-Derived N2O Emissions from Moso Bamboo (Phyllostachys edulis) Forest Soil
by Jie Yang, Kecheng Wang, Lijun Liu, Yongchun Li, Jiasen Wu, Jinhuan Zhong, Rong Zheng, Lili Fan, Chengpeng Huang and Peikun Jiang
Land 2025, 14(5), 1004; https://doi.org/10.3390/land14051004 - 6 May 2025
Cited by 1 | Viewed by 383
Abstract
It has been reported that applying silicon (Si) to agricultural soils can reduce N2O emissions. But, we do not fully understand how this might work in forest ecosystems, especially in Phyllostachys edulis plantations. This study set out to determine how exogenous [...] Read more.
It has been reported that applying silicon (Si) to agricultural soils can reduce N2O emissions. But, we do not fully understand how this might work in forest ecosystems, especially in Phyllostachys edulis plantations. This study set out to determine how exogenous Si impacts soil nitrification and denitrification. Also, it aimed to assess their separate contributions to N2O emissions. A pot incubation experiment that lasted 28 days was carried out under controlled conditions. The soil used was collected from a bamboo plantation that is intensively managed. The treatments included adding silicon. Also, 3,4-dimethylpyrazole phosphate (DMPP) and acetylene (C2H2) were applied to specifically hold back nitrification and denitrification. We measured the rates of soil N2O emissions, the cumulative fluxes, and the concentrations of NH4+-N, NO3-N, and NO2-N. A positive correlation that was significant (p < 0.05) was found between N2O emissions and the levels of soil NO3-N. Adding Si continued to reduce both the emission rate and the cumulative flux in all of the treatment groups. Also worth mentioning is that the relative contribution of denitrification to N2O emissions dropped from 38.2% to 11.4%. Meanwhile, nitrification’s contribution went up from 61.8% to 88.6%. These findings show that adding Si mainly suppresses denitrification. And, by doing so, it lessens N2O emissions in bamboo plantations. This study underlines the potential of Si amendments. They could be used as an effective management strategy to reduce greenhouse-gas emissions in forest soils. It also provides a scientific basis for making Phyllostachys edulis ecosystems more sustainable. Full article
Show Figures

Figure 1

17 pages, 2142 KiB  
Article
Response of Soil Enzyme and Plant Stoichiometry to Root Interactions: Insights from Mixed Plantings of Moso Bamboo
by Yilin Ning, Jie Zhang, Anke Wang, Qifeng Wu, Qunfang Yu, Kaiwen Huang, Yufang Bi and Xuhua Du
Forests 2025, 16(5), 722; https://doi.org/10.3390/f16050722 - 23 Apr 2025
Viewed by 452
Abstract
Root interactions are crucial in regulating soil microbial metabolism and plant nutrient allocation strategies, especially in mixed plantings. However, the effects of mixed planting and direct root contact on soil properties and plant nutrient allocation remain unclear. Thus, we established potted plants with [...] Read more.
Root interactions are crucial in regulating soil microbial metabolism and plant nutrient allocation strategies, especially in mixed plantings. However, the effects of mixed planting and direct root contact on soil properties and plant nutrient allocation remain unclear. Thus, we established potted plants with Moso bamboo (Phyllostachys edulis) and Phoebe chekiangensis and created a physical barrier to the root system without blocking chemical communication using four treatments: mixed planting with root segregation (MT), mixed planting without root segregation (MS), pure Moso bamboo with root segregation (BT), and pure Moso bamboo without root segregation (BS). We investigated changes in soil and Moso bamboo nutrient content, soil enzyme activity, and microbial metabolic limitation. The results show that mixed planting and root segregation significantly affected soil and plant nutrient content and soil enzyme activities. Compared to the two pure Moso bamboo treatments, mixed planting increased microbial carbon limitation but decreased microbial nitrogen limitation. Physical segregation between roots increased microbial carbon use efficiency (CUE) compared to no segregation. Random forest analyses revealed that the best predictors of soil C and N limitations and CUE were microbial biomass and dissolved organic nitrogen (DON), respectively. Partial least squares path modeling indicated that mixed planting and root separation, directly and indirectly, affected soil microbial metabolic limitation through their effects on soil nutrients, microbial biomass, and enzyme activities. Carbon limitation significantly increased plant nutrient contents. Our study provides further insights into factors influencing nutrient limitation, CUE, and plant nutrient allocation strategies in mixed Moso bamboo plantations. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

15 pages, 3174 KiB  
Article
The Effects of Different Moso Bamboo Densities on the Physiological Growth of Indocalamus latifolius Cultivated in Moso Bamboo Forests
by Huijing Ni, Jiancheng Zhao and Zhenya Yang
Forests 2025, 16(4), 636; https://doi.org/10.3390/f16040636 - 5 Apr 2025
Cited by 1 | Viewed by 323
Abstract
Cultivating Indocalamus latifolius in moso bamboo (Phyllostachys edulis) forests is a technique in a compound economical and ecological agroforestry system. However, the impacts of different moso bamboo densities on the physiological growth of I. latifolius remain unclear. The aim of [...] Read more.
Cultivating Indocalamus latifolius in moso bamboo (Phyllostachys edulis) forests is a technique in a compound economical and ecological agroforestry system. However, the impacts of different moso bamboo densities on the physiological growth of I. latifolius remain unclear. The aim of this study was to elucidate the adaptation mechanism of I. latifolius to the environment in forests with different moso bamboo densities. One-year-old I. latifolius seedlings were planted in moso forests with four different densities (CK: 0 plants·ha−1; T1: 1050 plants·ha−1; T2: 2100 plants·ha−1; T3: 3150 plants·ha−1) for two years. The biomass and contents of nitrogen (N), phosphorus (P), potassium (K), starch (ST), and soluble sugars (SSs) in old leaves, new leaves, stems, rhizomes and roots of I. latifolius, as well as leaf functional traits [leaf length (LL), leaf width (LW), leaf thickness (LT), leaf area (LA), specific leaf area (SLA), and leaf tissue density (LTD)] and root morphology [root surface area (RSA), root length (RL), root diameter (RD), and specific root length (SRL)] were measured. With the increase in moso bamboo density, the biomass of various organs of I. latifolius showed a trend of first increasing and then decreasing, and all reached the highest level under treatment T1. Compared with the CK, treatments T1, T2, and T3 significantly increased the LL, LW, LT, LA, RL, RSA, RD, and length ratio of thicker roots (diameter > 2 mm) of I. latifolius, while significantly decreasing the SRL, SLA, and length ratio of finer roots (diameter ≤ 0.2 mm). Treatments T1, T2, and T3 significantly reduced the N content in the stems and rhizomes, the P content in the old leaves, and the SS content in the new leaves, and they increased the P content and K content in new leaves, stems, rhizomes, and roots; the N content in roots; and the starch contents in old leaves and new leaves. Treatment T1 significantly increased the N content in old leaves and the SS contents and the SS/ST of old leaves, roots, and rhizomes, and it decreased the N content in new leaves and the ST contents in roots, rhizomes and stems. Our results indicated that moso bamboo forests with low density can effectively promote the growth of I. latifolius in the forest. I. latifolius adapts to the shading and the root competition of moso bamboo by expanding the leaf area and promoting root growth. In this process, it supports the morphological plasticity of leaves and roots through the mechanisms of reabsorbing P and K and the directional transportation of photosynthetic products. Full article
Show Figures

Figure 1

16 pages, 3219 KiB  
Article
Effects of Bamboo-Sourced Organic Fertilizer on the Soil Microbial Necromass Carbon and Its Contribution to Soil Organic Carbon in Moso Bamboo (Phyllostachys edulis) Forest
by Zhiyuan Huang, Qiaoling Li, Fangyuan Bian, Zheke Zhong and Xiaoping Zhang
Forests 2025, 16(3), 553; https://doi.org/10.3390/f16030553 - 20 Mar 2025
Viewed by 505
Abstract
Microbial necromass carbon (MNC) is crucial for soil carbon sequestration in bamboo (Phyllostachys edulis) forests. However, the response of MNC to bamboo-sourced organic fertilizers (BSOF) prepared by composting bamboo plant growth-promoting microorganisms and bamboo residues remains unclear. This study [...] Read more.
Microbial necromass carbon (MNC) is crucial for soil carbon sequestration in bamboo (Phyllostachys edulis) forests. However, the response of MNC to bamboo-sourced organic fertilizers (BSOF) prepared by composting bamboo plant growth-promoting microorganisms and bamboo residues remains unclear. This study examined MNC and its contribution to soil organic carbon (SOC) in Moso bamboo plantations under four BSOF treatments: control (CK, 0 t·hm−2), low fertilizer application (LF, 7.5 t·hm−2), medium fertilizer application (MF, 15 t·hm−2), and high fertilizer application (HF, 30 t·hm−2) across 0–20 cm and 20–40 cm soil layers. In these two layers, HF and MF significantly (p < 0.05) increased the total MNC, fungal necromass carbon (FNC), and their contributions to SOC compared to CK, and HF led to higher (p < 0.05) bacterial necromass carbon (BNC) levels and SOC contributions than LF and CK. Soil depth and BSOF treatment were found to interact significantly. A random forest model showed that in the 0–20 cm layer, SOC was the best predictor of total MNC and FNC, whereas available potassium was optimal for BNC. Nitrate-nitrogen (NO3-N) was the top predictor for total MNC, BNC, and FNC in the 20–40 cm layer. Partial least squares path modeling indicated that available soil nutrients directly influenced BNC and FNC, affecting SOC accumulation. These findings suggest a new method for enhancing soil carbon sequestration in bamboo forests. Full article
(This article belongs to the Special Issue Ecological Research in Bamboo Forests: 2nd Edition)
Show Figures

Figure 1

Back to TopTop