Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = Moiré graphene superlattices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1309 KiB  
Article
Thermal Conductivity of Graphene Moiré Superlattices at Small Twist Angles: An Approach-to-Equilibrium Molecular Dynamics and Boltzmann Transport Study
by Lorenzo Manunza, Riccardo Dettori, Antonio Cappai and Claudio Melis
C 2025, 11(3), 46; https://doi.org/10.3390/c11030046 - 30 Jun 2025
Viewed by 937
Abstract
We investigate the thermal conductivity of graphene Moiré superlattices formed by twisting bilayer graphene (TBG) at small angles, employing approach-to-equilibrium molecular dynamics and lattice dynamics calculations based on the Boltzmann Transport Equation. Our simulations reveal a non-monotonic dependence of the thermal conductivity on [...] Read more.
We investigate the thermal conductivity of graphene Moiré superlattices formed by twisting bilayer graphene (TBG) at small angles, employing approach-to-equilibrium molecular dynamics and lattice dynamics calculations based on the Boltzmann Transport Equation. Our simulations reveal a non-monotonic dependence of the thermal conductivity on the twisting angle, with a local minimum near the first magic angle (θ1.1°). This behavior is attributed to the evolution of local stacking configurations—AA, AB, and saddle-point (SP)—across the Moiré superlattice, which strongly affect phonon transport. A detailed analysis of phonon mean free paths (MFP) and mode-resolved thermal conductivity shows that AA stacking suppresses thermal transport, while AB and SP stackings exhibit enhanced conductivity owing to more efficient low-frequency phonon transport. Furthermore, we establish a direct correlation between the thermal conductivity of twisted structures and the relative abundance of stacking domains within the Moiré supercell. Our results demonstrate that even very small changes in twisting angle (<2°) can lead to thermal conductivity variations of over 30%, emphasizing the high tunability of thermal transport in TBG. Full article
(This article belongs to the Special Issue 10th Anniversary of C — Journal of Carbon Research)
Show Figures

Figure 1

17 pages, 5669 KiB  
Article
Stacking Fault Nucleation in Films of Vertically Oriented Multiwall Carbon Nanotubes by Pyrolysis of Ferrocene and Dimethyl Ferrocene at a Low Vapor Flow Rate
by Ayoub Taallah, Shanling Wang, Omololu Odunmbaku, Lin Zhang, Xilong Guo, Yixin Dai, Wenkang Li, Huanqing Ye, Hansong Wu, Jiaxin Song, Jian Guo, Jiqiu Wen, Yi He and Filippo S. Boi
C 2024, 10(4), 91; https://doi.org/10.3390/c10040091 - 12 Oct 2024
Viewed by 1696
Abstract
Recent observations of superconductivity in low-dimensional systems composed of twisted, untwisted, or rhombohedral graphene have attracted significant attention. One-dimensional moiré superlattices and flat bands have interestingly been identified in collapsed chiral carbon nanotubes (CNTs), opening up new avenues for the tunability of the [...] Read more.
Recent observations of superconductivity in low-dimensional systems composed of twisted, untwisted, or rhombohedral graphene have attracted significant attention. One-dimensional moiré superlattices and flat bands have interestingly been identified in collapsed chiral carbon nanotubes (CNTs), opening up new avenues for the tunability of the electronic properties in these systems. The nucleation of hexagonal moiré superlattices and other types of stacking faults has also been demonstrated in partially collapsed and uncollapsed carbon nano-onions (CNOs). Here, we report a novel investigation on the dynamics of stacking fault nucleation within the multilayered lattices of micrometer-scale vertically oriented films of multiwall CNTs (MWCNTs), resulting from the pyrolysis of molecular precursors consisting of ferrocene or dimethyl ferrocene, at low vapor flow rates of ~5–20 mL/min. Interestingly, local nucleation of moiré-like superlattices (as stacking faults) was found when employing dimethyl ferrocene as the pyrolysis precursor. The morphological and structural properties of these systems were investigated with the aid of scanning and transmission electron microscopies, namely SEM, TEM, and HRTEM, as well as X-ray diffraction (XRD) and Raman point/mapping spectroscopy. Deconvolution analyses of the Raman spectra also demonstrated a local surface oxidation, possibly occurring on defect-rich interfaces, frequently identified within or in proximity of bamboo-like graphitic caps. By employing high-temperature Raman spectroscopy, we demonstrate a post-growth re-graphitization, which may also be visualized as an alternative way of depleting the oxygen content within the MWCNTs’ interfaces through recrystallization. Full article
(This article belongs to the Special Issue Characterization of Disorder in Carbons (2nd Edition))
Show Figures

Figure 1

49 pages, 2859 KiB  
Review
Recent Advances in Layered MX2-Based Materials (M = Mo, W and X = S, Se, Te) for Emerging Optoelectronic and Photo(electro)catalytic Applications
by Felipe M. Pinto, Mary C. M. D. de Conti, Wyllamanney S. Pereira, Júlio C. Sczancoski, Marina Medina, Patricia G. Corradini, Juliana F. de Brito, André E. Nogueira, Márcio S. Góes, Odair P. Ferreira, Lucia H. Mascaro, Fernando Wypych and Felipe A. La Porta
Catalysts 2024, 14(6), 388; https://doi.org/10.3390/catal14060388 - 17 Jun 2024
Cited by 15 | Viewed by 4710
Abstract
Transition metal dichalcogenides (TMDCs), represented by MX2 (where M = Mo, W and X = S, Se, and Te), and more recently, their moiré superlattices (i.e., formed by superimposing layers of TMDCs with different rotation angles) have attracted considerable interest due to [...] Read more.
Transition metal dichalcogenides (TMDCs), represented by MX2 (where M = Mo, W and X = S, Se, and Te), and more recently, their moiré superlattices (i.e., formed by superimposing layers of TMDCs with different rotation angles) have attracted considerable interest due to their excellent physical properties and unique nanoscale functionalities. Compared to graphene, the literature indicates that TMDCs offer a competitive advantage in optoelectronic technologies, primarily owing to their compositionally controlled non-zero bandgap. These two-dimensional (2D) nanostructured single or multiple layers exhibit remarkable properties that differ from their bulk counterparts. Moreover, stacking different TMDC monolayers also forms heterostructures and introduces unique quantum effects and extraordinary electronic properties, which is particularly promising for next-generation optoelectronic devices and photo(electro)catalytic applications. Therefore, in this review, we also highlight the new possibilities in the formation of 2D/2D heterostructures of MX2-based materials with moiré patterns and discuss the main critical challenges related to the synthesis and large-scale applications of layered MX2 and MX2-based composites to spur significant advances in emerging optoelectronic and photo(electro)catalytic applications. Full article
Show Figures

Figure 1

28 pages, 9240 KiB  
Review
Structural Superlubricity of Two-Dimensional Materials: Mechanisms, Properties, Influencing Factors, and Applications
by Fan-Bin Wu, Sheng-Jian Zhou, Jia-Hu Ouyang, Shu-Qi Wang and Lei Chen
Lubricants 2024, 12(4), 138; https://doi.org/10.3390/lubricants12040138 - 18 Apr 2024
Cited by 6 | Viewed by 4648
Abstract
Structural superlubricity refers to the lubrication state in which the friction between two crystalline surfaces in incommensurate contact is nearly zero; this has become an important branch in recent tribological research. Two-dimensional (2D) materials with structural superlubricity such as graphene, MoS2, [...] Read more.
Structural superlubricity refers to the lubrication state in which the friction between two crystalline surfaces in incommensurate contact is nearly zero; this has become an important branch in recent tribological research. Two-dimensional (2D) materials with structural superlubricity such as graphene, MoS2, h-BN, and alike, which possess unique layered structures and excellent friction behavior, will bring significant advances in the development of high-performance microelectromechanical systems (MEMS), as well as in space exploration, space transportation, precision manufacturing, and high-end equipment. Herein, the review mainly introduces the tribological properties of structural superlubricity among typical 2D layered materials and summarizes in detail the underlying mechanisms responsible for superlubricity on sliding surfaces and the influencing factors including the size and layer effect, elasticity effect, moiré superlattice, edge effect, and other external factors like normal load, velocity, and temperature, etc. Finally, the difficulties in achieving robust superlubricity from micro to macroscale were focused on, and the prospects and suggestions were discussed. Full article
(This article belongs to the Special Issue 2D Materials in Tribology)
Show Figures

Graphical abstract

11 pages, 5817 KiB  
Article
Holographic Fabrication of 3D Moiré Photonic Crystals Using Circularly Polarized Laser Beams and a Spatial Light Modulator
by Noah Hurley, Steve Kamau, Jingbiao Cui and Yuankun Lin
Micromachines 2023, 14(6), 1217; https://doi.org/10.3390/mi14061217 - 9 Jun 2023
Cited by 6 | Viewed by 2694
Abstract
A moiré photonic crystal is an optical analog of twisted graphene. A 3D moiré photonic crystal is a new nano-/microstructure that is distinguished from bilayer twisted photonic crystals. Holographic fabrication of a 3D moiré photonic crystal is very difficult due to the coexistence [...] Read more.
A moiré photonic crystal is an optical analog of twisted graphene. A 3D moiré photonic crystal is a new nano-/microstructure that is distinguished from bilayer twisted photonic crystals. Holographic fabrication of a 3D moiré photonic crystal is very difficult due to the coexistence of the bright and dark regions, where the exposure threshold is suitable for one region but not for the other. In this paper, we study the holographic fabrication of 3D moiré photonic crystals using an integrated system of a single reflective optical element (ROE) and a spatial light modulator (SLM) where nine beams (four inner beams + four outer beams + central beam) are overlapped. By modifying the phase and amplitude of the interfering beams, the interference patterns of 3D moiré photonic crystals are systemically simulated and compared with the holographic structures to gain a comprehensive understanding of SLM-based holographic fabrication. We report the holographic fabrication of phase and beam intensity ratio-dependent 3D moiré photonic crystals and their structural characterization. Superlattices modulated in the z-direction of 3D moiré photonic crystals have been discovered. This comprehensive study provides guidance for future pixel-by-pixel phase engineering in SLM for complex holographic structures. Full article
(This article belongs to the Special Issue Photon-Driven Technologies: Exploring the Latest Advancements)
Show Figures

Figure 1

13 pages, 2946 KiB  
Article
Thickness-Dependent Evolutions of Surface Reconstruction and Band Structures in Epitaxial β–In2Se3 Thin Films
by Qinghao Meng, Fan Yu, Gan Liu, Junyu Zong, Qichao Tian, Kaili Wang, Xiaodong Qiu, Can Wang, Xiaoxiang Xi and Yi Zhang
Nanomaterials 2023, 13(9), 1533; https://doi.org/10.3390/nano13091533 - 3 May 2023
Cited by 4 | Viewed by 3132
Abstract
Ferroelectric materials have received great attention in the field of data storage, benefiting from their exotic transport properties. Among these materials, the two-dimensional (2D) In2Se3 has been of particular interest because of its ability to exhibit both in-plane and out-of-plane [...] Read more.
Ferroelectric materials have received great attention in the field of data storage, benefiting from their exotic transport properties. Among these materials, the two-dimensional (2D) In2Se3 has been of particular interest because of its ability to exhibit both in-plane and out-of-plane ferroelectricity. In this article, we realized the molecular beam epitaxial (MBE) growth of β–In2Se3 films on bilayer graphene (BLG) substrates with precisely controlled thickness. Combining in situ scanning tunneling microscopy (STM) and angle-resolved photoemission spectroscopy (ARPES) measurements, we found that the four-monolayer β–In2Se3 is a semiconductor with a (9 × 1) reconstructed superlattice. In contrast, the monolayer β–In2Se3/BLG heterostructure does not show any surface reconstruction due to the interfacial interaction and moiré superlattice, which instead results in a folding Dirac cone at the center of the Brillouin zone. In addition, we found that the band gap of In2Se3 film decreases after potassium doping on its surface, and the valence band maximum also shifts in momentum after surface potassium doping. The successful growth of high-quality β–In2Se3 thin films would be a new platform for studying the 2D ferroelectric heterostructures and devices. The experimental results on the surface reconstruction and band structures also provide important information on the quantum confinement and interfacial effects in the epitaxial β–In2Se3 films. Full article
(This article belongs to the Special Issue 2D Semiconductor Nanomaterials and Heterostructures)
Show Figures

Figure 1

8 pages, 2186 KiB  
Communication
Ferroelectric Polarization in an h-BN-Encapsulated 30°-Twisted Bilayer–Graphene Heterostructure
by Lingling Ren and Baojuan Dong
Magnetochemistry 2023, 9(5), 116; https://doi.org/10.3390/magnetochemistry9050116 - 26 Apr 2023
Cited by 2 | Viewed by 3386
Abstract
Recently, the emergent two-dimensional (2D) ferroelectric materials have provided new possibilities for the miniaturization of ferroelectric systems and the integration of novel 2D nano-electronic devices. In addition to the intrinsic ferroelectrics exfoliated from bulk, 2D heterostructures hybridized from electrically non-polarized van der Waals [...] Read more.
Recently, the emergent two-dimensional (2D) ferroelectric materials have provided new possibilities for the miniaturization of ferroelectric systems and the integration of novel 2D nano-electronic devices. In addition to the intrinsic ferroelectrics exfoliated from bulk, 2D heterostructures hybridized from electrically non-polarized van der Waals (vdW) materials have also been proven to be a promising platform for the construction of ferroelectricity. Here, we report 30° twisted bilayer–graphene (TBLG) incommensurate moiré superlattice encapsulated by hexagonal boron nitride (h-BN), in which robust hysteretic resistance was detected at the top interface between h-BN and the TBLG from room temperature down to 40 mK. The hysteretic phenomenon can be understood by the extra carrier induced by the interfacial 2D ferroelectric polarization, which is estimated to be around 0.7 pC/m. Our work of interfacial ferroelectric heterostructure achieved by a TBLG/h-BN hybrid system expands the 2D ferroelectric families and opens more possibilities for future coupling the ferroelectricity with rich electronic and optical properties in vdW twistronic devices. Full article
(This article belongs to the Special Issue Advances in Magnetic Two Dimensional Materials)
Show Figures

Figure 1

8 pages, 19202 KiB  
Communication
Vertical Stress Induced Anomalous Spectral Shift of 13.17° Moiré Superlattice in Twist Bilayer Graphene
by Wenjing Miao, Hao Sheng and Jingang Wang
Molecules 2023, 28(7), 3015; https://doi.org/10.3390/molecules28073015 - 28 Mar 2023
Cited by 4 | Viewed by 2132
Abstract
The electronic states of the twist bilayer graphene (TBG) moiré superlattice are usually regulated by the rotation angle, applied electric field, applied magnetic field, carrier concentration and applied stress, and thus exhibit novel physical properties. Squeezing, that is, applying vertical compressive stress to [...] Read more.
The electronic states of the twist bilayer graphene (TBG) moiré superlattice are usually regulated by the rotation angle, applied electric field, applied magnetic field, carrier concentration and applied stress, and thus exhibit novel physical properties. Squeezing, that is, applying vertical compressive stress to the graphene layers, has profound significance in regulating the photoelectric properties of the moiré superlattice and constructing optical nanodevices. This paper presents the photoelectric properties of a TBG moiré superlattice with a twist angle of 13.17° and tunability under vertical stress. Interlayer distance decreases nonlinearly with compressive stress from 0 to 10 GPa, giving rise to weakened interlayer coupling compared to a Bernal-stacked graphene bilayer and an enhanced repulsive effect between the layers. The calculated Bloch wave functions show a strong dependence on stress. With the increase in stress, the band gaps of the system present a nonlinear increase, which induces and enhances the interlayer charge transfer and leads to the redshift of the absorption spectrum of the moiré superlattice system. By analyzing the differences in the Bloch wave function and charge density differences, we explain the nature of the physical mechanism of photoelectric property change in a stress-regulated twist superlattice system. This study provides a theoretical basis for the identification of piezoelectric properties and the stress regulation of photoelectric devices based on TBG, and also provides a feasible method for regulating the performance of TBG. Full article
(This article belongs to the Special Issue Graphene-Based Nanocomposites for Advanced Applications)
Show Figures

Figure 1

11 pages, 2290 KiB  
Article
The Compliance of the Upper Critical Field in Magic-Angle Multilayer Graphene with the Pauli Limit
by Evgueni F. Talantsev
Materials 2023, 16(1), 256; https://doi.org/10.3390/ma16010256 - 27 Dec 2022
Cited by 6 | Viewed by 1819
Abstract
The Pauli limiting field represents a fundamental magnetic field at which the superconducting state collapses due to the spin-paramagnetic Cooper pair-breaking effect. Cao et al. (Nature 2021, 595, 526) reported that the magic-angle twisted trilayer graphene (MATNG, N = [...] Read more.
The Pauli limiting field represents a fundamental magnetic field at which the superconducting state collapses due to the spin-paramagnetic Cooper pair-breaking effect. Cao et al. (Nature 2021, 595, 526) reported that the magic-angle twisted trilayer graphene (MATNG, N = 3) exhibits the upper critical field which exceeds the Pauli limiting field by two to three times. This observation was interpreted as a violation of the Pauli-limiting field in MAT3G. Similar conclusions were recently reported by the same research group in MATNG (N = 4, 5) superlattices (Park, J.M. et al. Nat. Mater.2022, 21, 877). Here, we point out that Cao et al. (Nature 2021, 595, 526) calculated the Pauli limiting field by the use of reduced form (to the weak-coupling limit) of full equation of the theory of the electron–phonon-mediated superconductivity. Considering that in the same paper, Cao et al. (Nature 2021, 595, 526) reported that MATNGs are strong coupled superconductors, we calculate the Pauli limiting field for a strong coupled case and show that the observed upper critical fields in MATNGs comply with the Pauli limit. This implies that there is no violation of the Pauli limiting field in the Moiré multilayer graphene superlattices. Full article
(This article belongs to the Special Issue Physics and Application of Superconductivity)
Show Figures

Figure 1

13 pages, 8925 KiB  
Article
Anti-Symmetric Electromagnetic Interactions’ Response in Electron Circular Dichroism and Chiral Origin of Periodic, Complementary Twisted Angle in Twisted Bilayer Graphene
by Guoqiang Dai, Xiangtao Chen, Ying Jin and Jingang Wang
Molecules 2022, 27(19), 6525; https://doi.org/10.3390/molecules27196525 - 2 Oct 2022
Cited by 3 | Viewed by 1878
Abstract
Many novel physical properties of twisted bilayer graphene have been discovered and studied successively, but the physical mechanism of the chiral modulation of BLG by a twisted angle lacks theoretical research. In this work, the density functional theory, the wavefunction analysis of the [...] Read more.
Many novel physical properties of twisted bilayer graphene have been discovered and studied successively, but the physical mechanism of the chiral modulation of BLG by a twisted angle lacks theoretical research. In this work, the density functional theory, the wavefunction analysis of the excited state, and the quantum theory of atoms in molecules are used to calculate and analyze the anti-symmetric chiral characteristics of zigzag-edge twisted bilayer graphene quantum dots based on periodic complementary twisted angles. The analysis of the partial density of states shows that Moiré superlattices can effectively adjust the contribution of the atomic basis function of the fragment to the transition dipole moment. The topological analysis of electron density indicates that the Moiré superlattices structure can enhance the localization of the system, increasing the electron density of the Moiré central ring, reducing the electron surge capacity in general and inducing the reversed helical properties of the top and underlying graphene, which can be used as the origin of the chiral discrimination; it also reveals the mole in the superlattice chiral physical mechanism. On this basis, we will also study the nonlinear optical properties of twisted bilayer graphene based on a twisted angle. Full article
(This article belongs to the Special Issue Computational Chemistry for Material Research)
Show Figures

Figure 1

14 pages, 1472 KiB  
Article
Moiré-like Superlattice Generated van Hove Singularities in a Strained CuO2 Double Layer
by Artem O. Sboychakov, Kliment I. Kugel and Antonio Bianconi
Condens. Matter 2022, 7(3), 50; https://doi.org/10.3390/condmat7030050 - 23 Aug 2022
Cited by 3 | Viewed by 2311
Abstract
While it is known that the double-layer Bi2Sr2CaCu2O8+y (BSCCO) cuprate superconductor exhibits a one-dimensional (1D) incommensurate superlattice (IS), the effect of IS on the electronic structure remains elusive. Following the recent shift of interest [...] Read more.
While it is known that the double-layer Bi2Sr2CaCu2O8+y (BSCCO) cuprate superconductor exhibits a one-dimensional (1D) incommensurate superlattice (IS), the effect of IS on the electronic structure remains elusive. Following the recent shift of interest from an underdoped phase to optimum and overdoped phases in BSCCO by increasing the hole doping x, controlled by the oxygen interstitials concentration y, here we focus on the multiple splitting of the density of states (DOS) peaks and emergence of higher order van Hove singularities (VHS) due to the 1D incommensurate superlattice. It is known that the 1D incommensurate wave vector q=ϵb (where b is the reciprocal lattice vector of the orthorhombic lattice) is controlled by the misfit strain between different atomic layers in the range 0.2090.215 in BSCCO and in the range 0.2090.25 in Bi2Sr2Ca1xYxCu2O8+y (BSCYCO). This work reports the theoretical calculation of a complex pattern of VHS due to the 1D incommensurate superlattice with large 1D quasi-commensurate supercells with the wave vector ϵ=9/η in the range 36>η>43. The similarity of the complex VHS splitting and appearing of higher order VHS in a mismatched CuO2 bilayer with VHS due to the moiré lattice in strained twisted bilayer graphene is discussed. This makes a mismatched CuO2 bilayer quite promising for constructing quantum devices with tuned physical characteristics. Full article
(This article belongs to the Section Superconductivity)
Show Figures

Figure 1

17 pages, 6520 KiB  
Article
Accurate Atomic-Scale Imaging of Two-Dimensional Lattices Using Atomic Force Microscopy in Ambient Conditions
by Sunghyun Kim, Donghyeon Moon, Bo Ram Jeon, Jegyeong Yeon, Xiaoqin Li and Suenne Kim
Nanomaterials 2022, 12(9), 1542; https://doi.org/10.3390/nano12091542 - 2 May 2022
Cited by 12 | Viewed by 4463
Abstract
To facilitate the rapid development of van der Waals materials and heterostructures, scanning probe methods capable of nondestructively visualizing atomic lattices and moiré superlattices are highly desirable. Lateral force microscopy (LFM), which measures nanoscale friction based on the commonly available atomic force microscopy [...] Read more.
To facilitate the rapid development of van der Waals materials and heterostructures, scanning probe methods capable of nondestructively visualizing atomic lattices and moiré superlattices are highly desirable. Lateral force microscopy (LFM), which measures nanoscale friction based on the commonly available atomic force microscopy (AFM), can be used for imaging a wide range of two-dimensional (2D) materials, but imaging atomic lattices using this technique is difficult. Here, we examined a number of the common challenges encountered in LFM experiments and presented a universal protocol for obtaining reliable atomic-scale images of 2D materials under ambient environment. By studying a series of LFM images of graphene and transition metal dichalcogenides (TMDs), we have found that the accuracy and the contrast of atomic-scale images critically depended on several scanning parameters including the scan size and the scan rate. We applied this protocol to investigate the atomic structure of the ripped and self-folded edges of graphene and have found that these edges were mostly in the armchair direction. This finding is consistent with the results of several simulations results. Our study will guide the extensive effort on assembly and characterization of new 2D materials and heterostructures. Full article
Show Figures

Graphical abstract

15 pages, 2050 KiB  
Article
Quantifying the Charge Carrier Interaction in Metallic Twisted Bilayer Graphene Superlattices
by Evgueni F. Talantsev
Nanomaterials 2021, 11(5), 1306; https://doi.org/10.3390/nano11051306 - 15 May 2021
Cited by 9 | Viewed by 2888
Abstract
The mechanism of charge carrier interaction in twisted bilayer graphene (TBG) remains an unresolved problem, where some researchers proposed the dominance of the electron–phonon interaction, while the others showed evidence for electron–electron or electron–magnon interactions. Here we propose to resolve this problem by [...] Read more.
The mechanism of charge carrier interaction in twisted bilayer graphene (TBG) remains an unresolved problem, where some researchers proposed the dominance of the electron–phonon interaction, while the others showed evidence for electron–electron or electron–magnon interactions. Here we propose to resolve this problem by generalizing the Bloch–Grüneisen equation and using it for the analysis of the temperature dependent resistivity in TBG. It is a well-established theoretical result that the Bloch–Grüneisen equation power-law exponent, p, exhibits exact integer values for certain mechanisms. For instance, p = 5 implies the electron–phonon interaction, p = 3 is associated with the electron–magnon interaction and p = 2 applies to the electron–electron interaction. Here we interpret the linear temperature-dependent resistance, widely observed in TBG, as p1, which implies the quasielastic charge interaction with acoustic phonons. Thus, we fitted TBG resistance curves to the Bloch–Grüneisen equation, where we propose that p is a free-fitting parameter. We found that TBGs have a smoothly varied p-value (ranging from 1.4 to 4.4) depending on the Moiré superlattice constant, λ, or the charge carrier concentration, n. This implies that different mechanisms of the charge carrier interaction in TBG superlattices smoothly transition from one mechanism to another depending on, at least, λ and n. The proposed generalized Bloch–Grüneisen equation is applicable to a wide range of disciplines, including superconductivity and geology. Full article
(This article belongs to the Special Issue Superconductivity in Nanoscaled Systems)
Show Figures

Figure 1

18 pages, 4143 KiB  
Review
Raman Spectroscopy of Twisted Bilayer Graphene
by Marcus V. O. Moutinho, Pedro Venezuela and Marcos A. Pimenta
C 2021, 7(1), 10; https://doi.org/10.3390/c7010010 - 26 Jan 2021
Cited by 15 | Viewed by 9432
Abstract
When two periodic two-dimensional structures are superposed, any mismatch rotation angle between the layers generates a Moiré pattern superlattice, whose size depends on the twisting angle θ. If the layers are composed by different materials, this effect is also dependent on the [...] Read more.
When two periodic two-dimensional structures are superposed, any mismatch rotation angle between the layers generates a Moiré pattern superlattice, whose size depends on the twisting angle θ. If the layers are composed by different materials, this effect is also dependent on the lattice parameters of each layer. Moiré superlattices are commonly observed in bilayer graphene, where the mismatch angle between layers can be produced by growing twisted bilayer graphene (TBG) samples by CVD or folding the monolayer back upon itself. In TBG, it was shown that the coupling between the Dirac cones of the two layers gives rise to van Hove singularities (vHs) in the density of electronic states, whose energies vary with θ. The understanding of the behavior of electrons and their interactions with phonons in atomically thin heterostructures is crucial for the engineering of novel 2D devices. Raman spectroscopy has been often used to characterize twisted bilayer graphene and graphene heterostructures. Here, we review the main important effects in the Raman spectra of TBG discussing firstly the appearance of new peaks in the spectra associated with phonons with wavevectors within the interior of the Brillouin zone of graphene corresponding to the reciprocal unit vectors of the Moiré superlattice, and that are folded to the center of the reduced Brillouin Zone (BZ) becoming Raman active. Another important effect is the giant enhancement of G band intensity of TBG that occurs only in a narrow range of laser excitation energies and for a given twisting angle. Results show that the vHs in the density of states is not only related to the folding of the commensurate BZ, but mainly associated with the Moiré pattern that does not necessarily have a translational symmetry. Finally, we show that there are two different resonance mechanisms that activate the appearance of the extra peaks: the intralayer and interlayer electron–phonon processes, involving electrons of the same layer or from different layers, respectively. Both effects are observed for twisted bilayer graphene, but Raman spectroscopy can also be used to probe the intralayer process in any kind of graphene-based heterostructure, like in the graphene/h-BN junctions. Full article
(This article belongs to the Special Issue 2D Ultrathin Carbon Films)
Show Figures

Figure 1

19 pages, 4138 KiB  
Review
Twistronics in Graphene, from Transfer Assembly to Epitaxy
by Di Wu, Yi Pan and Tai Min
Appl. Sci. 2020, 10(14), 4690; https://doi.org/10.3390/app10144690 - 8 Jul 2020
Cited by 9 | Viewed by 6226
Abstract
The twistronics, which is arising from the moiré superlattice of the small angle between twisted bilayers of 2D materials like graphene, has attracted much attention in the field of 2D materials and condensed matter physics. The novel physical properties in such systems, like [...] Read more.
The twistronics, which is arising from the moiré superlattice of the small angle between twisted bilayers of 2D materials like graphene, has attracted much attention in the field of 2D materials and condensed matter physics. The novel physical properties in such systems, like unconventional superconductivity, come from the dispersionless flat band that appears when the twist reaches some magic angles. By tuning the filling of the fourfold degeneracy flat bands, the desired effects are induced due to the strong correlation of the degenerated Bloch electrons. In this article, we review the twistronics in twisted bi- and multi-layer graphene (TBG and TMG), which is formed both by transfer assembly of exfoliated monolayer graphene and epitaxial growth of multilayer graphene on SiC substrates. Starting from a brief history, we then introduce the theory of flat band in TBG. In the following, we focus on the major achievements in this field: (a) van Hove singularities and charge order; (b) superconductivity and Mott insulator in TBG and (c) transport properties in TBG. In the end, we give the perspective of the rising materials system of twistronics, epitaxial multilayer graphene on the SiC. Full article
(This article belongs to the Special Issue Fundamentals and Recent Advances in Epitaxial Graphene on SiC)
Show Figures

Graphical abstract

Back to TopTop