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Abstract: The mechanism of charge carrier interaction in twisted bilayer graphene (TBG) remains
an unresolved problem, where some researchers proposed the dominance of the electron–phonon
interaction, while the others showed evidence for electron–electron or electron–magnon interactions.
Here we propose to resolve this problem by generalizing the Bloch–Grüneisen equation and using it
for the analysis of the temperature dependent resistivity in TBG. It is a well-established theoretical
result that the Bloch–Grüneisen equation power-law exponent, p, exhibits exact integer values for
certain mechanisms. For instance, p = 5 implies the electron–phonon interaction, p = 3 is associated
with the electron–magnon interaction and p = 2 applies to the electron–electron interaction. Here we
interpret the linear temperature-dependent resistance, widely observed in TBG, as p→ 1 , which
implies the quasielastic charge interaction with acoustic phonons. Thus, we fitted TBG resistance
curves to the Bloch–Grüneisen equation, where we propose that p is a free-fitting parameter. We
found that TBGs have a smoothly varied p-value (ranging from 1.4 to 4.4) depending on the Moiré
superlattice constant, λ, or the charge carrier concentration, n. This implies that different mechanisms
of the charge carrier interaction in TBG superlattices smoothly transition from one mechanism to
another depending on, at least, λ and n. The proposed generalized Bloch–Grüneisen equation is
applicable to a wide range of disciplines, including superconductivity and geology.

Keywords: magic-angle twisted bilayer graphene; Moiré graphene superlattices; charge carrier
interaction in two-dimensional materials; ε-phase of iron

1. Introduction

Specific twist alignment of two single layer graphene (SLG) sheets at so-called magic
rotation angles, θ, results in a Moiré superlattice with a larger period, λ, than the original
SLG lattice [1,2]:

λ =
a

2·sin
(

θ
2

) , (1)

where a = 0.246 nm is SLG lattice constant, and the magic angle θ is given by [2]:

θ = arccos
(

k2 + 4·k·l + l2

2·(k2 + k·l + l2)

)
, (2)

where l and k are integers.
These twisted bilayer graphene (TBG) superlattices represent versatile two-dimensional

(2D) materials in which depend on the rotation angle, θ, and change carrier doping, n, a
wide number of physical effects, including superconductivity, can emerge [3–15]. It should
be noted that recently Park et al. [16] experimentally found that magic-angle twisted tri-
layer graphene (MATTBG) superlattices also have correlated electronic states similarly to
the ones observed in their bilayer counterparts.

One of the most important problem in understanding of all TBGs is the mechanism
of the charge carrier interaction, where some research groups proposed that there is a
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dominant role of the electron–phonon interaction (which is also considered as the emerg-
ing mechanism for the superconductivity in MATBG by several research groups [17–22]),
while the other groups showed evidence for the prevalence of the electron–electron in-
teraction [3,10,16,23], and recently, new experiments demonstrated the dominance of the
electron–magnon interaction [6,9,24,25]. It should be noted that Kerelsky et al. [26] reported
that the superconducting state in TBG emerges at the same doping levels, n, and the twist
angles, θ, at which the electron–electron interaction reaches its maximal values.

There is also an open question about the superconducting gap symmetry in TBG super-
lattices. If early research reports proposed an exotic d + id superconducting gap symmetry
in TBG [3,27], more recently a classical s-wave [17,18,22] and an exotic p-wave [22,28] gap
symmetries were proposed as well. More details on the superconducting properties of TBG
can be found elsewhere [29].

Such a variety of proposed interaction mechanisms and mechanisms for the emergence
of the superconducting state in TBGs reflect a large variety of physical effects which
simultaneously can synergize in these 2D materials.

In attempting to quantify the charge carrier interaction effects in metallic TBG su-
perlattices here, we proposed to use a generalized form of the Bloch–Grüneisen (BG)
equation [30,31]. This equation was applied to the analysis of temperature dependent
resistance in metallic TBG superlattices.

2. Proposed Model

The Bloch–Grüneisen (BG) equation [30,31] describes temperature dependent resis-
tance in metallic compounds, and in its classical form, it can be written as

R(T) = R0 + A1·T +
2,3,5

∑
p

Ap·
(

T
Tθ

)p
·
∫ Tθ

T

0

xp

(ex − 1)·(1− e−x)
·dx, (3)

where R0 is the resistance at T → 0 K , Tθ is the Debye temperature, Ap is weighting
parameters, and p is the power-law exponent, which has exact theoretical integer values
for certain interaction mechanisms [32,33]:

p =


2 implies that R(T) emerges f rom electron− electron interaction
3 implies that R(T) emerges f rom electron−magnon interaction
5 implies that R(T) emerges f rom electron− phonon interaction

(4)

However, it should be noted that entire BG integral (Equation (2)) has a linear limit
for p→ 1 :

lim
p→1

(
T
Tθ

)p
·

Tθ
T∫

0

xp

(ex − 1)·(1− e−x)
·dx →

(
B
Tθ

)
·T (5)

where B is a constant. Thus, the linear term in Equation (3) can be also represented in the
integral form with the weighting factor A1:

R(T) = R0 +

( lim
p→1

),2,3,5

∑
p

Ap·
(

T
Tθ

)p
·
∫ Tθ

T

0

xp

(ex − 1)·(1− e−x)
·dx, (6)

It should be noted that Equation (3) in its full form has been never applied to the
analysis of experimental R(T) data, because the sum of strongly non-linear integrals has
over-parametrization problem. Moreover, the majority of all published works utilizes
Equation (3) where only electron–phonon integrand, i.e., p = 5, is included [34–36].
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One of the possible ways to use an analytic power of Equation (3) is to reduce
the number of integrals to one, but the use of the power-law exponent p will be the
free-fitting parameter

R(T) = R0 + Ap·
(

T
Tθ

)p
·
∫ Tθ

T

0

xp

(ex − 1)·(1− e−x)
·dx, (7)

If the fit of R(T) to Equation (7) converges, then the deduced free-fitting parameter p
should indicate the main charge carrier scattering mechanism in given materials.

To the author’s best knowledge, the approach to implement Equation (7) has been
reported only by Jiang et al. [33] for Sr2Cr3As2O2, where the dominant role of the electron–
magnon scattering (i.e., p = 3.34 [33]), with an insignificant part of the electron–phonon
interaction (p = 5), has been revealed.

It should be noted that a replacement of the full integrals in Equation (3) or the integral
in Equation (7) by power law terms

R(T) = R0 + Ap·Tp, (8)

which has been implemented in several reports [37–39], cannot be accepted to be accurate
approximation, as it will be shown below herein.

As we mentioned above, another important feature of the Equation (6) is that the
linear dependence of R(T) (or p→ 1 in terms of Equation (7)) in TBG has been proposed to
be related to quasielastic scattering on acoustic phonon in MATBG [19], and thus, deduced
p-values in the range of 1 < p < 2 have a clear interpretation as a sum of the electron–electron
and electron–quasielastic acoustic phonon interactions.

Here, we implemented Equation (7) to fit the R(T) data in TBG superlattices. First of
all, we tested the validity of Equation (7) to be a proper fitting tool for classical electron–
phonon materials, including electron–phonon mediated superconductors, from which we
chose ReBe22 [34], as well as normal metal copper, and ferromagnetic iron and cobalt (for
pure metals raw R(T) data were taken from the classical papers by White and Woods [40]
and by Matula [41]), as well as for highly-compressed ε-phase of iron, which exhibits the
superconducting state (for which raw R(T) data were reported by Shimizu et al. [42] and
by Jaccard et al. [37]. In Figure 1, we show R(T) data and data fits for these materials. It
should be noted that fits for superconducting ReBe22 and ε-Fe iron were performed by the
recently proposed equation [43],

R(T) = R0 + θ
(
Tonset

c − T
) Rnorm(

I0

(
F·
(

1− T
Tonset

c

)3/2
))2

+θ
(
T − Tonset

c
)

(
Rnorm + A·

((
T
Tθ

)p
·
∫ Tθ

T
0

xp

(ex−1)(1−e−x)
dx−

(
Tonset

c
Tθ

)p
·
∫ Tθ

Tonset
c

0
xp

(ex−1)(1−e−x)
dx

)) (9)

but where now we changed the p-value to be a free-fitting parameter, and where Tonset
c is a

free-fitting parameter of the onset of superconducting transition, Rnorm, is the sample resis-
tance at the onset of the transition, θ(x) is the Heaviside step function, I0(x) is the zero-order
modified Bessel function of the first kind, and F is a free-fitting dimensionless parameter.
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Figure 1. ρ(T) data and fits to generalized Bloch–Grüneisen (BG) equation (Equations (7) and (9)) for (a) pure Cu; (b) 
ReBe22; (c) pure ferromagnetic γ-Fe; (d) pure ferromagnetic Co; and (e,f) pure non-ferromagnetic highly-compressed ε-Fe. 
The raw data are reported in [34,37,40,42,44]. The red is the fitting curve, and 95% confidence bands are shown by a pink 
shaded area. Goodness of fit for all plots is better than R = 0.9990. 

R(T) data fits to Equations (7) and (9) have been performed by utilizing the Leven-
berg–Marquardt algorithm in non-linear fitting package of the Origin software (ver. 2017, 
Origin Lab, Northampton, MA, USA). 
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Figure 1. ρ(T) data and fits to generalized Bloch–Grüneisen (BG) equation (Equations (7) and (9)) for (a) pure Cu; (b) ReBe22;
(c) pure ferromagnetic γ-Fe; (d) pure ferromagnetic Co; and (e,f) pure non-ferromagnetic highly-compressed ε-Fe. The raw
data are reported in [34,37,40,42,44]. The red is the fitting curve, and 95% confidence bands are shown by a pink shaded
area. Goodness of fit for all plots is better than R = 0.9990.

R(T) data fits to Equations (7) and (9) have been performed by utilizing the Levenberg–
Marquardt algorithm in non-linear fitting package of the Origin software (ver. 2017, Origin
Lab, Northampton, MA, USA).

3. Results
3.1. Pure Metals and Binary Alloy ReBe22

First, to prove the validity of the approach, we applied Equations (7) and (9) for
pure metals and the binary alloy ReBe22 (Figure 1) to compare the deduced value with a
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theoretically calculated one. The theory [30,31] predicts that R(T) dataset of pure perfect
nonferromagnetic metals should be described by Equation (7) with p = 5. In Figure 1a we
showed the fitted R(T) dataset (reported by Teixeira [41,44] for pure copper) where deduced
p = 4.6 ± 0.1 and Tθ = 348 ± 3 K. p-value is reasonably close to the theoretical value of
p = 5, that was calculated [30,31,40] in an assumption of a free-electron model in defect-free
metal. In Figure 1b one can see that expected p = 5 (which implies the dominance of the
electron–phonon interaction) has been revealed for the electron–phonon mediated ReBe22
superconductor.

Our analysis revealed that γ-Fe (Figure 1c), which should have p = 3 [32,33,40,41],
exhibits p = 2.9 ± 0.1, which is an excellent demonstration of the applicability of Equation
(7) to the analysis. Ferromagnetic cobalt has p = 2.2 ± 0.1, which reflects a well-established
fact that the electron–electron interaction in this element plays a significant role [40].

Another interesting result, which shows the validity of the approach for a much wider
class of the materials, was obtained for hexagonal-close-packed highly-compressed iron, ε-
Fe. It should be stressed that this ε-Fe phase plays a crucial role in the Earth geology [37,39]
and thus, our approach can potentially impact a broad range of disciplines beyond 2D
materials. Truly, the electrical conductivity, ρρ, is directly linked with the heat transfer due
to the Wiedemann–Franz law:

k(T, P) =
L·T

ρ(T, P)
, (10)

where k is the thermal conductivity, and L = 2.44·10−8 WΩK−2 is the Lorenz number, and
P is the pressure. Due to all Earth’s planetary models which are based on the assumption
that the Earth crust is formed by ε-Fe, the validity of that model crucially depends on the
accuracy of the utilized ρ(T, P) function, for which the integral form of Equation (7) (vs
the power-law utilized in Equation (8)) provides the best accuracy (details can be found
in [39]).

To the best of the author’s knowledge, to date, the experimental ρ(T,P) data for ε-Fe
were fitted only to an approximant function of Equation (7), i.e., Equation (8). In a result,
the reported p values are within an extremely wide range of p = 1.5–5.9, and moreover,
we found herein that the approach to use Equation (8) leads to wrong p-values. Truly, in
Figure 1e, we show the fit to Equation (7), which reveals p = 2.22 ± 0.01 for which, by
employing the same ρ(T) dataset and the use of Equation (10), Jaccard et al. [37] reported
p = 1.67. If our value of p = 2.22 ± 0.01 shows that electric charge carriers in ε-Fe phase
exhibit two scattering mechanisms (i.e., mainly the electron–electron interaction (p = 2)
with some weighting part of the electron–magnon interaction (p = 3)), the interpretation
for p = 1.67 reported by Jaccard et al. [37] cannot be founded, because p→ 1 case is only
applicable for MATBG superlattices [20], and p-values below 2 are simply prohibited for
elemental metals, because there is no physical interpretation for such values.

It is important to note that there is a nice correlation between p-values and supercon-
ducting transition temperatures, Tc, in ε-Fe phase too. If for p = 2.55 ± 0.05 (which implied
a significant electron–magnon interaction) the full resistive transition does not occur (and
where the only 10% drop in resistance is observed, with the onset of transition temperature,
Tonset

c ∼ 1 K), for ε-Fe sample, for which p = 2.22 ± 0.01 was revealed, the full resistive
transition was observed with Tonset

c = 2.37± 0.01 K. This result has a clear interpretation
that the suppression of the electron–magnon interaction causes the formation of more
robust superconducting condensate.

3.2. SLG/hBN Superlattice

Now, we turn to the analysis of TBG superlattices. First, we analyzed the experimental
R(T) curves for the Moiré superlattice in single layer graphene on the hBN single crystal
(SLG/hBN superlattice) reported by Wallbank et al. [10], where the Moiré superlattice
constant, λ, has been changed in the range of λ = 11.2—15.1. Fits to Equation (7) are shown
in Figure 2 and summarized results in Figure 3. Overall, our analysis confirms the result
reported by Wallbank et al. [10] that the electron–electron interaction is dominant in these
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Moiré 2D superlattices. However, our analysis shows a smooth and near-linear dependence
of p-value and the Debye temperature, Tθ, on the Moiré superlattice constant, λ (Figure 3).

If for conventional conductors the linear R(T) dependence is interpreted as an ap-
proximation of the Equation (7) with p = 5 and T > Tθ [40,41], for TBG superlattices the
linear R(T) dependence in term Equation (7) has different interpretation as a case of pure
electron–quasielastic acoustic phonon (e-qaph) interaction [19].

Thus, if TBG superlattice exhibits 1 < p < 2 (see, for instance, Figures 2 and 3), these
p-values can be interpretated as a manifestation of intermediate TBG state between the
pure electron–electron charge carrier interaction (e-e), for which the characteristic value is
p = 2, and the pure electron–quasielastic acoustic phonon interaction (e-qaph), for which
the characteristic value is p = 1.
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Figure 2. R(T) data for Moiré SLG/hBN superlattices (raw data reported by Wallbank et al. [10]) and fits to Equation (8) for
(a) λ = 11.2 nm, (b) λ = 12.7 nm, (c) λ = 13.6 nm, and (d) λ = 15.1 nm. Red lines are the fitting curves; 95% confidence bands
are shown by a pink shaded area. Goodness of fit for all plots is better than R = 0.9997.



Nanomaterials 2021, 11, 1306 7 of 15Nanomaterials 2021, 11, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 3. Summarized results for Moiré SLG/hBN superlattices (raw data reported by Wallbank et 
al. [10]). (a) deduced Debye temperature; (b) deduced p-value in Equation (7). Characteristic val-
ues for the quasielastic electron–acoustic phonon interaction (pe-qaph = 1), the electron–electron in-
teraction (pe-e = 2), and the electron–magnon interaction (pe-m = 3) are shown. 

If for conventional conductors the linear R(T) dependence is interpreted as an ap-
proximation of the Equation (7) with p = 5 and 𝑇 > 𝑇ఏ [40,41], for TBG superlattices the 
linear R(T) dependence in term Equation (7) has different interpretation as a case of pure 
electron–quasielastic acoustic phonon (e-qaph) interaction [19]. 

Thus, if TBG superlattice exhibits 1 < p < 2 (see, for instance, Figures 2 and 3), these p-
values can be interpretated as a manifestation of intermediate TBG state between the pure 
electron–electron charge carrier interaction (e-e), for which the characteristic value is p = 
2, and the pure electron–quasielastic acoustic phonon interaction (e-qaph), for which the 
characteristic value is p = 1. 

3.3. WSe2/TBG/WSe2 Superlattice 
The similar mixed state characterized by 1 < p < 2 has been also revealed in the me-

tallic TBG superlattice stabilized by WSe2, i.e., WSe2/TBG/WSe2, for which raw R(T) data 
were reported by Arora et al. [11]. In Figure 4, we show R(T) data and fits for samples 
with twisted angles θ = 0.87° (filling factor ν = +1, deduced p = 1.52±0.05, Tθ = 47±9 K) and 
0.97° (filling 𝜈 = −1ఏ, deduced p = 1.75±0.09, Tθ = 13.0±0.8 K). 

10 11 12 13 14 15 16
0.0

1.0

2.0

3.0

0

500

1000

1500

2000

2500

3000

b

SLG/hBN superlattice

 Tθ

te
m

pe
ra

tu
re

 (K
)

a

pe-qaph = 1

pe-e = 2

pe-m = 3

  p-value

p-
va

lu
e

Moiré superlattice constant, λ (nm)

Figure 3. Summarized results for Moiré SLG/hBN superlattices (raw data reported by Wall-
bank et al. [10]). (a) deduced Debye temperature; (b) deduced p-value in Equation (7). Characteristic
values for the quasielastic electron–acoustic phonon interaction (pe-qaph = 1), the electron–electron
interaction (pe-e = 2), and the electron–magnon interaction (pe-m = 3) are shown.

3.3. WSe2/TBG/WSe2 Superlattice

The similar mixed state characterized by 1 < p < 2 has been also revealed in the metallic
TBG superlattice stabilized by WSe2, i.e., WSe2/TBG/WSe2, for which raw R(T) data were
reported by Arora et al. [11]. In Figure 4, we show R(T) data and fits for samples with
twisted angles θ = 0.87◦ (filling factor ν = +1, deduced p = 1.52 ± 0.05, Tθ = 47 ± 9 K) and
0.97◦ (filling ν = −1θ , deduced p = 1.75 ± 0.09, Tθ = 13.0 ± 0.8 K).
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Figure 4. R(T) fits to Equation (7) for WSe2/TBG/WSe2 (raw data reported by Arora et al. [11]) for
θ = 0.87◦ and θ = 0.97◦. 95% confidence bands are shown. Goodness of fit is better than R = 0.998.

3.4. TBG Superlattice with θ = 2.02◦

Most experimental studies in TBG superlattices have been performed for the R(T)
dependences on the charge carrier density, n. In this work, we performed the analysis for
the metallic states of TBG system which exhibits the twisted angle of θ = 2.02◦ (for which
the raw experimental R(T) was reported by Polshyn et al. [8]). The data were analyzed in
the full range of the charge carrier density of n ≤ ±|6.71|·1012 cm−2.

We presented herein the results for R(T) data analysis which was undertaken at
T ≤ 192.5 K. Representative fittings where p-value is reaching the characteristic values
of p = 2, p = 3, as well as a low value of p = 1.4 and the highest value of p = 4.7 are
shown in Figures 5 and 6. We do not fit R(T) curves measured at very low charge carrier
density, because these curves have a low-temperature upturn in the R(T) which indicates
the transition into a semiconductor or insulating state.
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Figure 5. R(T) data and data fit to Equation (7) for metallic TBG superlattice on hole side with θ = 2.02◦ (raw R(T) data were
reported by Polshyn et al. [8]). The doping state, n, for this TBG superlattice gradually varies from n = −6.71·1012 cm−2 (a)
to n = −0.24·1012 cm−2 (f). Red are the fitting curves; 95% confidence bands are shown by a pink shaded area. Goodness of
fit for both plots is better than R = 0.9990.
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Figure 6. R(T) data and data fit to Equation (7) for metallic TBG superlattice on electron doping side with θ = 2.02◦

(raw R(T) data were reported by Polshyn et al. [8]). The doping state, n, for this TBG superlattice gradually varies from
n = 6.38·1012 cm−2 (a) to n = 0.22·1012 cm−2 (f). Red are the fitting curves; 95% confidence bands are shown by a pink
shaded area. Goodness of fit for both plots is better than R = 0.9990.

4. Discussion

The reported results for the Debye temperature, Tθ(p), and the power-law exponent,
p(n), vs. the charge carrier density for this TBG superlattice is shown in Figure 7. There are
several important findings:

1. A classical electron–phonon interaction (with p > 3.5) can be observed at the lowest
charge carrier concentration in a very narrow concentration range,−0.39·1012 cm−2 <
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n < −0.39·1012 cm−2. In this doping range, we where we skipped from the analysis
several R(T) curves measured at some very low p, which exhibits an upturn in R(T) at
T < 20 K.

2. A classical electron–phonon interaction (with p > 3.5) can be observed at the lowest
charge carrier concentration in a very narrow concentration range,−0.39·1012 cm−2 <
n < −0.39·1012 cm−2. In this doping range, we where we skipped from the analysis
several R(T) curves measured at some very low p, which exhibits an upturn in R(T) at
T < 20 K.

3. The dominant role of the electron–magnon interaction (2.5 < n < 3.5) has been revealed
at low charge carrier concentration, |0.4|·1012 cm−2 < n < |1.0|·1012 cm−2. Physical
interpretation of this result can be based on the recent reports [6,9,12,23–25] where it
was shown that the ferromagnetic type of ordering does exist at some intermediate
doping levels between the insulating and highly conductive TBG states.

4. In a wide range of doping, |1.0|·1012 . n . |5.5|·1012 cm−2, the interaction belongs
to a sum of the electron–electron and the electron–quasielastic acoustic phonon in-
teractions. This result can be understood if one considers that in a perfect crystalline
2D sheet the charge carriers exhibit two main interactions, the Coulomb retraction,
and an interaction with the lattice vibrations. Which interaction becomes dominant
depends on the details; however, there is a general trend that at some low n, the
Coulomb retraction is also low because the charge carriers are well spatially separated
from each other. Thus, relative strength of the charge carrier interaction with the
lattice vibrations cannot be low if even this interaction is weak in its absolute value.
However, as far as the doping level n is increasing, the Coulomb retraction is also
increasing, and at some n-value, it becomes dominant. This is exactly what we reveal
at the highest doping level, n, considered in this report.

5. At the highest charge carrier density, n > |5.5|·1012 cm−2, considered in this report,
the electron–electron interaction overcomes the other interactions, and p-value to-
wards 2, while the doping is increasing. This is due to the fact that the charge carrier
concentration, n, becomes high, and the spatial charge separation reduces to the
level when the Coulomb charge retraction becomes overwhelmingly strong in the
comparison with other interactions.
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Figure 7. Summarized results for TBG superlattice with θ = 2.02◦. (a) Deduced Debye temperature;
(b) deduced p-value. Characteristic values for the quasielastic electron–acoustic phonon interaction
(pe-qaph = 1), the electron–electron interaction (pe-e = 2), the electron–magnon interaction (pe-m = 3),
and the electron–phonon interaction (pe-ph = 5) are shown.

5. Conclusions

In this paper, we aim to propose an approach to quantify the charge carrier integration
in metallic materials by generalizing the Bloch–Grüneisen equation, where the power-law
exponent is a free-fitting parameter. In the case of twisted bilayer graphene superlattices,
we show that the interaction mechanism can be smoothly transformed from one to another
by a variation of either the Moiré superlattice constant, λ, or the charge carrier concentration.
We also show that generalized Bloch–Grüneisen equation can be an instructive tool to
study different topics in natural science, including the Earth geology.

It is important to note that recently, a new fundamental property of the single layer
graphene that can potentially be in use in the cosmology [45,46] has been discussed in the
literature. This is a ground to expect that new unusual properties of twisted multilayered
graphene Moiré superlattices will be further discovered.

The proposed approach potentially can be applicable for a wide range of materials,
including 2D superconductors [47–56] and superhydrides [57–65].
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