Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (668)

Search Parameters:
Keywords = Mobile user locations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2335 KiB  
Article
MLLM-Search: A Zero-Shot Approach to Finding People Using Multimodal Large Language Models
by Angus Fung, Aaron Hao Tan, Haitong Wang, Bensiyon Benhabib and Goldie Nejat
Robotics 2025, 14(8), 102; https://doi.org/10.3390/robotics14080102 - 28 Jul 2025
Viewed by 340
Abstract
Robotic search of people in human-centered environments, including healthcare settings, is challenging, as autonomous robots need to locate people without complete or any prior knowledge of their schedules, plans, or locations. Furthermore, robots need to be able to adapt to real-time events that [...] Read more.
Robotic search of people in human-centered environments, including healthcare settings, is challenging, as autonomous robots need to locate people without complete or any prior knowledge of their schedules, plans, or locations. Furthermore, robots need to be able to adapt to real-time events that can influence a person’s plan in an environment. In this paper, we present MLLM-Search, a novel zero-shot person search architecture that leverages multimodal large language models (MLLM) to address the mobile robot problem of searching for a person under event-driven scenarios with varying user schedules. Our approach introduces a novel visual prompting method to provide robots with spatial understanding of the environment by generating a spatially grounded waypoint map, representing navigable waypoints using a topological graph and regions by semantic labels. This is incorporated into an MLLM with a region planner that selects the next search region based on the semantic relevance to the search scenario and a waypoint planner that generates a search path by considering the semantically relevant objects and the local spatial context through our unique spatial chain-of-thought prompting approach. Extensive 3D photorealistic experiments were conducted to validate the performance of MLLM-Search in searching for a person with a changing schedule in different environments. An ablation study was also conducted to validate the main design choices of MLLM-Search. Furthermore, a comparison study with state-of-the-art search methods demonstrated that MLLM-Search outperforms existing methods with respect to search efficiency. Real-world experiments with a mobile robot in a multi-room floor of a building showed that MLLM-Search was able to generalize to new and unseen environments. Full article
(This article belongs to the Section Intelligent Robots and Mechatronics)
Show Figures

Figure 1

18 pages, 847 KiB  
Article
Modeling Public Transportation Use Among Short-Term Rental Guests in Madrid
by Daniel Gálvez-Pérez, Begoña Guirao and Armando Ortuño
Appl. Sci. 2025, 15(14), 7828; https://doi.org/10.3390/app15147828 - 12 Jul 2025
Viewed by 401
Abstract
Urban tourism has experienced significant growth driven by platforms such as Airbnb, yet the relationship between short-term rental (STR) location and guest mobility remains underexplored. In this study, a structured survey of STR guests in Madrid during 2024 was administered face-to-face through property [...] Read more.
Urban tourism has experienced significant growth driven by platforms such as Airbnb, yet the relationship between short-term rental (STR) location and guest mobility remains underexplored. In this study, a structured survey of STR guests in Madrid during 2024 was administered face-to-face through property managers and luggage-storage services to examine factors influencing public transport (PT) use. Responses on bus and metro usage were combined into a three-level ordinal variable and modeled using ordered logistic regression against tourist demographics, trip characteristics, and accommodation attributes, including geocoded location zones. The results indicate that first-time and international visitors are less likely to use PT at high levels, while tourists visiting more points of interest and those who rated PT importance highly when choosing accommodation are significantly more frequent users. Accommodation in the central almond or periphery correlates positively with higher PT use compared to the city center. Distances to transit stops were not significant predictors, reflecting overall network accessibility. These findings suggest that enhancing PT connectivity in peripheral areas could support the spatial dispersion of tourism benefits and improve sustainable mobility for STR guests. Full article
Show Figures

Figure 1

19 pages, 684 KiB  
Article
A Wi-Fi Fingerprinting Indoor Localization Framework Using Feature-Level Augmentation via Variational Graph Auto-Encoder
by Dongdeok Kim, Jae-Hyeon Park and Young-Joo Suh
Electronics 2025, 14(14), 2807; https://doi.org/10.3390/electronics14142807 - 12 Jul 2025
Viewed by 357
Abstract
Wi-Fi fingerprinting is a widely adopted technique for indoor localization in location-based services (LBS) due to its cost-effectiveness and ease of deployment using existing infrastructure. However, the performance of these systems often suffers due to missing received signal strength indicator (RSSI) measurements, which [...] Read more.
Wi-Fi fingerprinting is a widely adopted technique for indoor localization in location-based services (LBS) due to its cost-effectiveness and ease of deployment using existing infrastructure. However, the performance of these systems often suffers due to missing received signal strength indicator (RSSI) measurements, which can arise from complex indoor structures, device limitations, or user mobility, leading to incomplete and unreliable fingerprint data. To address this critical issue, we propose Feature-level Augmentation for Localization (FALoc), a novel framework that enhances Wi-Fi fingerprinting-based localization through targeted feature-level data augmentation. FALoc uniquely models the observation probabilities of RSSI signals by constructing a bipartite graph between reference points and access points, which is then processed by a variational graph auto-encoder (VGAE). Based on these learned probabilities, FALoc intelligently imputes likely missing RSSI values or removes unreliable ones, effectively enriching the training data. We evaluated FALoc using an MLP (Multi-Layer Perceptron)-based localization model on the UJIIndoorLoc and UTSIndoorLoc datasets. The experimental results demonstrate that FALoc significantly improves localization accuracy, achieving mean localization errors of 7.137 m on UJIIndoorLoc and 7.138 m on UTSIndoorLoc, which represent improvements of approximately 12.9% and 8.6% over the respective MLP baselines (8.191 m and 7.808 m), highlighting the efficacy of our approach in handling missing data. Full article
(This article belongs to the Special Issue Wireless Sensor Network: Latest Advances and Prospects)
Show Figures

Figure 1

24 pages, 3062 KiB  
Article
Sustainable IoT-Enabled Parking Management: A Multiagent Simulation Framework for Smart Urban Mobility
by Ibrahim Mutambik
Sustainability 2025, 17(14), 6382; https://doi.org/10.3390/su17146382 - 11 Jul 2025
Cited by 1 | Viewed by 415
Abstract
The efficient management of urban parking systems has emerged as a pivotal issue in today’s smart cities, where increasing vehicle populations strain limited parking infrastructure and challenge sustainable urban mobility. Aligned with the United Nations 2030 Agenda for Sustainable Development and the strategic [...] Read more.
The efficient management of urban parking systems has emerged as a pivotal issue in today’s smart cities, where increasing vehicle populations strain limited parking infrastructure and challenge sustainable urban mobility. Aligned with the United Nations 2030 Agenda for Sustainable Development and the strategic goals of smart city planning, this study presents a sustainability-driven, multiagent simulation-based framework to model, analyze, and optimize smart parking dynamics in congested urban settings. The system architecture integrates ground-level IoT sensors installed in parking spaces, enabling real-time occupancy detection and communication with a centralized system using low-power wide-area communication protocols (LPWAN). This study introduces an intelligent parking guidance mechanism that dynamically directs drivers to the nearest available slots based on location, historical traffic flow, and predicted availability. To manage real-time data flow, the framework incorporates message queuing telemetry transport (MQTT) protocols and edge processing units for low-latency updates. A predictive algorithm, combining spatial data, usage patterns, and time-series forecasting, supports decision-making for future slot allocation and dynamic pricing policies. Field simulations, calibrated with sensor data in a representative high-density urban district, assess system performance under peak and off-peak conditions. A comparative evaluation against traditional first-come-first-served and static parking systems highlights significant gains: average parking search time is reduced by 42%, vehicular congestion near parking zones declines by 35%, and emissions from circling vehicles drop by 27%. The system also improves user satisfaction by enabling mobile app-based reservation and payment options. These findings contribute to broader sustainability goals by supporting efficient land use, reducing environmental impacts, and enhancing urban livability—key dimensions emphasized in sustainable smart city strategies. The proposed framework offers a scalable, interdisciplinary solution for urban planners and policymakers striving to design inclusive, resilient, and environmentally responsible urban mobility systems. Full article
Show Figures

Figure 1

31 pages, 3231 KiB  
Article
Capturing User Preferences via Multi-Perspective Hypergraphs with Contrastive Learning for Next-Location Prediction
by Fengyu Liu, Kexin Zhang, Chao Lian and Yunong Tian
Appl. Sci. 2025, 15(14), 7672; https://doi.org/10.3390/app15147672 - 9 Jul 2025
Viewed by 340
Abstract
With the widespread adoption of mobile devices and the increasing availability of user trajectory data, accurately predicting the next location a user will visit has become a pivotal task in location-based services. Despite recent progress, existing methods often fail to effectively disentangle the [...] Read more.
With the widespread adoption of mobile devices and the increasing availability of user trajectory data, accurately predicting the next location a user will visit has become a pivotal task in location-based services. Despite recent progress, existing methods often fail to effectively disentangle the diverse and entangled behavioral signals, such as collaborative user preferences, global transition mobility patterns, and geographical influences, embedded in user trajectories. To address these challenges, we propose a novel framework named Multi-Perspective Hypergraphs with Contrastive Learning (MPHCL), which explicitly captures and disentangles user preferences from three complementary perspectives. Specifically, MPHCL constructs a global transition flow graph and two specialized hypergraphs: a collective preference hypergraph to model collaborative check-in behavior and a geospatial-context hypergraph to reflect geographical proximity relationships. A unified hypergraph representation learning network is developed to preserve semantic independence across views through a dual propagation mechanism. Furthermore, we introduce a cross-view contrastive learning strategy that aligns multi-perspective embeddings by maximizing agreement between corresponding user and location representations across views while enhancing discriminability through negative sampling. Extensive experiments conducted on two real-world datasets demonstrate that MPHCL consistently outperforms state-of-the-art baselines. These results validate the effectiveness of our multi-perspective learning paradigm for next-location prediction. Full article
Show Figures

Figure 1

23 pages, 4803 KiB  
Article
Unraveling Street Configuration Impacts on Urban Vibrancy: A GeoXAI Approach
by Longzhu Xiao, Minyi Wu, Qingqing Weng and Yufei Li
Land 2025, 14(7), 1422; https://doi.org/10.3390/land14071422 - 7 Jul 2025
Viewed by 314
Abstract
As a catalyst for sustainable urbanization, urban vibrancy drives human interactions, economic agglomeration, and resilient development through its spatial manifestation of diverse activities. While previous studies have emphasized the connection between built environment features—especially street network centrality—and urban vibrancy, the broader mechanisms through [...] Read more.
As a catalyst for sustainable urbanization, urban vibrancy drives human interactions, economic agglomeration, and resilient development through its spatial manifestation of diverse activities. While previous studies have emphasized the connection between built environment features—especially street network centrality—and urban vibrancy, the broader mechanisms through which the full spectrum of street configuration dimensions shape vibrancy patterns remain insufficiently examined. To address this gap, this study applies a GeoXAI approach that synergizes random forest modeling and GeoShapley interpretation to reveal the influence of street configuration on urban vibrancy. Leveraging multi-source geospatial data from Xiamen Island, China, we operationalize urban vibrancy through a composite index derived from three-dimensional proxies: life service review density, social media check-in intensity, and mobile device user concentration. Street configuration is quantified through a tripartite measurement system encompassing network centrality, detour ratio, and shape index. Our findings indicate that (1) street network centrality and shape index, as well as their interactions with location, emerge as the dominant influencing factors; (2) The relationships between street configuration and urban vibrancy are predominantly nonlinear, exhibiting clear threshold effects; (3) The impact of street configuration is spatially heterogeneous, as evidenced by geographically varying coefficients. The findings can enlighten urban planning and design by providing a basis for the development of nuanced criteria and context-sensitive interventions to foster vibrant urban environments. Full article
(This article belongs to the Special Issue GeoAI for Urban Sustainability Monitoring and Analysis)
Show Figures

Figure 1

22 pages, 891 KiB  
Article
Federated Learning-Based Location Similarity Model for Location Privacy Preserving Recommendation
by Liang Zhu, Jingzhe Mu, Liping Yu, Yanpei Liu, Fubao Zhu and Jingzhong Gu
Electronics 2025, 14(13), 2578; https://doi.org/10.3390/electronics14132578 - 26 Jun 2025
Viewed by 291
Abstract
With the proliferation of mobile devices and wireless communications, Location-Based Social Networks (LBSNs) have seen tremendous growth. Location recommendation, as an important service in LBSNs, can provide users with locations of interest by analyzing their complex check-in information. Currently, most location recommendations use [...] Read more.
With the proliferation of mobile devices and wireless communications, Location-Based Social Networks (LBSNs) have seen tremendous growth. Location recommendation, as an important service in LBSNs, can provide users with locations of interest by analyzing their complex check-in information. Currently, most location recommendations use centralized learning strategies, which carry the risk of user privacy breaches. As an emerging learning strategy, federated learning is widely applied in the field of location recommendation to address privacy concerns. We propose a Federated Learning-Based Location Similarity Model for Location Privacy Preserving Recommendation (FedLSM-LPR) scheme. First, the location-based similarity model is used to capture the differences between locations and make location recommendations. Second, the penalty term is added to the loss function to constrain the distance between the local model parameters and the global model parameters. Finally, we use the REPAgg method, which is based on clustering for client selection, to perform global model aggregation to address data heterogeneity issues. Extensive experiments demonstrate that the proposed FedLSM-LPR scheme not only delivers superior performance but also effectively protects the privacy of users. Full article
(This article belongs to the Special Issue Big Data Security and Privacy)
Show Figures

Figure 1

21 pages, 1329 KiB  
Article
DDPG-Based UAV-RIS Framework for Optimizing Mobility in Future Wireless Communication Networks
by Yasir Ullah, Idris Olalekan Adeoye, Mardeni Roslee, Mohd Azmi Ismail, Farman Ali, Shabeer Ahmad, Anwar Faizd Osman and Fatimah Zaharah Ali
Drones 2025, 9(6), 437; https://doi.org/10.3390/drones9060437 - 15 Jun 2025
Viewed by 512
Abstract
The development of beyond 5G (B5G) future wireless communication networks (FWCN) needs novel solutions to support high-speed, reliable, and low-latency communication. Unmanned aerial vehicles (UAVs) and reconfigurable intelligent surfaces (RISs) are promising techniques that can enhance wireless connectivity in urban environments where tall [...] Read more.
The development of beyond 5G (B5G) future wireless communication networks (FWCN) needs novel solutions to support high-speed, reliable, and low-latency communication. Unmanned aerial vehicles (UAVs) and reconfigurable intelligent surfaces (RISs) are promising techniques that can enhance wireless connectivity in urban environments where tall buildings block line-of-sight (LoS) links. However, existing UAV-assisted communication strategies do not fully address key challenges like mobility management, handover failures (HOFs), and path disorders in dense urban environments. This paper introduces a deep deterministic policy gradient (DDPG)-based UAV-RIS framework to overcome these limitations. The proposed framework jointly optimizes UAV trajectories and RIS phase shifts to improve throughput, energy efficiency (EE), and LoS probability while reducing outage probability (OP) and HOF. A modified K-means clustering algorithm is used to efficiently partition the ground users (GUs) considering the newly added GUs as well. The DDPG algorithm, based on reinforcement learning (RL), adapts UAV positioning and RIS configurations in a continuous action space. Simulation results show that the proposed approach significantly reduces HOF and OP, increases EE, enhances network throughput, and improves LoS probability compared to UAV-only, RIS-only, and without UAV-RIS deployments. Additionally, by dynamically adjusting UAV locations and RIS phase shifts based on GU mobility patterns, the framework further enhances connectivity and reliability. The findings highlight its potential to transform urban wireless communication by mitigating LoS blockages and ensuring uninterrupted connectivity in dense environments. Full article
(This article belongs to the Special Issue UAV-Assisted Mobile Wireless Networks and Applications)
Show Figures

Figure 1

21 pages, 4051 KiB  
Article
Optimizing Parcel Locker Selection in Campus Last-Mile Logistics: A Path Planning Model Integrating Spatial–Temporal Behavior Analysis and Kernel Density Estimation
by Hongbin Zhang, Peiqun Lin and Liang Zou
Appl. Sci. 2025, 15(12), 6607; https://doi.org/10.3390/app15126607 - 12 Jun 2025
Viewed by 591
Abstract
The last-mile delivery crisis, exacerbated by the surge in e-commerce demands, continues to face persistent challenges. Logistics companies often overlook the possibility that recipients may not be at the designated delivery location during courier distribution, leading to interruptions in the delivery process and [...] Read more.
The last-mile delivery crisis, exacerbated by the surge in e-commerce demands, continues to face persistent challenges. Logistics companies often overlook the possibility that recipients may not be at the designated delivery location during courier distribution, leading to interruptions in the delivery process and spatiotemporal mismatches between couriers and users. Parcel lockers (PLCs), as a contactless self-pickup solution, mitigate these mismatches but suffer from low utilization rates and user dissatisfaction caused by detour-heavy pickup paths. Existing PLC strategies prioritize operational costs over behavioral preferences, limiting their real-world applicability. To address this gap, we propose a user-centric path planning model that integrates spatiotemporal trajectory mining with kernel density estimation (KDE) to optimize PLC selection and conducted a small-scale experimental study. Our framework integrated user behavior and package characteristics elements: (1) Behavioral filtering: This extracted walking trajectories (speed of 4–5 km/h) from 1856 GPS tracks of four campus users, capturing daily mobility patterns. (2) Hotspot clustering: This identified 82% accuracy-aligned activity hotspots (50 m radius; ≥1 h stay) via spatiotemporal aggregation. (3) KDE-driven decision-making: This dynamically weighed parcel attributes (weight–volume–urgency ratio) and route regularity to minimize detour distances. Key results demonstrate the model’s effectiveness: a 68% reduction in detour distance for User A was achieved, with similar improvements across all test subjects. This study enhances last-mile logistics by integrating user behavior analytics with operational optimization, providing a scalable tool for smart cities. The KDE-based framework has proven effective in campus environments. Its future potential for expansion to various urban settings, ranging from campuses to metropolitan hubs, supports carbon-neutral goals by reducing unnecessary travel, demonstrating its potential for application. Full article
Show Figures

Figure 1

30 pages, 5512 KiB  
Article
Making Autonomous Taxis Understandable: A Comparative Study of eHMI Feedback Modes and Display Positions for Pickup Guidance
by Gang Ren, Zhihuang Huang, Yaning Zhu, Wenshuo Lin, Tianyang Huang, Gang Wang and Jeehang Lee
Electronics 2025, 14(12), 2387; https://doi.org/10.3390/electronics14122387 - 11 Jun 2025
Viewed by 517
Abstract
Passengers often struggle to identify intended pickup locations when autonomous taxis (ATs) arrive, leading to confusion and delays. While prior external human–machine interface (eHMI) studies have focused on pedestrian crossings, few have systematically compared feedback modes and display positions for AT pickup guidance [...] Read more.
Passengers often struggle to identify intended pickup locations when autonomous taxis (ATs) arrive, leading to confusion and delays. While prior external human–machine interface (eHMI) studies have focused on pedestrian crossings, few have systematically compared feedback modes and display positions for AT pickup guidance at varying distances. This study investigates the effectiveness of three eHMI feedback modes (Eye, Arrow, and Number) displayed at two positions (Body and Top) for communicating AT pickup locations. Through a controlled virtual reality experiment, we examined how these design variations impact user performance across key metrics including selection time, error rates, and decision confidence across varied parking distances. The results revealed distinct advantages for each feedback mode: Number feedback provided the fastest response times, particularly when displayed at the top position; Arrow feedback facilitated more confident decisions with lower error rates in close-range scenarios; and Eye feedback demonstrated superior performance in distant conditions by preventing severe identification errors. Body position displays consistently outperformed top-mounted ones, improving users’ understanding of the vehicle’s intended actions. These findings highlight the importance of context-aware eHMI systems that dynamically adapt to interaction distances and operational requirements. Based on our evidence, we propose practical design strategies for implementing these feedback modes in real-world AT services to optimize both system efficiency and user experience in urban mobility environments. Future work should address user learning challenges and validate these findings across diverse environmental conditions and implementation frameworks. Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

17 pages, 2621 KiB  
Article
May I Assist You?—Exploring the Impact of Telepresence System Design on the Social Perception of Remote Assistants in Collaborative Assembly Tasks
by Jennifer Brade, Sarah Mandl, Franziska Klimant, Anja Strobel, Philipp Klimant and Martin Dix
Robotics 2025, 14(6), 73; https://doi.org/10.3390/robotics14060073 - 28 May 2025
Viewed by 629
Abstract
Remote support in general is a method that saves time and resources. A relatively new and promising technology for remote support that combines video conferencing and physical mobility is that of telepresence systems. The remote assistant, that is, the user of said technology, [...] Read more.
Remote support in general is a method that saves time and resources. A relatively new and promising technology for remote support that combines video conferencing and physical mobility is that of telepresence systems. The remote assistant, that is, the user of said technology, gains both presence and maneuverability in the distant location. As telepresence systems vary greatly in their design, the question arises as to whether the design influences the perception of the remote assistant. Unlike pure design studies, the present work focuses not only on the design and evaluation of the telepresence system itself, but especially on its perception during a collaborative task involving a human partner visible through the telepresence system. This paper presents two studies in which participants performed an assembly task under the guidance of a remote assistant. The remote assistant was visible through differently designed telepresence systems that were evaluated in terms of social perception and trustworthiness. Four telepresence systems were evaluated in study 1 (N = 32) and five different systems in study 2 (N = 34). The results indicated that similarly designed systems showed only marginal differences, but a system that was designed to transport additional loads and was therefore less agile and rather bulky was rated significantly less positively regarding competence than the other systems. It is particularly noteworthy that it was not the height of the communication medium that was decisive for the rating, but above all, the agility and mobility of the system. These results provide evidence that the design of a telepresence system can influence the social perception of the remote assistant and therefore has implications for the acceptance and use of telepresence systems. Full article
(This article belongs to the Special Issue Extended Reality and AI Empowered Robots)
Show Figures

Figure 1

28 pages, 23164 KiB  
Article
Device-Driven Service Allocation in Mobile Edge Computing with Location Prediction
by Qian Zeng, Xiaobo Li, Yixuan Chen, Minghao Yang, Xingbang Liu, Yuetian Liu and Shiwei Xiu
Sensors 2025, 25(10), 3025; https://doi.org/10.3390/s25103025 - 11 May 2025
Viewed by 532
Abstract
With the rapid deployment of edge base stations and the widespread application of 5G technology, Mobile Edge Computing (MEC)has gradually transitioned from a theoretical concept to practical implementation, playing a key role in emerging human-machine interactions and innovative mobile applications. In the MEC [...] Read more.
With the rapid deployment of edge base stations and the widespread application of 5G technology, Mobile Edge Computing (MEC)has gradually transitioned from a theoretical concept to practical implementation, playing a key role in emerging human-machine interactions and innovative mobile applications. In the MEC environment, efficiently allocating services, effectively utilizing edge device resources, and ensuring timely service responses have become critical research topics. Existing studies often treat MEC service allocation as an offline strategy, where the real-time location of users is used as input, and static optimization is applied. However, this approach overlooks dynamic factors such as user mobility. To address this limitation, this paper constructs a model based on constraints, optimization objectives, and server connection methods, determines experimental parameters and evaluation metrics, and sets up an experimental framework. We propose an Edge Location Prediction Model (ELPM) suitable for the MEC scenario, which integrates Spatial-Temporal Graph Neural Networks and attention mechanisms. By leveraging attention parameters, ELPM acquires spatio-temporal adaptive weights, enabling accurate location predictions. We also design an improved service allocation strategy, MESDA, based on the Gray Wolf Optimization (GWO) algorithm. MESDA dynamically adjusts its exploration and exploitation components, and introduces a random factor to enhance the algorithm’s ability to determine the direction during later stages. To validate the effectiveness of the proposed methods, we conduct multiple controlled experiments focusing on both location prediction models and service allocation algorithms. The results show that, compared to the baseline methods, our approach achieves improvements of 2.56%, 5.29%, and 2.16% in terms of the average user connection to edge servers, average service deployment cost, and average service allocation execution time, respectively, demonstrating the superiority and feasibility of the proposed methods. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

23 pages, 12598 KiB  
Article
Integrating Augmented Reality and Geolocation for Outdoor Interactive Educational Experiences
by Christos Mourelatos and Michalis Vrigkas
Virtual Worlds 2025, 4(2), 18; https://doi.org/10.3390/virtualworlds4020018 - 7 May 2025
Viewed by 719
Abstract
This paper presents an augmented reality (AR) mobile application developed for Android devices, which brings five bust sculptures of historical personalities of the city of Komotini, Greece, to ‘life’ using the Unity engine. These busts narrate their achievements in two languages, Greek and [...] Read more.
This paper presents an augmented reality (AR) mobile application developed for Android devices, which brings five bust sculptures of historical personalities of the city of Komotini, Greece, to ‘life’ using the Unity engine. These busts narrate their achievements in two languages, Greek and English, to educate visitors on historical and cultural heritage and provide a comprehensive glimpse into the area’s past using 3D models, textures, and animations tailored to the educational content. Based on the users’ location, the application provides an interactive educational experience, allowing the users to explore the history and characteristics of the busts in an innovative way. The users may interact with the busts using markerless AR, discover information and historical facts about them, and stimulate their understanding of the busts’ significance in the context of local history and culture. Interactive elements, such as videos and 3D animations, are incorporated to enrich the learning experience. A location-based knowledge quiz game was also developed for this purpose. The application was evaluated by statistical analysis to measure the effect of using the application on the involvement of users in the educational process and to study the users’ satisfaction and experience. This approach revealed that the proposed AR app is effective in providing educational content, promotes active user participation, and provides a high level of user satisfaction. Full article
Show Figures

Figure 1

23 pages, 1213 KiB  
Article
Mobile-AI-Based Docent System: Navigation and Localization for Visually Impaired Gallery Visitors
by Hyeyoung An, Woojin Park, Philip Liu and Soochang Park
Appl. Sci. 2025, 15(9), 5161; https://doi.org/10.3390/app15095161 - 6 May 2025
Viewed by 537
Abstract
Smart guidance systems in museums and galleries are now essential for delivering quality user experiences. Visually impaired visitors face significant barriers when navigating galleries due to existing smart guidance systems’ dependence on visual cues like QR codes, manual numbering, or static beacon positioning. [...] Read more.
Smart guidance systems in museums and galleries are now essential for delivering quality user experiences. Visually impaired visitors face significant barriers when navigating galleries due to existing smart guidance systems’ dependence on visual cues like QR codes, manual numbering, or static beacon positioning. These traditional methods often fail to provide adaptive navigation and meaningful content delivery tailored to their needs. In this paper, we propose a novel Mobile-AI-based Smart Docent System that seamlessly integrates real-time navigation and depth of guide services to enrich gallery experiences for visually impaired users. Our system leverages camera-based on-device processing and adaptive BLE-based localization to ensure accurate path guidance and real-time obstacle avoidance. An on-device object detection model reduces delays from large visual data processing, while BLE beacons, fixed across the gallery, dynamically update location IDs for better accuracy. The system further refines positioning by analyzing movement history and direction to minimize navigation errors. By intelligently modulating audio content based on user movement—whether passing by, approaching for more details, or leaving mid-description—the system offers personalized, context-sensitive interpretations while eliminating unnecessary audio clutter. Experimental validation conducted in an authentic gallery environment yielded empirical evidence of user satisfaction, affirming the efficacy of our methodological approach in facilitating enhanced navigational experiences for visually impaired individuals. These findings substantiate the system’s capacity to enable more autonomous, secure, and enriched cultural engagement for visually impaired individuals within complex indoor environments. Full article
(This article belongs to the Special Issue IoT in Smart Cities and Homes, 2nd Edition)
Show Figures

Figure 1

17 pages, 1580 KiB  
Article
Hierarchical Graph Learning with Cross-Layer Information Propagation for Next Point of Interest Recommendation
by Qiuhan Han, Atsushi Yoshikawa and Masayuki Yamamura
Appl. Sci. 2025, 15(9), 4979; https://doi.org/10.3390/app15094979 - 30 Apr 2025
Viewed by 421
Abstract
With the vast quantity of GPS data that have been collected from location-based social networks, Point-of-Interest (POI) recommendation aims to predict users’ next locations by learning from their historical check-in trajectories. While Graph Neural Network (GNN)-based models have shown promising results in this [...] Read more.
With the vast quantity of GPS data that have been collected from location-based social networks, Point-of-Interest (POI) recommendation aims to predict users’ next locations by learning from their historical check-in trajectories. While Graph Neural Network (GNN)-based models have shown promising results in this field, they typically construct single-layer graphs that fail to capture the hierarchical nature of human mobility patterns. To address this limitation, we propose a novel Hierarchical Graph Learning (HGL) framework that models POI relationships at multiple scales. Specifically, we construct a three-level graph structure: a base-level graph capturing direct POI transitions, a region-level graph modeling area-based interactions through spatio-temporal clustering, and a global-level graph representing category-based patterns. To effectively utilize this hierarchical structure, we design a cross-layer information propagation mechanism that enables bidirectional message passing between different levels, allowing the model to capture both fine-grained POI interactions and coarse-grained mobility patterns. Compared to traditional models, our hierarchical structure improves cold-start robustness and achieves superior performance on real-world datasets. While the incorporation of multi-layer attention and clustering introduces moderate computational overhead, the cost remains acceptable for offline recommendation contexts. Full article
Show Figures

Figure 1

Back to TopTop