Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (71)

Search Parameters:
Keywords = MoS2 quantum dots

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1906 KiB  
Article
FRET-Based TURN-ON Aptasensor for the Sensitive Detection of CK-MB
by Rabia Asghar, Madiha Rasheed, Xuefei Lv and Yulin Deng
Biosensors 2025, 15(7), 446; https://doi.org/10.3390/bios15070446 - 11 Jul 2025
Viewed by 463
Abstract
A fluorescent sandwich assay was devised to quantify CK-MB. In a typical immunoassay, antibodies bind to the target, and the detected signal is quantified according to the target’s concentration. We innovated a unique fluorescence assay known as the “enzyme-linked aptamer assay” (ELAA) by [...] Read more.
A fluorescent sandwich assay was devised to quantify CK-MB. In a typical immunoassay, antibodies bind to the target, and the detected signal is quantified according to the target’s concentration. We innovated a unique fluorescence assay known as the “enzyme-linked aptamer assay” (ELAA) by substituting antibodies with a pair of high-affinity aptamers labelled with biotin, namely apt. A1 and apt. A2. Avidin-labelled ALP binds to biotin-labelled aptamers, hydrolyzing its substrate, 2-phosphoascorbic acid trisodium salt, resulting in the formation of ascorbic acid. The catalytic hydrolysate functions as a reducing agent, causing the deterioration of MoS2 nanosheets. This results in the transformation of MoS2 nanosheets into nanoribbons, leading to the release of quenched AGQDs. The reestablishment of fluorescence is triggered by Förster Resonance Energy Transfer (FRET) between the MoS2 nanoribbons and AGQDs, enhancing the sensitivity of disease biomarker detection. The working range for detection falls between 2.5 nM and 160 nM, and the limit of detection (LOD) for CK-MB is verified at 0.20 nM. Full article
(This article belongs to the Special Issue Aptamer-Based Biosensors for Point-of-Care Diagnostics)
Show Figures

Figure 1

19 pages, 6178 KiB  
Article
Enhanced Photoelectrochromic Performance of WO3 Through MoS2 and GO–MoS2 Quantum Dot Doping for Self-Powered Smart Window Application
by Jacinta Akoth Okwako, Seung-Han Song, Sunghyoek Park, Sebastian Waita, Bernard Aduda, Young-Sik Hong and Chi-Hwan Han
Energies 2025, 18(10), 2411; https://doi.org/10.3390/en18102411 - 8 May 2025
Viewed by 551
Abstract
Photoelectrochromic devices, which combine light-induced color change with energy-efficient optical modulation, have attracted significant attention for applications such as smart windows, displays, and optical sensors. However, achieving high optical modulation, fast switching speeds, and long-term stability remains a major challenge. In this study, [...] Read more.
Photoelectrochromic devices, which combine light-induced color change with energy-efficient optical modulation, have attracted significant attention for applications such as smart windows, displays, and optical sensors. However, achieving high optical modulation, fast switching speeds, and long-term stability remains a major challenge. In this study, we explore the structural and photoelectrochromic enhancements in tungsten oxide (WO3) films achieved by doping with molybdenum disulfide quantum dots (MoS2 QDs) and grapheneoxide–molybdenum disulfide quantum dots (GO–MoS2 QDs) for advanced photoelectrochromic devices. X-ray diffraction (XRD) analysis revealed that doping with MoS2 QDs and GO–MoS2 QDs leads to a reduction in the crystallite size of WO3, as evidenced by the broadening and decrease in peak intensity. Transmission Electron Microscopy (TEM) confirmed the presence of characteristic lattice fringes with interplanar spacings of 0.36 nm, 0.43 nm, and 0.34 nm, corresponding to the planes of WO3, MoS2, and graphene. Energy-Dispersive X-ray Spectroscopy (EDS) mapping indicated a uniform distribution of tungsten, oxygen, molybdenum, and sulfur, suggesting homogeneous doping throughout the WO3 matrix. Scanning Electron Microscopy (SEM) analysis showed a significant decrease in film thickness from 724.3 nm for pure WO3 to 578.8 nm for MoS2 QD-doped WO3 and 588.7 nm for GO–MoS2 QD-doped WO3, attributed to enhanced packing density and structural reorganization. These structural modifications are expected to enhance photoelectrochromic performance by improving charge transport and mechanical stability. Photoelectrochromic performance analysis showed a significant improvement in optical modulation upon incorporating MoS2 QDs and GO–MoS2 QDs into the WO3 matrix, achieving a coloration depth of 56.69% and 70.28% at 630 nm, respectively, within 10 min of 1.5 AM sun illumination, with more than 90% recovery of the initial transmittance within 7 h in dark conditions. Additionally, device stability was improved by the incorporation of GO–MoS2 QDs into the WO3 layer. The findings demonstrate that incorporating MoS2 QDs and GO–MoS2 QDs effectively modifies the structural properties of WO3, making it a promising material for high-performance photoelectrochromic applications. Full article
Show Figures

Figure 1

23 pages, 4302 KiB  
Article
Visible Light Photo-Fenton with Hybrid Activated Carbon and Metal Ferrites for Efficient Treatment of Methyl Orange (Azo Dye)
by Malak Hamieh, Nabil Tabaja, Khaled Chawraba, Zeinab Hamie, Mohammad Hammoud, Sami Tlais, Tayssir Hamieh and Joumana Toufaily
Molecules 2025, 30(8), 1770; https://doi.org/10.3390/molecules30081770 - 15 Apr 2025
Cited by 1 | Viewed by 2774
Abstract
Ensuring effective water purification is essential for addressing freshwater scarcity and achieving the United Nations Sustainable Development Goals (SDGs). An efficient hybrid mixture, composed of FeCr quantum dots doped into mesoporous silica SBA-15 support and activated carbon (AC) derived from olive mill solid [...] Read more.
Ensuring effective water purification is essential for addressing freshwater scarcity and achieving the United Nations Sustainable Development Goals (SDGs). An efficient hybrid mixture, composed of FeCr quantum dots doped into mesoporous silica SBA-15 support and activated carbon (AC) derived from olive mill solid wastes, has been developed for treating high optical density polluted aqueous environments. This hybrid, denoted as FeCr-SBA-15/AC, was examined for its efficacy in the adsorption and photo-Fenton degradation of met orange dye (MO), a model high-optical-density pollutant, under visible light exposure. Characterization of the prepared samples was conducted using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Brunauer–Emmett–Teller (BET) surface area analysis, diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Key parameters investigated included catalyst dosage, dye concentration, solution pH, and H2O2 concentration. Remarkably, the FeCr-SBA-15/AC hybrid exhibited superior photocatalytic activity, achieving a degradation efficiency of 97% for MO under optimized conditions (catalyst dosage = 0.75 g L−1, dye concentration = 20 mg L−1, pH = 5.47, and 0.5 mL H2O2) after 180 min of irradiation with visible light. This performance surpassed that of FeCr-SBA-15 alone by 20%, due to the synergistic effects of adsorption and photo-Fenton. The adsorption of MO onto AC followed the Freundlich model equilibrium isotherm, while the experimental data for the hybrid mixture aligned well with the pseudo-first-order Langmuir–Hinshelwood kinetic model with a rate constant of 0.0173 min−1. The leaching of Cr in the solution was very low—0.1 ppm—which is below the detection limit. These findings underscore the potential of the synthesized FeCr-SBA-15/AC hybrid as a cost-effective, environmentally friendly, and highly efficient photo-Fenton catalyst for treating wastewater contaminated by industrial effluents. Full article
(This article belongs to the Special Issue Research on Heterogeneous Catalysis—2nd Edition)
Show Figures

Graphical abstract

9 pages, 818 KiB  
Communication
Antibacterial Coating Based on Functionalized MoS2 Quantum Dots
by Toby Chan, Soha Ahmadi, Zahra Ramezani and Michael Thompson
Materials 2025, 18(6), 1352; https://doi.org/10.3390/ma18061352 - 19 Mar 2025
Viewed by 457
Abstract
MoS2 quantum dots (QDs) were synthesized using a one-step hydrothermal method and subsequently functionalized with 11-mercaptoundecanoic acid. The functionalized QDs were thoroughly characterized, which exhibited antibacterial activity against Staphylococcus aureus at 10 mg/mL. These findings underscore its potential as antifouling coatings for [...] Read more.
MoS2 quantum dots (QDs) were synthesized using a one-step hydrothermal method and subsequently functionalized with 11-mercaptoundecanoic acid. The functionalized QDs were thoroughly characterized, which exhibited antibacterial activity against Staphylococcus aureus at 10 mg/mL. These findings underscore its potential as antifouling coatings for biomedical applications. Full article
(This article belongs to the Special Issue Advanced Carbon Materials with Biological Applications)
Show Figures

Figure 1

13 pages, 3194 KiB  
Article
Fluorescence Quenching of Graphene Quantum Dots from Orange Peel for Methyl Orange Detection
by Weitao Li, Yang Liu, Xinglong Pang, Yuanhao Huang, Zeyun Dong, Qian Niu, Yuping Xiong, Shang Li, Shuai Li, Lei Wang, Huazhang Guo, Saisai Cui, Shenpeng Hu, Yuenan Li, Tiantian Cha and Liang Wang
Nanomaterials 2025, 15(5), 376; https://doi.org/10.3390/nano15050376 - 28 Feb 2025
Cited by 4 | Viewed by 1330
Abstract
Methyl orange (MO) is an organic synthetic dye widely used in laboratory and industrial applications. In laboratory settings, it serves as an acid–base indicator due to its distinct color change in both acidic and alkaline environments. Industrially, it is primarily utilized in the [...] Read more.
Methyl orange (MO) is an organic synthetic dye widely used in laboratory and industrial applications. In laboratory settings, it serves as an acid–base indicator due to its distinct color change in both acidic and alkaline environments. Industrially, it is primarily utilized in the textile industry for its ultraviolet (UV) absorption properties. However, the discharge and leakage of methyl orange into the environment can cause severe ecological damage and pose potential carcinogenic and teratogenic risks to human health. Therefore, detecting and quantifying the concentration of methyl orange in various matrices is crucial. This study reports the synthesis of graphene quantum dots (GQDs) from orange peel as a precursor, using ethanol and dimethylformamide (DMF) as solvents. Cyan (c-GQDs) and yellow (y-GQDs) graphene quantum dots were synthesized through a bottom-up hydrothermal method. The difference in color is attributed to the redshift caused by the varying ratio of pyridine nitrogen to pyrrole nitrogen. These GQDs exhibited notable optical properties, with c-GQDs emitting cyan fluorescence and y-GQDs emitting yellow fluorescence under UV light. To investigate fluorescence quenching effects, nine commonly used dyes were tested, and all were found to quench the fluorescence of y-GQDs, with methyl orange having the most significant effect. The fluorescence quenching of orange peel-derived GQDs in the presence of methyl orange is attributed to poor dispersion in DMF solution. Additionally, the GQDs possess high specific surface area, abundant surface functional groups, and excellent electronic conductivity, which contribute to their effective fluorescence quenching performance. The average thickness of y-GQDs (the vertical dimension from the substrate upwards) was 3.51 nm, confirming their graphene-like structure. They emitted yellow fluorescence within the wavelength range of 450–530 nm. Notably, a significant linear correlation was found between the concentration of methyl orange and the fluorescence intensity of y-GQDs (regression coefficient = 0.9954), indicating the potential of GQDs as effective sensing materials for organic pollutant detection. Full article
Show Figures

Graphical abstract

12 pages, 3447 KiB  
Article
High Performance Phototransistor Based on 0D-CsPbBr3/2D-MoS2 Heterostructure with Gate Tunable Photo-Response
by Chen Yang, Yangyang Xie, Lei Zheng, Hanqiang Liu, Peng Liu, Fang Wang, Junqing Wei and Kailiang Zhang
Nanomaterials 2025, 15(4), 307; https://doi.org/10.3390/nano15040307 - 17 Feb 2025
Cited by 2 | Viewed by 960
Abstract
Monolayer MoS2 has been widely researched in high performance phototransistors for its high carrier mobility and strong photoelectric conversion ability. However, some defects in MoS2, such as vacancies or impurities, provide more possibilities for carrier recombination; thus, restricting the formation [...] Read more.
Monolayer MoS2 has been widely researched in high performance phototransistors for its high carrier mobility and strong photoelectric conversion ability. However, some defects in MoS2, such as vacancies or impurities, provide more possibilities for carrier recombination; thus, restricting the formation of photocurrents and resulting in decreased responsiveness. Herein, all-inorganic CsPbBr3 perovskite quantum dots (QDs) with high photoelectric conversion efficiency and light absorption coefficients are introduced to enhance the responsivity of a 2D MoS2 phototransistor. The CsPbBr3/MoS2 heterostructure has a type II energy band, and it has a high responsivity of ~1790 A/W and enhanced detectivity of ~2.4 × 1011 Jones. Additionally, the heterostructure CsPbBr3/MoS2 enables the synergistic effect mechanism of photoconduction and photogating effects with the gate tunable photo-response, which could also contribute to an improved performance of the MoS2 phototransistor. This work provides new strategies for performance phototransistors and is expected to play an important role in many fields, such as optical communication, environmental monitoring and biomedical imaging, and promote the development and application of related technologies. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

24 pages, 3518 KiB  
Article
A Numerical Simulation Study of the Impact of Kesterites Hole Transport Materials in Quantum Dot-Sensitized Solar Cells Using SCAPS-1D
by Sindisiwe Jakalase, Azile Nqombolo, Edson L. Meyer, Mojeed A. Agoro and Nicholas Rono
Nanomaterials 2024, 14(24), 2016; https://doi.org/10.3390/nano14242016 - 15 Dec 2024
Cited by 3 | Viewed by 1617
Abstract
Energy generation and storage are critical challenges for developing economies due to rising populations and limited access to clean energy resources. Fossil fuels, commonly used for energy production, are costly and contribute to environmental pollution through greenhouse gas emissions. Quantum dot-sensitized solar cells [...] Read more.
Energy generation and storage are critical challenges for developing economies due to rising populations and limited access to clean energy resources. Fossil fuels, commonly used for energy production, are costly and contribute to environmental pollution through greenhouse gas emissions. Quantum dot-sensitized solar cells (QDSSCs) offer a promising alternative due to their stability, low cost, and high-power conversion efficiency (PCE) compared to other third-generation solar cells. Kesterite materials, known for their excellent optoelectronic properties and chemical stability, have gained attention for their potential as hole transport layer (HTL) materials in solar cells. In this study, the SCAPS-1D numerical simulator was used to analyze a solar cell with the configuration FTO/TiO2/MoS2/HTL/Ag. The electron transport layer (ETL) used was titanium dioxide (TiO2), while Cu2FeSnS4 (CFTS), Cu2ZnSnS4 (CZTSe), Cu2NiSnS4 (CNTS), and Cu2ZnSnSe4 (CZTSSe) kesterite materials were evaluated as HTLs. MoS2 quantum dot served as the absorber, with FTO as the anode and silver as the back metal contact. The CFTS material outperformed the others, yielding a PCE of 25.86%, a fill factor (FF) of 38.79%, a short-circuit current density (JSC) of 34.52 mA cm−2, and an open-circuit voltage (VOC) of 1.93 V. This study contributes to the advancement of high-performance QDSSCs. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Figure 1

9 pages, 3854 KiB  
Proceeding Paper
Evaluation of Fabrication Process for Molybdenum Disulfide Quantum Dots in Organic Solvents Using Ultrasonic and Thermal Exfoliation
by Hon-Pan Yiu, Cheng-Jun Wu, Chuan Li and Cho-Yin Lee
Eng. Proc. 2024, 74(1), 69; https://doi.org/10.3390/engproc2024074069 - 29 Sep 2024
Viewed by 869
Abstract
When the size of the molybdenum disulfide (MoS2) is reduced to a few nanometers, a distinctive photoluminescence is observed due to the strong effect of quantum confinement. In this study, we fabricated MoS2 quantum dots (QDs) using a simple and [...] Read more.
When the size of the molybdenum disulfide (MoS2) is reduced to a few nanometers, a distinctive photoluminescence is observed due to the strong effect of quantum confinement. In this study, we fabricated MoS2 quantum dots (QDs) using a simple and green process. We dissolved the powder of MoS2 in various solvents, including N-Methyl-2-pyrrolidone (NMP), ethanol (EtOH), and deionized water (DIW), and dispersed it by sonication or solvent-thermal exfoliation. The synthesized MoS2 QDs were characterized for their optical properties. Transmission electron microscopy (TEM) was used to analyze the particle size and morphology; UV-visible spectrometer and photoluminescence tests were employed to measure optical absorption, bandgaps, and optical emission. The photothermal test was designed for the evaluation of the optothermal conversion. In vitro cultures of 3T3 fibroblast cells were evaluated for the biocompatibility of the MoS2 QDs. Results from different experiments were cross-examined and analyzed to understand the relation among different syntheses, microstructures, and optical properties of MoS2 QDs. A yield of 15% MoS2 QDs was obtained when synthesized in ethanol by thermal exfoliation. They also showed satisfactory optothermal effects. Full article
Show Figures

Figure 1

8 pages, 2626 KiB  
Article
Improvement of the Stability of Quantum-Dot Light Emitting Diodes Using Inorganic HfOx Hole Transport Layer
by Jung Min Yun, Min Ho Park, Yu Bin Kim, Min Jung Choi, Seunghwan Kim, Yeonjin Yi, Soohyung Park and Seong Jun Kang
Materials 2024, 17(19), 4739; https://doi.org/10.3390/ma17194739 - 27 Sep 2024
Cited by 1 | Viewed by 1661
Abstract
One of the major challenges in QLED research is improving the stability of the devices. In this study, we fabricated all inorganic quantum-dot light emitting diodes (QLEDs) using hafnium oxide (HfOx) as the hole transport layer (HTL), a material commonly used [...] Read more.
One of the major challenges in QLED research is improving the stability of the devices. In this study, we fabricated all inorganic quantum-dot light emitting diodes (QLEDs) using hafnium oxide (HfOx) as the hole transport layer (HTL), a material commonly used for insulator. Oxygen vacancies in HfOx create defect states below the Fermi level, providing a pathway for hole injection. The concentration of these oxygen vacancies can be controlled by the annealing temperature. We optimized the all-inorganic QLEDs with HfOx as the HTL by changing the annealing temperature. The optimized QLEDs with HfOx as the HTL showed a maximum luminance and current efficiency of 66,258 cd/m2 and 9.7 cd/A, respectively. The fabricated all-inorganic QLEDs exhibited remarkable stability, particularly when compared to devices using organic materials for the HTL. Under extended storage in ambient conditions, the all-inorganic device demonstrated a significantly enhanced operating lifetime (T50) of 5.5 h, which is 11 times longer than that of QLEDs using an organic HTL. These results indicate that the all-inorganic QLEDs structure, with ITO/MoO3/HfOx/QDs/ZnMgO/Al, exhibits superior stability compared to organic-inorganic hybrid QLEDs. Full article
(This article belongs to the Special Issue Feature Papers in Materials Physics (2nd Edition))
Show Figures

Graphical abstract

11 pages, 4818 KiB  
Article
Synthesis and Electrocatalytic Performance Study of Sulfur Quantum Dots Modified MoS2
by Guiyu Wei, Tao Tang, Ruizheng Xu, Zhemin Xie, Sijie Diao, Jianfeng Wen, Li Jiang, Guanghui Hu and Ming Li
Molecules 2024, 29(11), 2551; https://doi.org/10.3390/molecules29112551 - 29 May 2024
Cited by 2 | Viewed by 1357
Abstract
The electrolysis of water for hydrogen production is currently receiving significant attention due to its advantageous features such as non-toxicity, safety, and environmental friendliness. This is especially crucial considering the urgent need for clean energy. However, the current method of electrolyzing water to [...] Read more.
The electrolysis of water for hydrogen production is currently receiving significant attention due to its advantageous features such as non-toxicity, safety, and environmental friendliness. This is especially crucial considering the urgent need for clean energy. However, the current method of electrolyzing water to produce hydrogen largely relies on expensive metal catalysts, significantly increasing the costs associated with its development. Molybdenum disulfide (MoS2) is considered the most promising alternative to platinum for electrocatalyzing the hydrogen evolution reaction (HER) due to its outstanding catalytic efficiency and robust stability. However, the practical application of this material is hindered by its low conductivity and limited exposure of active sites. MoS2/SQDs composite materials were synthesized using a hydrothermal technique to deposit SQDs onto MoS2. These composite materials were subsequently employed as catalysts for the HER. Research findings indicate that incorporating SQDs can enhance electron transfer rates and increase the active surface area of MoS2, which is crucial for achieving outstanding catalytic performance in the HER. The MoS2/SQDs electrocatalyst exhibits outstanding performance in the HER when tested in a 0.5 M H2SO4 solution. It achieves a remarkably low overpotential of 204 mV and a Tafel slope of 65.82 mV dec−1 at a current density of 10 mA cm−2. Moreover, during continuous operation for 24 h, the initial current density experiences only a 17% reduction, indicating high stability. This study aims to develop an efficient and cost-effective electrocatalyst for water electrolysis. Additionally, it proposes a novel design strategy that uses SQDs as co-catalysts to enhance charge transfer in nanocomposites. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

10 pages, 2813 KiB  
Communication
Fabrication of WO3 Quantum Dots with Different Emitting Colors and Their Utilization in Luminescent Woods
by Kwang Hyun Park, Nam Chul Kim and Sung Ho Song
Nanomaterials 2024, 14(11), 936; https://doi.org/10.3390/nano14110936 - 27 May 2024
Cited by 1 | Viewed by 1777
Abstract
With a rising interest in smart windows and optical displays, the utilization of metal oxides (MOs) has garnered significant attention owing to their high active sites, flexibility, and tunable electronic and optical properties. Despite these advantages, achieving precise tuning of optical properties in [...] Read more.
With a rising interest in smart windows and optical displays, the utilization of metal oxides (MOs) has garnered significant attention owing to their high active sites, flexibility, and tunable electronic and optical properties. Despite these advantages, achieving precise tuning of optical properties in MOs-based quantum dots and their mass production remains a challenge. In this study, we present an easily scalable approach to generate WO3 quantum dots with diverse sizes through sequential insertion/exfoliation processes in solvents with suitable surface tension. Additionally, we utilized the prepared WO3 quantum dots in the fabrication of luminescent transparent wood via an impregnation process. These quantum dots manifested three distinct emitting colors: red, green, and blue. Through characterizations of the structural and optical properties of the WO3 quantum dots, we verified that quantum dots with sizes around 30 nm, 50 nm, and 70 nm showcase a monoclinic crystal structure with oxygen-related defect sites. Notably, as the size of the WO3 quantum dots decreased, the maximum emitting peak underwent a blue shift, with peaks observed at 407 nm (blue), 493 nm (green), and 676 nm (red) under excitation by a He-Cd laser (310 nm), respectively. Transparent woods infused with various WO3 quantum dots exhibited luminescence in blue/white emitting colors. These results suggest substantial potential in diverse applications, such as building materials and optoelectronics. Full article
Show Figures

Figure 1

34 pages, 15412 KiB  
Review
Progress in Electronic, Energy, Biomedical and Environmental Applications of Boron Nitride and MoS2 Nanostructures
by Join Uddin, Raksha Dubey, Vinaayak Sivam Balasubramaniam, Jeff Kabel, Vedika Khare, Zohreh Salimi, Sambhawana Sharma, Dongyan Zhang and Yoke Khin Yap
Micromachines 2024, 15(3), 349; https://doi.org/10.3390/mi15030349 - 29 Feb 2024
Cited by 12 | Viewed by 4062
Abstract
In this review, we examine recent progress using boron nitride (BN) and molybdenum disulfide (MoS2) nanostructures for electronic, energy, biomedical, and environmental applications. The scope of coverage includes zero-, one-, and two-dimensional nanostructures such as BN nanosheets, BN nanotubes, BN quantum [...] Read more.
In this review, we examine recent progress using boron nitride (BN) and molybdenum disulfide (MoS2) nanostructures for electronic, energy, biomedical, and environmental applications. The scope of coverage includes zero-, one-, and two-dimensional nanostructures such as BN nanosheets, BN nanotubes, BN quantum dots, MoS2 nanosheets, and MoS2 quantum dots. These materials have sizable bandgaps, differentiating them from other metallic nanostructures or small-bandgap materials. We observed two interesting trends: (1) an increase in applications that use heterogeneous materials by combining BN and MoS2 nanostructures with other nanomaterials, and (2) strong research interest in environmental applications. Last, we encourage researchers to study how to remove nanomaterials from air, soil, and water contaminated with nanomaterials. As nanotechnology proceeds into various applications, environmental contamination is inevitable and must be addressed. Otherwise, nanomaterials will go into our food chain much like microplastics. Full article
Show Figures

Figure 1

13 pages, 3460 KiB  
Article
Quantum Dots Mediated Heterojunction Coupling MoSe2 Photoanode for Photoelectrochemical Water Splitting
by Lin Zhang, Jiana Sun, Mengmeng Zhao, Yuxuan Wei, Taigang Luo, Zhengping Zhao and Yibo Yan
Molecules 2024, 29(5), 1070; https://doi.org/10.3390/molecules29051070 - 29 Feb 2024
Cited by 3 | Viewed by 1863
Abstract
Graphene quantum dots (GQDs) possess the photosensitive absorption for photoelectrochemical hydrogen evolution owing to special band structures, whereas they usually confront with photo-corrosion or undesired charge recombination during photoelectrochemical reactions. Hence, we establish the heterojunction between GQDs and MoSe2 sheets via a [...] Read more.
Graphene quantum dots (GQDs) possess the photosensitive absorption for photoelectrochemical hydrogen evolution owing to special band structures, whereas they usually confront with photo-corrosion or undesired charge recombination during photoelectrochemical reactions. Hence, we establish the heterojunction between GQDs and MoSe2 sheets via a hydrothermal process for improved stability and performance. Photoanodic water splitting with hydrogen evolution boosted by the heteroatom doped N,S-GQDs/MoSe2 heterojunction has been attained due to the abundant active sites, promoted charge separation and transfer kinetics with reduced energy barriers. Diphasic 1T and 2H MoSe2 sheet-hybridized quantum dots contribute to the Schottky heterojunction, which can play a key role in expedited carrier transport to inhibit accumulative photo-corrosion and increase photocurrent. Heteroatom dopants lead to favored energy band matching, bandgap narrowing, stronger light absorption and high photocurrent density. The external quantum efficiency of the doped heterojunction has been elevated twofold over that of the non-doped pristine heterojunction. Modification of the graphene quantum dots and MoSe2 heterojunction demonstrate a viable and adaptable platform toward photoelectrochemical hydrogen evolution processes. Full article
(This article belongs to the Special Issue New Sights in Nanomaterials for Photoelectrochemistry)
Show Figures

Graphical abstract

13 pages, 4443 KiB  
Communication
A Thin-Film Pinned-Photodiode Imager Pixel with Fully Monolithic Fabrication and beyond 1Me- Full Well Capacity
by Joo Hyoung Kim, Francois Berghmans, Abu Bakar Siddik, Irem Sutcu, Isabel Pintor Monroy, Jehyeok Yu, Tristan Weydts, Epimitheas Georgitzikis, Jubin Kang, Yannick Baines, Yannick Hermans, Naresh Chandrasekaran, Florian De Roose, Griet Uytterhoeven, Renaud Puybaret, Yunlong Li, Itai Lieberman, Gauri Karve, David Cheyns, Jan Genoe, Paweł E. Malinowski, Paul Heremans, Kris Myny, Nikolas Papadopoulos and Jiwon Leeadd Show full author list remove Hide full author list
Sensors 2023, 23(21), 8803; https://doi.org/10.3390/s23218803 - 29 Oct 2023
Cited by 2 | Viewed by 3858
Abstract
Thin-film photodiodes (TFPD) monolithically integrated on the Si Read-Out Integrated Circuitry (ROIC) are promising imaging platforms when beyond-silicon optoelectronic properties are required. Although TFPD device performance has improved significantly, the pixel development has been limited in terms of noise characteristics compared to the [...] Read more.
Thin-film photodiodes (TFPD) monolithically integrated on the Si Read-Out Integrated Circuitry (ROIC) are promising imaging platforms when beyond-silicon optoelectronic properties are required. Although TFPD device performance has improved significantly, the pixel development has been limited in terms of noise characteristics compared to the Si-based image sensors. Here, a thin-film-based pinned photodiode (TF-PPD) structure is presented, showing reduced kTC noise and dark current, accompanied with a high conversion gain (CG). Indium-gallium-zinc oxide (IGZO) thin-film transistors and quantum dot photodiodes are integrated sequentially on the Si ROIC in a fully monolithic scheme with the introduction of photogate (PG) to achieve PPD operation. This PG brings not only a low noise performance, but also a high full well capacity (FWC) coming from the large capacitance of its metal-oxide-semiconductor (MOS). Hence, the FWC of the pixel is boosted up to 1.37 Me- with a 5 μm pixel pitch, which is 8.3 times larger than the FWC that the TFPD junction capacitor can store. This large FWC, along with the inherent low noise characteristics of the TF-PPD, leads to the three-digit dynamic range (DR) of 100.2 dB. Unlike a Si-based PG pixel, dark current contribution from the depleted semiconductor interfaces is limited, thanks to the wide energy band gap of the IGZO channel material used in this work. We expect that this novel 4 T pixel architecture can accelerate the deployment of monolithic TFPD imaging technology, as it has worked for CMOS Image sensors (CIS). Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

5 pages, 1848 KiB  
Proceeding Paper
Ultrasensitive Raman Spectroscopy-Based Virus Detection Using Glycan-Coated Plasmonic Substrates
by Ojodomo J. Achadu and Enoch Y. Park
Eng. Proc. 2023, 48(1), 2; https://doi.org/10.3390/CSAC2023-14922 - 7 Oct 2023
Viewed by 1028
Abstract
Hepatitis viral infections are the most common cause of hepatitis liver disease, which eventually leads to cancer and fibrosis if not detected early. Therefore, early detection would allow for preventive and therapeutic actions. Here, a surface-enhanced Raman spectroscopy (SERS)-based biosensor was developed using [...] Read more.
Hepatitis viral infections are the most common cause of hepatitis liver disease, which eventually leads to cancer and fibrosis if not detected early. Therefore, early detection would allow for preventive and therapeutic actions. Here, a surface-enhanced Raman spectroscopy (SERS)-based biosensor was developed using plasmonic molybdenum trioxide quantum dots (MoO3-QDs) as the SERS substrates. The nanostructured substrate of MoO3-QDs was functionalized with a proteoglycan (syndecan-1) as a novel bioreceptor for the target hepatitis E virus (HEV). The innovative biodetection system achieved a detection limit of 1.05 fg/mL for the tested HEV target (ORF2), indicating superb clinically relevant sensitivity and performance. The designed biosensing system incorporating a glycan motif as a bioreceptor instead of the conventional antibodies or aptamers presents new insights for the ultrasensitive detection of HEV and other infectious viruses. Full article
Show Figures

Figure 1

Back to TopTop