Synthesis and Electrocatalytic Performance Study of Sulfur Quantum Dots Modified MoS2
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure Characterization
2.2. Electrochemical Performance Analysis
3. Materials and Methods
3.1. Materials
3.2. Preparation of SQDs
3.3. Preparation of MoS2
3.4. Preparation of MoS2/SQDs
3.5. Characterization
3.6. Electrochemical Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, H.L.; He, Q.; Zhang, Y.K.; Song, L. Structural self-reconstruction of catalysts in electrocatalysis. Acc. Chem. Res. 2018, 51, 2968–2977. [Google Scholar] [CrossRef]
- Xie, Z.M.; Diao, S.J.; Xu, R.Z.; Wei, G.Y.; Wen, J.F.; Hu, G.H.; Tang, T.; Jiang, L.; Li, X.Y.; Li, M.; et al. Construction of carboxylated-GO and MOFs composites for efficient removal of heavy metal ions. Appl. Surf. Sci. 2023, 636, 157827. [Google Scholar] [CrossRef]
- Seh, Z.W.; Kibsgaard, J.; Dickens, C.F.; Chorkendorff, I.B.; Norskov, J.K.; Jaramillo, T.F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, 6321. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.R.; Weng, S.T.; Li, X.Y.; Zhang, Q.H.; Gu, L. Atomic-scale structural evolution of electrode materials in Li-ion batteries: A review. Rare Met. 2020, 39, 205–217. [Google Scholar] [CrossRef]
- Xu, R.Z.; Wei, G.Y.; Xie, Z.M.; Diao, S.J.; Wen, J.F.; Tang, T.; Jiang, L.; Li, M.; Hu, G.H. V2C MXene-modified g-C3N4 for enhanced visible-light photocatalytic activity. J. Alloys Compd. 2024, 970, 172656. [Google Scholar] [CrossRef]
- Abdelghafar, F.; Xu, X.; Jiang, S.P.; Shao, Z. Designing single-atom catalysts toward improved alkaline hydrogen evolution reaction. Mater. Rep. Energy 2022, 2, 100144. [Google Scholar] [CrossRef]
- Sun, H.A.; Xu, X.M.; Kim, H.; Shao, Z.P.; Jung, W.C. Advanced electrocatalysts with unusual active sites for electrochemical water splitting. InfoMat 2024, 6, e12494. [Google Scholar] [CrossRef]
- Wang, Y.; Kong, B.; Zhao, D.Y.; Wang, H.T.; Selomulya, C. Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting. Nano Today 2017, 15, 26–55. [Google Scholar] [CrossRef]
- Shi, Y.M.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529–1541. [Google Scholar] [CrossRef]
- Zou, X.X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180. [Google Scholar] [CrossRef]
- Chia, X.Y.; Eng, A.Y.S.; Ambrosi, A.; Tan, S.M.; Pumera, M. Electrochemistry of nanostructured layered transition-metal dichalcogenides. Chem. Rev. 2015, 115, 11941–11966. [Google Scholar] [CrossRef] [PubMed]
- Geng, X.M.; Zhang, Y.L.; Han, Y.; Li, J.X.; Yang, L.; Benamara, M.; Chen, L.; Zhu, H.L. Two-dimensional water-coupled metallic MoS2 with nanochannels for ultrafast supercapacitors. Nano Lett. 2017, 17, 1825–1832. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.L.; Zhou, W.; Gao, R.; Yao, S.Y.; Zhang, X.; Xu, W.Q.; Zheng, S.J.; Jiang, Z.; Yu, Q.L.; Li, Y.W.; et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 2017, 544, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wang, W.Q.; Yang, Y.; Liu, X.G.; Xu, S.M. Recovery and regeneration of Al2O3 with a high specific surface area from spent hydrodesulfurization catalyst CoMo/Al2O3. Rare Met. 2019, 38, 1–13. [Google Scholar] [CrossRef]
- Sun, H.H.; Wang, J.G.; Zhang, Y.; Hua, W.; Li, Y.Y.; Liu, H.Y. Ultrafast lithium energy storage enabled by interfacial construction of interlayer-expanded MoS2/N-doped carbon nanowires. J. Mater. Chem. A 2018, 6, 13419–13427. [Google Scholar] [CrossRef]
- Er, D.Q.; Ye, H.; Frey, N.C.; Kumar, H.; Lou, J.; Shenoy, V.B. Prediction of enhanced catalytic activity for hydrogen evolution reaction in janus transition metal dichalcogenides. Nano Lett. 2018, 18, 3943–3949. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.M.; Pan, Y.L.; Ge, L.; Chen, Y.B.; Mao, X.; Guan, D.Q.; Li, M.R.; Zhong, Y.J.; Hu, Z.W.; Peterson, V.K.; et al. High-performance perovskite composite electrocatalysts enabled by controllable interface engineering. Small 2021, 17, 2101573. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.P.; Yu, Y.F.; Ma, Q.L.; Chen, B.; Zhang, H. 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 2016, 28, 1917–1933. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef]
- Splendiani, A.; Sun, L.; Zhang, Y.B.; Li, T.S.; Kim, J.; Chim, C.Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275. [Google Scholar] [CrossRef]
- Cao, Y. Roadmap and direction toward high-performance MoS2 hydrogen evolution catalysts. ACS Nano 2021, 15, 11014–11039. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.G.; Wang, H.L.; Xie, L.M.; Liang, Y.Y.; Hong, G.S.; Dai, H.J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Tsai, C.; Koh, A.L.; Cai, L.L.; Contryman, A.W.; Fragapane, A.H.; Zhao, J.H.; Han, H.S.; Manoharan, H.C.; Abild-Pedersen, F.; et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48–53. [Google Scholar] [CrossRef]
- Deng, J.; Li, H.B.; Xiao, J.P.; Tu, Y.C.; Deng, D.H.; Yang, H.X.; Tian, H.F.; Li, J.Q.; Ren, P.J.; Bao, X.H. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 2015, 8, 1594–1601. [Google Scholar] [CrossRef]
- Zhou, Q.W.; Shen, Z.H.; Zhu, C.; Li, J.C.; Ding, Z.Y.; Wang, P.; Pan, F.; Zhang, Z.Y.; Ma, H.X.; Wang, S.Y.; et al. Nitrogen-doped CoP electrocatalysts for coupled hydrogen evolution and sulfur generation with low energy consumption. Adv. Mater. 2018, 30, 1800140. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.Q.; Tao, X.; Qing, Y.; Xu, H.; Yang, F.; Luo, S.; Tian, C.H.; Liu, M.; Lu, X.H. Cr-doped FeNi-P nanoparticles encapsulated into N-doped carbon nanotube as a robust bifunctional catalyst for efficient overall water splitting. Adv. Mater. 2019, 31, 1900178. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.W.; Qin, Z.J.; McElhenny, B.; Zhang, F.H.; Chen, S.; Bao, J.M.; Wang, Z.M.M.; Song, H.Z.; Ren, Z.F. The effect of carbon quantum dots on the electrocatalytic hydrogen evolution reaction of manganese-nickel phosphide nanosheets. J. Mater. Chem. A 2019, 7, 21488–21495. [Google Scholar] [CrossRef]
- Wang, C.W.; Wang, H.F.; Lin, Z.P.; Li, W.; Lin, B.; Qiu, W.Z.; Quan, Y.; Liu, Z.H.; Chen, S.G. In situ synthesis of edge-enriched MoS2 hierarchical nanorods with 1T/2H hybrid phases for highly efficient electrocatalytic hydrogen evolution. CrystEngComm 2019, 21, 1984–1991. [Google Scholar] [CrossRef]
- Geng, X.M.; Sun, W.W.; Wu, W.; Chen, B.; Al-Hilo, A.; Benamara, M.; Zhu, H.L.; Watanabe, F.; Cui, J.B.; Chen, T.P. Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction. Nat. Commun. 2016, 7, 10672. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.X.; Rath, A.; Wang, H.Y.; Yu, S.H.; Pennycook, S.J.; Chua, D.H.C. Study of unique and highly crystalline MoS2/MoO2 nanostructures for electro chemical applications. Mater. Res. Lett. 2019, 7, 275–281. [Google Scholar] [CrossRef]
- You, J.; Jia, Z.J.; Wang, Y.; Wang, D.; Song, J.; Tian, L.L.; Qi, T. Carbon dots modified molybdenum disulfide as a high-efficiency hydrogen evolution electrocatalyst. Int. J. Hydrogen Energy 2022, 47, 34898–34908. [Google Scholar] [CrossRef]
- Wu, J.Z.; Du, L.X.; Shao, Y.B.; Wu, X.H. Silicon quantum dots-assistant synthesis of mesoporous MoS2 3D frameworks (SiQDs-MoS2) with 1T and 2H phases for hydrogen evolution reaction. Mater. Lett. 2019, 236, 124–127. [Google Scholar] [CrossRef]
- Ali, T.; Wang, X.F.; Tang, K.; Li, Q.; Sajjad, S.; Khan, S.; Farooqi, S.A.; Yan, C.L. SnS2 quantum dots growth on MoS2: Atomic-level heterostructure for electrocatalytic hydrogen evolution. Electrochim. Acta 2019, 300, 45–52. [Google Scholar] [CrossRef]
- Venkatesh, P.S.; Kannan, N.; Babu, M.G.; Paulraj, G.; Jeganathan, K. Transition metal doped MoS2 nanosheets for electrocatalytic hydrogen evolution reaction. Int. J. Hydrogen Energy 2022, 47, 37256–37263. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Tekalgne, M.; Nguyen, T.P.; Wang, W.M.; Hong, S.H.; Cho, J.H.; Le, Q.; Jang, H.W.; Ahn, S.H.; Kim, S.Y. Control of the morphologies of molybdenum disulfide for hydrogen evolution reaction. Int. J. Energy Res. 2022, 46, 11479–11491. [Google Scholar] [CrossRef]
- Sumesh, C.K. Zinc oxide functionalized molybdenum disulfide heterostructures as efficient electrocatalysts for hydrogen evolution reaction. Int. J. Hydrogen Energy 2020, 45, 619–628. [Google Scholar] [CrossRef]
- Shi, Y.; Zhou, Y.; Yang, D.R.; Xu, W.X.; Wang, C.; Wang, F.B.; Xu, J.J.; Xia, X.H.; Chen, H.Y. Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction. J. Am. Chem. Soc. 2017, 139, 15479–15485. [Google Scholar] [CrossRef]
- Zhu, M.; Ma, Q.; Ding, S.Y.; Zhao, Y.Z.; Song, W.Q.; Ren, H.P.; Song, X.Z.; Miao, Z.C. A molybdenum disulfide and 2D metal-organic framework nanocomposite for improved electrocatalytic hydrogen evolution reaction. Mater. Lett. 2019, 239, 155–158. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, X.L.; Ding, T.; Wang, C.D.; Yang, Q. 3D architecture constructed via the confined growth of MoS2 nanosheets in nanoporous carbon derived from metal-organic frameworks for efficient hydrogen production. Nanoscale 2015, 7, 18004–18009. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Shan, C.F.; Wei, G.Y.; Wen, J.F.; Jiang, L.; Hu, G.H.; Fang, Z.J.; Tang, T.; Li, M. A novel non-metallic photocatalyst: Phosphorus-doped sulfur quantum dots. Molecules 2023, 28, 3637. [Google Scholar] [CrossRef]
Catalyst | η10 (mV) | Tafel (mV dec−1) | Electrolyte | Ref. |
---|---|---|---|---|
SiQDs-MoS2 | 200 | 60 | 0.5 M H2SO4 | [32] |
SnS2-MoS2 | 240 | 65 | 0.5 M H2SO4 | [33] |
Ni-MoS2 | 302 | 66.27 | 0.5 M H2SO4 | [34] |
MoS2/MoO2 | 235 | 64 | 0.5 M H2SO4 | [35] |
MoS2·ZnO | 239 | 66 | 0.5 M H2SO4 | [36] |
Zn–MoS2 | 300 | 51 | 0.5 M H2SO4 | [37] |
MoS2/Co-MOF | 262 | 51 | 0.5 M H2SO4 | [38] |
MoS2/3D-NPC | 210 | 51 | 0.5 M H2SO4 | [39] |
MoS2/SQDs | 204 | 65.82 | 0.5 M H2SO4 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, G.; Tang, T.; Xu, R.; Xie, Z.; Diao, S.; Wen, J.; Jiang, L.; Hu, G.; Li, M. Synthesis and Electrocatalytic Performance Study of Sulfur Quantum Dots Modified MoS2. Molecules 2024, 29, 2551. https://doi.org/10.3390/molecules29112551
Wei G, Tang T, Xu R, Xie Z, Diao S, Wen J, Jiang L, Hu G, Li M. Synthesis and Electrocatalytic Performance Study of Sulfur Quantum Dots Modified MoS2. Molecules. 2024; 29(11):2551. https://doi.org/10.3390/molecules29112551
Chicago/Turabian StyleWei, Guiyu, Tao Tang, Ruizheng Xu, Zhemin Xie, Sijie Diao, Jianfeng Wen, Li Jiang, Guanghui Hu, and Ming Li. 2024. "Synthesis and Electrocatalytic Performance Study of Sulfur Quantum Dots Modified MoS2" Molecules 29, no. 11: 2551. https://doi.org/10.3390/molecules29112551
APA StyleWei, G., Tang, T., Xu, R., Xie, Z., Diao, S., Wen, J., Jiang, L., Hu, G., & Li, M. (2024). Synthesis and Electrocatalytic Performance Study of Sulfur Quantum Dots Modified MoS2. Molecules, 29(11), 2551. https://doi.org/10.3390/molecules29112551