Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,539)

Search Parameters:
Keywords = Mo base

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 22611 KB  
Article
The Strain Evolution and Fracture of GH3535 Alloy Welded Joint Characterized by DIC at Different Temperatures
by Qingchun Zhu, Yucheng Zhu, Jie Wang, Li Jiang and Zhijun Li
Crystals 2025, 15(11), 916; https://doi.org/10.3390/cryst15110916 (registering DOI) - 24 Oct 2025
Abstract
Welding is widely employed in manufacturing processes, with the mechanical properties of welded joints being a primary focus of welding technology research. However, distinct regions of welded joints—including the base metal (BM), heat-affected zone (HAZ), and deposited metal (DM)—exhibit divergent deformation behaviors, which [...] Read more.
Welding is widely employed in manufacturing processes, with the mechanical properties of welded joints being a primary focus of welding technology research. However, distinct regions of welded joints—including the base metal (BM), heat-affected zone (HAZ), and deposited metal (DM)—exhibit divergent deformation behaviors, which collectively influence the fracture behavior of the joints. In this study, the specific locations of strain concentration and fracture in GH3535 alloy welded joints (fabricated using ERNiMo-2 welding wire) were investigated during tensile tests at room temperature (RT) and 700 °C. Characterizations were performed via digital image correlation (DIC), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). Results revealed that during RT tension, strain was concentrated in the deposited metal adjacent to the fusion line (FL) which is 200% higher than BM, where cracks also initiated. At 700 °C, strain was mainly concentrated in the deposited metal, where the maximum strain concentration was approximately three times that in the base metal, and fracture also occurred in this region. It has been confirmed through in-suit observations that during high-temperature deformation, the deposited metal of the GH3535 alloy is more prone to strain concentration and simultaneously exhibits lower plasticity. This study advances the understanding of the deformation behavior of GH3535 alloy welded joints through in-suit observation results, and indicates that strengthening the deposited metal (i.e., the region more prone to strain concentration) is a more effective approach to improve the mechanical properties of such welded joints. Full article
(This article belongs to the Special Issue Microstructure and Mechanical Properties of Alloys and Composites)
Show Figures

Figure 1

11 pages, 2907 KB  
Article
Electrical Characterization and Simulation of GaN-on-Si Pseudo-Vertical MOSFETs with Frequency-Dependent Gate C–V Investigation
by Valentin Ackermann, Mohammed El Amrani, Blend Mohamad, Riadh Ben Abbes, Matthew Charles, Sebastien Cavalaglio, Manuel Manrique, Julien Buckley and Bassem Salem
Micromachines 2025, 16(11), 1193; https://doi.org/10.3390/mi16111193 - 22 Oct 2025
Viewed by 22
Abstract
This work presents a comprehensive study of GaN-on-Si pseudo-vertical MOSFETs focusing on single-trench and multi-trench designs. Thanks to a gate-first process flow based on an Al2O3/TiN MOS stack, both fabricated devices exhibit promising transistor behavior, with steady normally OFF [...] Read more.
This work presents a comprehensive study of GaN-on-Si pseudo-vertical MOSFETs focusing on single-trench and multi-trench designs. Thanks to a gate-first process flow based on an Al2O3/TiN MOS stack, both fabricated devices exhibit promising transistor behavior, with steady normally OFF operation, very low gate leakage current, and good switching performance. Following the extraction of a low effective channel mobility, the frequency dependence of gate-to-source C–V characteristics is studied. In addition, using TCAD Sentaurus Synopsys simulations, the impact of positive fixed charge and donor-type defects at the p-GaN/dielectric interface is investigated, together with the frequency dependency. Finally, by comparing experimental and simulated results, a mechanism is proposed linking the observed threshold voltage shift to the presence of sharp trench-bottom micro-trenching. This mechanism may further explain the origin of the additional C–V hump observed at high frequencies, which could arise from charge trapping at the p-GaN/dielectric interface or from charge inversion in the p-GaN region. Full article
Show Figures

Figure 1

20 pages, 7704 KB  
Article
Seamless User-Generated Content Processing for Smart Media: Delivering QoE-Aware Live Media with YOLO-Based Bib Number Recognition
by Alberto del Rio, Álvaro Llorente, Sofia Ortiz-Arce, Maria Belesioti, George Pappas, Alejandro Muñiz, Luis M. Contreras and Dimitris Christopoulos
Electronics 2025, 14(20), 4115; https://doi.org/10.3390/electronics14204115 - 21 Oct 2025
Viewed by 171
Abstract
The increasing availability of User-Generated Content during large-scale events is transforming spectators into active co-creators of live narratives while simultaneously introducing challenges in managing heterogeneous sources, ensuring content quality, and orchestrating distributed infrastructures. A trial was conducted to evaluate automated orchestration, media enrichment, [...] Read more.
The increasing availability of User-Generated Content during large-scale events is transforming spectators into active co-creators of live narratives while simultaneously introducing challenges in managing heterogeneous sources, ensuring content quality, and orchestrating distributed infrastructures. A trial was conducted to evaluate automated orchestration, media enrichment, and real-time quality assessment in a live sporting scenario. A key innovation of this work is the use of a cloud-native architecture based on Kubernetes, enabling dynamic and scalable integration of smartphone streams and remote production tools into a unified workflow. The system also included advanced cognitive services, such as a Video Quality Probe for estimating perceived visual quality and an AI Engine based on YOLO models for detection and recognition of runners and bib numbers. Together, these components enable a fully automated workflow for live production, combining real-time analysis and quality monitoring, capabilities that previously required manual or offline processing. The results demonstrated consistently high Mean Opinion Score (MOS) values above 3 72.92% of the time, confirming acceptable perceived quality under real network conditions, while the AI Engine achieved strong performance with a Precision of 93.6% and Recall of 80.4%. Full article
Show Figures

Figure 1

21 pages, 3498 KB  
Article
Effect of Walking Speed on the Reliability of a Smartphone-Based Markerless Gait Analysis System
by Edilson Fernando de Borba, Jorge L. Storniolo, Serena Cerfoglio, Paolo Capodaglio, Veronica Cimolin, Leonardo A. Peyré-Tartaruga, Marcus P. Tartaruga and Paolo Cavallari
Sensors 2025, 25(20), 6474; https://doi.org/10.3390/s25206474 - 20 Oct 2025
Viewed by 238
Abstract
Quantitative gait analysis is essential for understanding motor function and guiding clinical decisions. While marker-based motion capture (MoCap) systems are accurate, they are costly and require specialized facilities. OpenCap, a markerless alternative, offers a more accessible approach; however, its reliability across different walking [...] Read more.
Quantitative gait analysis is essential for understanding motor function and guiding clinical decisions. While marker-based motion capture (MoCap) systems are accurate, they are costly and require specialized facilities. OpenCap, a markerless alternative, offers a more accessible approach; however, its reliability across different walking speeds remains uncertain. This study assessed the agreement between OpenCap and MoCap in measuring spatiotemporal parameters, joint kinematics, and center of mass (CoM) displacement during level walking at three speeds: slow, self-selected, and fast. Fifteen healthy adults performed multiple trials simultaneously, recorded by both systems. Agreement was analyzed using intraclass correlation coefficients (ICC), minimal detectable change (MDC), Bland–Altman analyses, root mean square error (RMSE), Statistical Parametric Mapping (SPM), and repeated-measures ANOVA. Results indicated excellent agreement for spatiotemporal variables (ICC ≥ 0.95) and high consistency for joint waveforms (RMSE < 2°) and CoM displacement (RMSE < 6 mm) across all speeds. However, the joint range of motion (ROM) showed lower reliability, especially at the hip and ankle, at higher speeds. ANOVA revealed no significant System × Speed interactions for most variables, though a significant effect of speed was noted, with OpenCap underestimating walking speed more at fast speeds. Overall, OpenCap is a valuable tool for gait assessment, very accurate for spatiotemporal data and CoM displacement. Still, caution should be taken when interpreting joint kinematics and speed at different walking speeds. Full article
(This article belongs to the Special Issue Sensors and Data Analysis for Biomechanics and Physical Activity)
Show Figures

Figure 1

18 pages, 3566 KB  
Article
Pseudocapacitive Behavior of Blade-Coated Mo1.33CTx i-MXene Electrodes in Aqueous Electrolytes
by Alexey Tsyganov, Olga Grapenko, Evgeniy Korotaev, Alexander Shindrov, Andrei Alferov, Alexander Gorokhovsky and Nikolay Gorshkov
Nanomaterials 2025, 15(20), 1593; https://doi.org/10.3390/nano15201593 - 19 Oct 2025
Viewed by 275
Abstract
Two-dimensional molybdenum carbide (Mo1.33CTx MXene) with ordered vacancies is one of the most promising materials for electrochemical energy storage. However, the high defectivity and tendency to aggregate of nanosheets hinders the large-scale fabrication of highly efficient Mo1.33CTx [...] Read more.
Two-dimensional molybdenum carbide (Mo1.33CTx MXene) with ordered vacancies is one of the most promising materials for electrochemical energy storage. However, the high defectivity and tendency to aggregate of nanosheets hinders the large-scale fabrication of highly efficient Mo1.33CTx -based electrodes. In this study, Mo1.33CTx/carbon nanotubes (CNTs) electrodes of varying thicknesses were fabricated using a scalable doctor blade technique. Their electrochemical performance was studied in H2SO4, H3PO4, LiCl and KCl electrolytes using cyclic voltammetry and galvanostatic charge–discharge methods. Electrodes with an active material mass loading of 1.6 mg/cm2 exhibited specific capacitances of 352, 287, 172, and 107 F/g in H2SO4, H3PO4, LiCl, and KCl electrolytes, respectively, at a scan rate of 2 mV/s. Increasing the mass loading of the electrode material to 3.5 mg/cm2 resulted in a specific capacitance of 349, 260, 162 and 98 F/g in the same electrolytes. The incorporation of CNTs enabled rapid electrolyte ion transport throughout the electrode bulk, maintaining high capacitance values even at high scan rates. These results open new avenues for the development of high-performance electrode materials for supercapacitors. Full article
(This article belongs to the Special Issue 2D Materials for Energy Conversion and Storage)
Show Figures

Figure 1

21 pages, 3808 KB  
Article
Novel Approach to the Surface Degradation Assessment of 42CrMo4 Steel in Marine and Cavitation Erosion Environments
by Stanica Nedović, Ana Alil, Sanja Martinović, Stefan Dikić, Dragomir Glišić and Tatjana Volkov-Husović
Metals 2025, 15(10), 1154; https://doi.org/10.3390/met15101154 - 17 Oct 2025
Viewed by 345
Abstract
This study focuses on the susceptibility and surface degradation of low-alloy carbon steel 42CrMo4 to corrosion and cavitation erosion, as this steel is widely used in marine environments with aggressive chemical species and harsh conditions. Due to its high strength and fatigue resistance, [...] Read more.
This study focuses on the susceptibility and surface degradation of low-alloy carbon steel 42CrMo4 to corrosion and cavitation erosion, as this steel is widely used in marine environments with aggressive chemical species and harsh conditions. Due to its high strength and fatigue resistance, 42CrMo4 steel is often employed in offshore mechanical components such as shafts and fasteners as well as crane parts in ports and harbors. Various experimental methods, including corrosion and cavitation tests, were used to assess the steel’s surface integrity under extreme conditions. Surface changes were monitored using modern analytical tools for precise assessments, including image and morphological analyses, to quantify degradation levels and specific parameters of defects induced by corrosion and cavitation. Non-destructive techniques such as optical microscopy (OM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and image analysis software were employed for the quantitative assessment of morphological parameters and elemental analysis. EDS analysis revealed changes in elemental composition, indicating corrosion products that caused significant mass loss and defect formation, with degradation increasing over time. The average corrosion rate of 42CrMo4 steel in a 3.5% NaCl solution reached a peak value of 0.846 mm/year after 120 days of exposure. Cavitation erosion behavior was measured based on mass loss, indicating the occurrence of different cavitation periods, with the steady-state period achieved after 60 min. The number of formed pits increased until 120 min, after which it decreased slightly. This indicates that a time frame of 120 min was identified as significant for changes in the mechanism of pit formation. Specifically, up to 120 min, pit formation was the dominant mechanism of cavitation erosion, while after that, as the number of pits slightly declined, the growth and merging of formed pits became the dominant mechanism. The cavitation erosion tests showed mass loss and mechanical damage, characterized by the formation of pits and cavities. The findings indicate that the levels of surface degradation were higher for corrosion than for cavitation. The presented approach also provides an assessment of the degradation mechanisms of 42CrMo4 steel exposed to corrosive and cavitation conditions. Full article
Show Figures

Figure 1

14 pages, 3457 KB  
Article
Improving the High-Pressure Sensing Characteristics of Y2MoO6:Eu3+ Using a Machine Learning Approach
by Marko G. Nikolic, Dragutin Sevic and Maja S. Rabasovic
Photonics 2025, 12(10), 1024; https://doi.org/10.3390/photonics12101024 - 16 Oct 2025
Viewed by 190
Abstract
In this study, we explore the potential of applying machine learning (ML) to enhance high-pressure luminescence sensing. We investigate the luminescence behavior of Y2MoO6:Eu3+, synthesized via a self-initiated, self-sustained reaction. Emission spectra were collected under varying pressures [...] Read more.
In this study, we explore the potential of applying machine learning (ML) to enhance high-pressure luminescence sensing. We investigate the luminescence behavior of Y2MoO6:Eu3+, synthesized via a self-initiated, self-sustained reaction. Emission spectra were collected under varying pressures using a 405 nm laser diode and an AVANTES AvaSpec 2048TEC USB2 spectrometer. An analysis of the pressure-dependent curve, based on the intensities of two key peaks, indicates a possible crystal phase transition or another underlying physical phenomenon. Moreover, the non-unique relationship between pressure and peak intensity limits its effectiveness for precise sensing. To overcome this challenge, we employ an ML-based approach, combining Uniform Manifold Approximation and Projection (UMAP) for data visualization with a deep neural network to estimate pressure directly from the full luminescence spectrum. This strategy significantly extends the usable pressure range of Y2MoO6:Eu3+ up to 12 GPa, representing a marked improvement over conventional methods. Full article
Show Figures

Figure 1

18 pages, 4208 KB  
Article
Investigation of Single-Pass Laser Remelted Joint of Mo-5Re Alloy: Microstructure, Residual Stress and Angular Distortion
by Yifeng Wang, Danmin Peng, Xi Qiu, Mingwei Su, Shuwei Hu, Wenjie Li and Dean Deng
Metals 2025, 15(10), 1145; https://doi.org/10.3390/met15101145 - 15 Oct 2025
Viewed by 179
Abstract
Molybdenum-rhenium (Mo-Re) alloys, especially those with low Re content, have great potential in fabricating nuclear components. However, the extremely high melting point and high brittleness of Mo-Re alloys make them difficult to weld. In this study, laser welding was used to prepare single-pass [...] Read more.
Molybdenum-rhenium (Mo-Re) alloys, especially those with low Re content, have great potential in fabricating nuclear components. However, the extremely high melting point and high brittleness of Mo-Re alloys make them difficult to weld. In this study, laser welding was used to prepare single-pass remelted joint of Mo-5Re alloy with welding parameters of laser power 2800 W, welding speed 2 m·min−1 and argon gas flow rate 20 L·min−1. The microstructure of the remelted joint was investigated by the optical microscopy and the scanning electron microscopy. The microhardness distribution of the joint was analyzed. In addition, the temperature field, residual stress, and angular distortion of the joint were investigated by both numerical and experimental methods. The results show that columnar grains grew from the fusion boundary toward the center of the weld pool, and equiaxed grains formed in the central region of the fusion zone (FZ). In the heat-affected zone (HAZ), the grains transformed from initial elongated into equiaxed grains. The electron backscatter diffraction (EBSD) results revealed that high-angle grain boundaries (HAGBs) dominated in FZ. Oxide/carbide particles at grain boundaries and inside the grains can be inferred from contrast results. The average microhardness of FZ was 170 ± 5 (standard deviation) HV, which was approximately 80 HV lower than that of the base metal (250 ± 2 HV). Softening phenomenon was also observed in HAZ. The calculated weld pool shape showed high consistency with the experimental observation. The peak temperature (296 °C) of the simulated thermal cycling curve was ~8% higher than the measured value (275 °C). The residual stress calculation results indicated that FZ and its vicinity exhibited high levels of longitudinal tensile residual stresses. The simulated peak longitudinal residual stress (509 MPa) was ~30% higher than the measured value (393 MPa). Furthermore, both the simulation and experimental results demonstrated that the single-pass remelted joint of Mo-5Re alloy produced only minor angular distortion. The obtained results are very useful in understanding the basic phenomena and problems in laser welding of Mo alloys with low Re content. Full article
(This article belongs to the Special Issue Properties and Residual Stresses of Welded Alloys)
Show Figures

Figure 1

17 pages, 2126 KB  
Article
Thin Film Fragmentation Testing: A Refined Screening Method for Estimating Relative Intrinsic Ductility of Refractory Metals
by Taohid Bin Nur Tuhser and Thomas John Balk
Metals 2025, 15(10), 1144; https://doi.org/10.3390/met15101144 - 15 Oct 2025
Viewed by 266
Abstract
Refractory metals typically exhibit limited room temperature ductility, hampering their widespread application. Recent advances in refractory high-entropy alloys have focused on finding optimum combinations of strength and ductility but require exploring vast compositional spaces. To facilitate such a search process, a method for [...] Read more.
Refractory metals typically exhibit limited room temperature ductility, hampering their widespread application. Recent advances in refractory high-entropy alloys have focused on finding optimum combinations of strength and ductility but require exploring vast compositional spaces. To facilitate such a search process, a method for fast assessment of intrinsic ductility would be highly advantageous. Herein, we propose a novel approach to screen for a refractory alloy’s ‘intrinsic ductility’ by leveraging the established technique of thin film fragmentation testing, which has been successfully used to evaluate stretchability of flexible electronics. We conducted in-depth investigations of sputtered tungsten thin films to identify the processing-induced extrinsic variables that can affect the crack onset strain (COS) under uniaxial loading. By tuning the process parameters for film deposition, Nb, Mo, Ta and W samples were fabricated with comparable thicknesses and residual stress levels. The films’ COS values were compared to the ductility levels of bulk counterpart materials, and the conditions for meaningful comparison are discussed. This approach offers a simple, inexpensive, and rapid means of screening based on relative intrinsic ductility of thin metal films and should also be applicable to the study of high-entropy alloy films. Full article
(This article belongs to the Special Issue Fracture and Fatigue of Advanced Metallic Materials)
Show Figures

Figure 1

13 pages, 609 KB  
Article
Prognostic Impact of Concomitant Beta-Blocker Use on Survival in EGFR-Mutant Metastatic Non-Small Cell Lung Cancer Patients Treated with Erlotinib
by Oğuzhan Yıldız, Talat Aykut, Bahattin Engin Kaya, Ömer Genç, Ali Fuat Gürbüz, Fatih Saçkan, Melek Karakurt Eryılmaz, Mehmet Zahid Koçak, Murat Araz and Mehmet Artaç
Medicina 2025, 61(10), 1843; https://doi.org/10.3390/medicina61101843 - 15 Oct 2025
Viewed by 206
Abstract
Background and Objectives: Erlotinib, a tyrosine kinase inhibitor (TKI), is an established therapy for patients with metastatic non-small cell lung cancer (NSCLC) harboring epidermal growth factor receptor (EGFR) mutations. Preclinical and clinical evidence suggests that chronic stress, mediated through β-adrenergic signaling, promotes [...] Read more.
Background and Objectives: Erlotinib, a tyrosine kinase inhibitor (TKI), is an established therapy for patients with metastatic non-small cell lung cancer (NSCLC) harboring epidermal growth factor receptor (EGFR) mutations. Preclinical and clinical evidence suggests that chronic stress, mediated through β-adrenergic signaling, promotes tumor progression, angiogenesis, and therapy resistance. Furthermore, interactions between β-adrenergic signaling and EGFR pathways have been hypothesized to negatively influence treatment responses. Based on this rationale, we investigated whether concomitant beta-blocker use may improve survival outcomes in EGFR-mutant NSCLC patients treated with erlotinib. Materials and Methods: This retrospective analysis included 103 patients with metastatic EGFR-mutant NSCLC who received erlotinib. Patients were classified according to concurrent beta-blocker use, defined as continuous therapy for at least six months prior to erlotinib initiation, prescribed for cardiovascular indications. Progression-free survival (PFS) and overall survival (OS) were compared between beta-blocker users and non-users. Results: Patients receiving erlotinib with concomitant beta-blocker therapy achieved a median PFS (mPFS) of 21.4 months (95% CI, 13.1–29.7), compared with 9.7 months (95% CI, 6.7–12.7) in non-users (p = 0.003). Median OS (mOS) was 32.4 months (95% CI, 14.8–50.0) in the beta-blocker group versus 19.9 months (95% CI, 14.8–25.0) in the non-beta-blocker group (p = 0.010). Multivariate Cox regression confirmed beta-blocker use as an independent prognostic factor for both PFS (p = 0.004) and OS (p = 0.014). Conclusions: Concomitant beta-blocker use was associated with significantly prolonged survival in patients with EGFR-mutant metastatic NSCLC receiving erlotinib. These findings support the hypothesis that β-adrenergic inhibition enhances the efficacy of EGFR-targeted therapy. Prospective studies are warranted to validate these results and to further elucidate the underlying biological mechanisms. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

9 pages, 1622 KB  
Communication
Scalable Graphene–MoS2 Lateral Contacts for High-Performance 2D Electronics
by Woonggi Hong
Materials 2025, 18(20), 4689; https://doi.org/10.3390/ma18204689 - 13 Oct 2025
Viewed by 448
Abstract
As the scaling of silicon-based CMOS technology approaches its physical limits, two-dimensional (2D) materials have emerged as promising alternatives for future electronic devices. Among them, MoS2 is a leading candidate due to its fascinating semiconducting nature and compatibility with CMOS processes. However, [...] Read more.
As the scaling of silicon-based CMOS technology approaches its physical limits, two-dimensional (2D) materials have emerged as promising alternatives for future electronic devices. Among them, MoS2 is a leading candidate due to its fascinating semiconducting nature and compatibility with CMOS processes. However, high contact resistance at the metal–MoS2 interface remains a major bottleneck, limiting device performance. In this study, we report the fabrication and characterization of graphene–MoS2 (Gr–MoS2) lateral heterostructure FETs, where monolayer graphene, synthesized by inductively coupled plasma chemical vapor deposition (ICP-CVD), is directly used as the source and drain. Bilayer MoS2 is selectively grown along graphene edges via edge-guided CVD, forming a chemically bonded in-plane junction without transfer steps. Electrical measurements reveal that the Gr–MoS2 FETs exhibit a threefold increase in average field-effect mobility (3.9 vs. 1.1 cm2 V−1 s−1) compared to conventional MoS2 FETs. Y-function analysis shows that the contact resistance is significantly reduced from 85.8 kΩ to 20.5 kΩ at VG = 40 V. These improvements are attributed to the replacement of the conventional metal–MoS2 contact with a graphene–metal contact. Our results demonstrate that lateral heterostructure engineering with graphene provides an effective and scalable strategy for high-performance 2D electronics. Full article
(This article belongs to the Special Issue Advances in Flexible Electronics and Electronic Devices)
Show Figures

Figure 1

22 pages, 3343 KB  
Article
Experimental Investigation of Nickel-Based Co-Catalysts for Photoelectrochemical Water Splitting Using Hematite and Cupric Oxide Nanostructured Electrodes
by Maria Aurora Mancuso, Rossana Giaquinta, Carmine Arnese, Patrizia Frontera, Anastasia Macario, Angela Malara and Stefano Trocino
Nanomaterials 2025, 15(20), 1551; https://doi.org/10.3390/nano15201551 - 11 Oct 2025
Viewed by 325
Abstract
Growing interest in sustainable hydrogen production has brought renewed attention to photoelectrochemical (PEC) water splitting as a promising route for direct solar-to-chemical energy conversion. This study explores how integrating hematite (α-Fe2O3) and cupric oxide (CuO) photoelectrodes with a series [...] Read more.
Growing interest in sustainable hydrogen production has brought renewed attention to photoelectrochemical (PEC) water splitting as a promising route for direct solar-to-chemical energy conversion. This study explores how integrating hematite (α-Fe2O3) and cupric oxide (CuO) photoelectrodes with a series of nickel-based co-catalysts can improve photoelectrochemical activity. Photoanodic (NiOx, NiFeOx, NiWO4) and photocathodic (Ni, NiCu, NiMo) co-catalysts were synthesized via co-precipitation and mechanochemical methods and characterized through X-ray Diffraction (XRD), X-ray Fluorescence (XRF), Transmission Electron Microscopy–Energy Dispersive X-ray Spectroscopy (TEM-EDX), Scanning Electron Microscopy–Energy Dispersive X-ray Spectroscopy (SEM-EDX), X-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) gas-adsorption analyses to clarify their crystallographic, morphological, and compositional properties, as well as their surface chemistry and textural properties (surface area and porosity). Electrochemical tests under 1 SUN illumination showed that NiOx significantly improves the photocurrent of hematite photoanodes. Among the cathodic co-catalysts, NiMo demonstrated the best performance when combined with CuO photocathodes. For both photoelectrodes, an optimal co-catalyst loading was identified, beyond which performance declined due to potential charge transfer limitations and light attenuation. These findings highlight the critical role of co-catalyst composition and loading in optimizing the efficiency of PEC systems based on earth-abundant materials, offering a pathway toward scalable and cost-effective hydrogen production. Full article
(This article belongs to the Special Issue Hydrogen Production and Evolution Based on Nanocatalysts)
Show Figures

Graphical abstract

40 pages, 2077 KB  
Article
Robust Clinical Querying with Local LLMs: Lexical Challenges in NL2SQL and Retrieval-Augmented QA on EHRs
by Luka Blašković, Nikola Tanković, Ivan Lorencin and Sandi Baressi Šegota
Big Data Cogn. Comput. 2025, 9(10), 256; https://doi.org/10.3390/bdcc9100256 - 11 Oct 2025
Viewed by 370
Abstract
Electronic health records (EHRs) are typically stored in relational databases, making them difficult to query for nontechnical users, especially under privacy constraints. We evaluate two practical clinical NLP workflows, natural language to SQL (NL2SQL) for EHR querying and retrieval-augmented generation for clinical question [...] Read more.
Electronic health records (EHRs) are typically stored in relational databases, making them difficult to query for nontechnical users, especially under privacy constraints. We evaluate two practical clinical NLP workflows, natural language to SQL (NL2SQL) for EHR querying and retrieval-augmented generation for clinical question answering (RAG-QA), with a focus on privacy-preserving deployment. We benchmark nine large language models, spanning open-weight options (DeepSeek V3/V3.1, Llama-3.3-70B, Qwen2.5-32B, Mixtral-8 × 22B, BioMistral-7B, and GPT-OSS-20B) and proprietary APIs (GPT-4o and GPT-5). The models were chosen to represent a diverse cross-section spanning sparse MoE, dense general-purpose, domain-adapted, and proprietary LLMs. On MIMICSQL (27,000 generations; nine models × three runs), the best NL2SQL execution accuracy (EX) is 66.1% (GPT-4o), followed by 64.6% (GPT-5). Among open-weight models, DeepSeek V3.1 reaches 59.8% EX, while DeepSeek V3 reaches 58.8%, with Llama-3.3-70B at 54.5% and BioMistral-7B achieving only 11.8%, underscoring a persistent gap relative to general-domain benchmarks. We introduce SQL-EC, a deterministic SQL error-classification framework with adjudication, revealing string mismatches as the dominant failure (86.3%), followed by query-join misinterpretations (49.7%), while incorrect aggregation-function usage accounts for only 6.7%. This highlights lexical/ontology grounding as the key bottleneck for NL2SQL in the biomedical domain. For RAG-QA, evaluated on 100 synthetic patient records across 20 questions (54,000 reference–generation pairs; three runs), BLEU and ROUGE-L fluctuate more strongly across models, whereas BERTScore remains high on most, with DeepSeek V3.1 and GPT-4o among the top performers; pairwise t-tests confirm that significant differences were observed among the LLMs. Cost–performance analysis based on measured token usage shows per-query costs ranging from USD 0.000285 (GPT-OSS-20B) to USD 0.005918 (GPT-4o); DeepSeek V3.1 offers the best open-weight cost–accuracy trade-off, and GPT-5 provides a balanced API alternative. Overall, the privacy-conscious RAG-QA attains strong semantic fidelity, whereas the clinical NL2SQL remains brittle under lexical variation. SQL-EC pinpoints actionable failure modes, motivating ontology-aware normalization and schema-linked prompting for robust clinical querying. Full article
Show Figures

Figure 1

15 pages, 8110 KB  
Article
Enabling Coal-Fired Power Flexibility: Wide-Temperature NOx Removal via Strong Electron–Orbital Interaction in Dual-Site Catalysts
by Shaogang Wang, Pengxin Zeng, Ning Li, Yuansheng Yi, Yongsheng Qin, Xin Yu, Lei Liu, Qi Guo and Zijian Zhou
Catalysts 2025, 15(10), 971; https://doi.org/10.3390/catal15100971 - 11 Oct 2025
Viewed by 412
Abstract
The narrow operating temperature window of commercial V-W/TiO2 catalysts severely limits NOx removal efficiency, especially during low-load boiler operations. To achieve broad-temperature NOx abatement, we developed Ce-M/Ti (M = Co, Fe, Mn, Mo) catalysts via a dual-site strategy. The temperatures [...] Read more.
The narrow operating temperature window of commercial V-W/TiO2 catalysts severely limits NOx removal efficiency, especially during low-load boiler operations. To achieve broad-temperature NOx abatement, we developed Ce-M/Ti (M = Co, Fe, Mn, Mo) catalysts via a dual-site strategy. The temperatures required for 80% NO conversion (T80) were 302 °C for Ce-Mo/Ti, 372 °C for Ce-Fe/Ti, 393 °C for Ce-Mn/Ti, and 415 °C for Ce-Co/Ti. Among them, Ce-Mo/Ti exhibited the most favorable low-temperature activity, outperforming a commercial catalyst (324 °C). Its turnover frequency (3.12 × 10−3 s−1) was 1.29 times higher. Combined physicochemical characterization and density functional theory (DFT) calculations further reveal the mechanism behind the enhanced dual-site synergy in Ce-Mo/Ti. In the Ce-Co, Ce-Fe, and Ce-Mn sites, weak orbital hybridization leads to limited charge transfer. In contrast, Ce-Mo/Ti exhibits stronger hybridization between the Ce 4f/5d and Mo 4d orbitals, which breaks the inherent limitation of the Ce-based (Ce3+/Ce4+) redox capability and enables reverse electron transfer from Mo to Ce. This distinctive electron transfer direction creates a unique electronic environment, activating an efficient redox cycle between Mo6+/Mo5+ and Ce4+/Ce3+. This work offers a promising design strategy for dual-site catalysts with high NOx removal efficiency over a wide temperature range. Full article
Show Figures

Figure 1

13 pages, 1795 KB  
Article
Enhanced Wear and Corrosion Resistance of AlCoCrFeNiMoTi High-Entropy Alloy via B Addition by Laser Cladding
by Sansan Ao, Jiaxun Sun, Ziyuan Qi, Youxiang Wei, Hongyu Chen and Yang Li
Materials 2025, 18(20), 4651; https://doi.org/10.3390/ma18204651 - 10 Oct 2025
Viewed by 442
Abstract
To address the synergistic degradation mechanisms in engineering service environments, we propose a boron microalloying strategy to enhance the multifunctional surface performance of AlCoCrFeNiMo-based high-entropy alloys. AlCoCrFeNiMoTiBx coatings (x = 0, 0.5, 1, and 1.5) were fabricated on Q235 steel substrates using laser [...] Read more.
To address the synergistic degradation mechanisms in engineering service environments, we propose a boron microalloying strategy to enhance the multifunctional surface performance of AlCoCrFeNiMo-based high-entropy alloys. AlCoCrFeNiMoTiBx coatings (x = 0, 0.5, 1, and 1.5) were fabricated on Q235 steel substrates using laser cladding. The microstructure of the coatings was characterized using scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), while their wear and corrosion resistance were evaluated through tribological and electrochemical tests. The key findings indicate that boron addition preserves the original body-centered cubic (BCC) and σ phases in the coating while promoting the in situ formation of TiB2, leading to lattice distortion. With increasing B content, the BCC phase becomes refined, and both the fraction and size of TiB2 particles increase. Boron incorporation improves the coating’s microhardness and wear resistance, with the highest wear resistance achieved at x = 1, where abrasive and oxidative wear predominate. At lower content (x = 0.5), B enhances the stability of the passive film and thereby improves corrosion resistance. In contrast, excessive formation of large TiB2 particles introduces defects into the passive film, accelerating its degradation. Full article
Show Figures

Figure 1

Back to TopTop