Pseudocapacitive Behavior of Blade-Coated Mo1.33CTx i-MXene Electrodes in Aqueous Electrolytes
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of Mo1.33CTx MXene Nanosheets
2.2. Preparation of Electrodes
2.3. Material Characterization
2.4. Electrochemical Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CNTs | Carbon nanotubes |
TMAOH | Tetramethylammonium hydroxide |
TEM | Transmission electron microscopy |
SEM | Scanning electron microscopy |
CV | Cyclic voltammetry |
GCD | Galvanostatic charge discharge |
References
- Yi, S.; Wang, L.; Zhang, X.; Li, C.; Xu, Y.; Wang, K.; Sun, X.; Ma, Y. Recent advances in MXene-based nanocomposites for supercapacitors. Nanotechnology 2023, 34, 432001. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Goikolea, E.; Balducci, A.; Naoi, K.; Taberna, P.L.; Salanne, M.; Yushin, G.; Simon, P. Materials for supercapacitors: When Li-ion battery power is not enough. Mater. Today 2018, 21, 419–436. [Google Scholar] [CrossRef]
- Lukatskaya, M.R.; Kota, S.; Lin, Z.; Zhao, M.Q.; Shpigel, N.; Levi, M.D.; Halim, J.; Taberna, P.L.; Barsoum, M.W.; Simon, P.; et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. In MXenes: From Discovery to Applications of Two-Dimensional Metal Carbides and Nitrides; CRC Press: Boca Raton, FL, USA, 2023; pp. 723–743. [Google Scholar] [CrossRef]
- Libich, J.; Máca, J.; Vondrák, J.; Čech, O.; Sedlaříková, M. Supercapacitors: Properties and applications. J. Energy Storage 2018, 17, 224–227. [Google Scholar] [CrossRef]
- Chen, R.; Yu, M.; Sahu, R.P.; Puri, I.K.; Zhitomirsky, I. The development of pseudocapacitor electrodes and devices with high active mass loading. Adv. Energy Mater. 2020, 10, 1903848. [Google Scholar] [CrossRef]
- Horn, M.; MacLeod, J.; Liu, M.; Webb, J.; Motta, N. Supercapacitors: A new source of power for electric cars? Econ. Anal. Policy 2019, 61, 93–103. [Google Scholar] [CrossRef]
- Wang, F.; Wu, X.; Yuan, X.; Liu, Z.; Zhang, Y.; Fu, L.; Zhu, Y.; Zhou, Q.; Wu, Y.; Huang, W. Latest advances in supercapacitors: From new electrode materials to novel device designs. Chem. Soc. Rev. 2017, 46, 6816–6854. [Google Scholar] [CrossRef]
- Liu, C.F.; Liu, Y.C.; Yi, T.Y.; Hu, C.C. Carbon materials for high-voltage supercapacitors. Carbon 2019, 145, 529–548. [Google Scholar] [CrossRef]
- Li, X.; Huang, Z.; Shuck, C.E.; Liang, G.; Gogotsi, Y.; Zhi, C. MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem. 2022, 6, 389–404. [Google Scholar] [CrossRef]
- Loong, N.W.S.; Liew, J.; Pershaanaa, M.; Farhana, N.K.; Prasankumar, T.; Bashir, S.; Ramesh, K.; Ramesh, S. Hydrothermally etched MXene-based nanocomposite electrode for supercapattery. J. Electroanal. Chem. 2024, 973, 118678. [Google Scholar] [CrossRef]
- Nahirniak, S.; Ray, A.; Saruhan, B. Challenges and Future Prospects of the MXene-Based Materials for Energy Storage Applications. Batteries 2023, 9, 126. [Google Scholar] [CrossRef]
- Kumar, Y.A.; Raorane, C.J.; Hegazy, H.H.; Ramachandran, T.; Kim, S.C.; Moniruzzaman, M. 2D MXene-based supercapacitors: A promising path towards high-performance energy storage. J. Energy Storage 2023, 72, 108433. [Google Scholar] [CrossRef]
- Anu, M.A.; Tomy, M.; Manimehala, U.; Xavier, T.S. Supercapacitor featuring Ti3C2Tx MXene electrode: Nanoarchitectonics and electrochemical performances in aqueous and non-aqueous electrolytes. Mater. Res. Bull. 2025, 185, 113315. [Google Scholar] [CrossRef]
- Lim, K.R.G.; Shekhirev, M.; Wyatt, B.C.; Anasori, B.; Gogotsi, Y.; Seh, Z.W. Fundamentals of MXene synthesis. Nat. Synth. 2022, 1, 601–614. [Google Scholar] [CrossRef]
- Long, Y.; Tao, Y.; Shang, T.; Yang, H.; Sun, Z.; Chen, W.; Yang, Q.H. Roles of Metal Ions in MXene Synthesis, Processing and Applications: A Perspective. Adv. Sci. 2022, 9, 2200296. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Zhang, P.; Soomro, R.A.; Zhu, Q.; Xu, B. Advances in the Synthesis of 2D MXenes. Adv. Mater. 2021, 33, 2103148. [Google Scholar] [CrossRef]
- Tang, M.; Li, J.; Wang, Y.; Han, W.; Xu, S.; Lu, M.; Zhang, W.; Li, H. Surface Terminations of MXene: Synthesis, Characterization, and Properties. Symmetry 2022, 14, 2232. [Google Scholar] [CrossRef]
- Luo, J.; Matios, E.; Wang, H.; Tao, X.; Li, W. Interfacial structure design of MXene-based nanomaterials for electrochemical energy storage and conversion. InfoMat 2020, 2, 1057–1076. [Google Scholar] [CrossRef]
- Yu, M.; Wang, Z.; Liu, J.; Sun, F.; Yang, P.; Qiu, J. A hierarchically porous and hydrophilic 3D nickel–iron/MXene electrode for accelerating oxygen and hydrogen evolution at high current densities. Nano Energy 2019, 63, 103880. [Google Scholar] [CrossRef]
- Kim, E.; Kim, S.; Jin, H.M.; Kim, G.; Ha, H.H.; Choi, Y.; Min, K.; Cho, S.H.; Han, H.; Ahn, C.W.; et al. Unlocking novel functionality: Pseudocapacitive sensing in MXene-based flexible supercapacitors. Nano-Micro Lett. 2025, 17, 86. [Google Scholar] [CrossRef]
- Mustafa, B.; Lu, W.; Wang, Z.; Lian, F.; Shen, A.; Yang, B.; Yuan, J.; Wu, C.; Liu, Y.; Hu, W.; et al. Ultrahigh energy and power densities of d-MXene-based symmetric supercapacitors. Nanomaterials 2022, 12, 3294. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, D.; Zhang, C.; Zhao, Y.; Ma, P.; Dong, W.; Huang, Y.; Liu, T. Compressible and lightweight MXene/carbon nanofiber aerogel with “layer-strut” bracing microscopic architecture for efficient energy storage. Adv. Fiber Mater. 2022, 4, 820–831. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, N.; Zhou, B.; Zhou, X.; Pu, B.; Bai, J.; Tang, Q.; Liu, Y.; Yang, W. NH3-induced in situ etching strategy derived 3D-interconnected porous MXene/carbon dots films for high performance flexible supercapacitors. Nano-Micro Lett. 2023, 15, 231. [Google Scholar] [CrossRef]
- Li, P.X.; Guan, G.Z.; Shi, X.; Lu, L.; Fan, Y.C.; Xu, J.; Shang, Y.Y.; Zhang, Y.J.; Wei, J.Q.; Guo, F.M. Bidirectionally aligned MXene hybrid aerogels assembled with MXene nanosheets and microgels for supercapacitors. Rare Met. 2023, 42, 1249–1260. [Google Scholar] [CrossRef]
- Ahmed, B.; El Ghazaly, A.; Rosen, J. i-MXenes for Energy Storage and Catalysis. Adv. Funct. Mater. 2020, 30, 2000894. [Google Scholar] [CrossRef]
- Bibi, F.; Hanan, A.; Soomro, I.A.; Numan, A.; Khalid, M. Double transition metal MXenes for enhanced electrochemical applications: Challenges and opportunities. EcoMat 2024, 6, e12485. [Google Scholar] [CrossRef]
- Alam, M.S.; Chowdhury, M.A.; Khandaker, T.; Hossain, M.S.; Islam, M.S.; Islam, M.M.; Hasan, M.K. Advancements in MAX phase materials: Structure, properties, and novel applications. RSC Adv. 2024, 14, 26995–27041. [Google Scholar] [CrossRef] [PubMed]
- Rosen, J.; Dahlqvist, M.; Tao, Q.; Hultman, L. In-and out-of-plane ordered MAX phases and their MXene derivatives. In 2D Metal Carbides and Nitrides (MXenes): Structure, Properties and Applications; Springer: Cham, Switzerland, 2019; pp. 37–52. [Google Scholar] [CrossRef]
- Tao, Q.; Lu, J.; Dahlqvist, M.; Mockute, A.; Calder, S.; Petruhins, A.; Meshkian, R.; Rivin, O.; Potashnikov, D.; Caspi, E.N.; et al. Atomically Layered and Ordered Rare-Earth i-MAX Phases: A New Class of Magnetic Quaternary Compounds. Chem. Mater. 2019, 31, 2476–2485. [Google Scholar] [CrossRef]
- Yang, J.; Chen, Z.; Chi, X.; Yu, T.; Deng, W.; Lu, Y.; Qi, L.; Yuan, S.; Wang, Q.; Cui, W. Microstructures and electromagnetic interference shielding properties of 2D defective Mo1.33C (MXene). Funct. Mater. Lett. 2024, 17, 2440006. [Google Scholar] [CrossRef]
- El Ghazaly, A.; Zheng, W.; Halim, J.; Tseng, E.N.; Persson, P.O.; Ahmed, B.; Rosen, J. Enhanced supercapacitive performance of Mo1.33C MXene based asymmetric supercapacitors in lithium chloride electrolyte. Energy Storage Mater. 2021, 41, 203–208. [Google Scholar] [CrossRef]
- Yang, J.; Yao, G.; Sun, S.; Chen, Z.; Yuan, S.; Wu, K.; Fu, X.; Wang, Q.; Cui, W. Structural, magnetic properties of in-plane chemically ordered (Mo2/3R1/3)2AlC (R = Gd, Tb, Dy, Ho, Er and Y) MAX phase and enhanced capacitance of Mo1.33C MXene derivatives. Carbon 2021, 179, 104–110. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, T.; Xiao, J.; Jin, Q.; Wang, Z.; Zhang, C.; Fu, S.; Gao, H. Highly stable few-layer V2CTx MXene/Carbon nanotube structure with restrained restacking for lithium ion storage. J. Colloid Interface Sci. 2023, 630, 502–511. [Google Scholar] [CrossRef]
- Chen, H.; Yu, L.; Lin, Z.; Zhu, Q.; Zhang, P.; Qiao, N.; Xu, B. Carbon nanotubes enhance flexible MXene films for high-rate supercapacitors. J. Mater. Sci. 2020, 55, 1148–1156. [Google Scholar] [CrossRef]
- Shi, X.; Guo, F.; Hou, K.; Guan, G.; Lu, L.; Zhang, Y.; Xu, J.; Shang, Y. Highly Flexible All-Solid-State Supercapacitors Based on MXene/CNT Composites. Energy Fuels 2023, 37, 9704–9712. [Google Scholar] [CrossRef]
- Alharbi, N. Cylindrical janus Mosse@CNT intercalated into Mxene: A high-performance supercapacitor electrode with high volumetric capacity and flexibility. J. Alloys Compd. 2024, 1008, 176273. [Google Scholar] [CrossRef]
- Ma, H.; Wang, J.; Wang, J.; Shang, K.; Yang, Y.; Fan, Z. Blade-coated Ti3C2Tx MXene films for pseudocapacitive energy storage and infrared stealth. Diam. Relat. Mater. 2023, 131, 109587. [Google Scholar] [CrossRef]
- Buczek, S.; Barsoum, M.L.; Uzun, S.; Kurra, N.; Andris, R.; Pomerantseva, E.; Mahmoud, K.A.; Gogotsi, Y. Rational Design of Titanium Carbide MXene Electrode Architectures for Hybrid Capacitive Deionization. Energy Environ. Mater. 2020, 3, 398–404. [Google Scholar] [CrossRef]
- Ghanashyam, G.; Han, C.S. Large-scale fabrication of oppositely charged MXene (Ti3C2Tx) membrane for enhanced osmotic power generation. Desalination 2025, 601, 118597. [Google Scholar] [CrossRef]
- Nanda, O.; Gayathri, J.; Biradar, A.M.; Saxena, K. Fabrication of Reduced Graphene Oxide Conductive Thin Films Using Doctor Blade Technique. In Springer Proceedings in Physics; Springer: Singapore, 2020; Volume 256, pp. 53–57. [Google Scholar] [CrossRef]
- Tsyganov, A.; Vikulova, M.; Zotov, I.; Korotaev, E.; Plugin, I.; Sysoev, V.; Kirilenko, D.; Rabchinskii, M.; Asoyan, A.; Gorokhovsky, A.; et al. Application of W1.33CTz MXenes obtained by hydrothermal etching as an additive to enhance the electrochemical energy storage properties of binder-free Ti3C2Tx MXene films. Dalton Trans. 2025, 54, 8547–8558. [Google Scholar] [CrossRef]
- Tsyganov, A.; Vikulova, M.; Zotov, I.; Grapenko, O.; Vlasenko, V.; Bainyashev, A.; Gorokhovsky, A.; Gorshkov, N. Thermal behavior of the dielectric response of composites based on poly(vinylidene fluoride) filled with two-dimensional V2CTx MXenes. Nanoscale 2024, 16, 15208–15218. [Google Scholar] [CrossRef]
- Tsyganov, A.; Vikulova, M.; Zotov, I.; Morozova, N.; Korotaev, E.; Grapenko, O.; Gorokhovsky, A.; Gorshkov, N. Synthesis of 2D Mo1.33CTz i-MXene with ordered vacancies by hydrothermal etching of (Mo2/3Y1/3)2AlC i-MAX phase. Inorg. Chem. Commun. 2024, 170, 113493. [Google Scholar] [CrossRef]
- Seyedin, S.; Zhang, J.; Usman, K.A.S.; Qin, S.; Glushenkov, A.M.; Yanza, E.R.S.; Jones, R.T.; Razal, J.M. Facile Solution Processing of Stable MXene Dispersions towards Conductive Composite Fibers. Glob. Chall. 2019, 3, 1900037. [Google Scholar] [CrossRef]
- Dahlqvist, M.; Petruhins, A.; Lu, J.; Hultman, L.; Rosen, J. Origin of chemically ordered atomic laminates (i-MAX): Expanding the elemental space by a theoretical/experimental approach. ACS Nano 2018, 12, 7761–7770. [Google Scholar] [CrossRef]
- Shekhirev, M.; Shuck, C.E.; Sarycheva, A.; Gogotsi, Y. Characterization of MXenes at every step, from their precursors to single flakes and assembled films. Prog. Mater. Sci. 2021, 120, 100757. [Google Scholar] [CrossRef]
- Tao, Q.; Dahlqvist, M.; Lu, J.; Kota, S.; Meshkian, R.; Halim, J.; Palisaitis, J.; Hultman, L.; Barsoum, M.W.; Persson, P.O.Å.; et al. Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. Nat. Commun. 2017, 8, 14949. [Google Scholar] [CrossRef]
- Zang, X.; Wang, J.; Qin, Y.; Wang, T.; He, C.; Shao, Q.; Zhu, H.; Cao, N. Enhancing Capacitance Performance of Ti3C2Tx MXene as Electrode Materials of Supercapacitor: From Controlled Preparation to Composite Structure Construction. Nano-Micro Lett. 2020, 12, 77. [Google Scholar] [CrossRef]
- Kadam, S.A.; Kadam, K.P.; Pradhan, N.R. Advancements in 2D MXene-based supercapacitor electrodes: Synthesis, mechanisms, electronic structure engineering, flexible wearable energy storage for real-world applications, and future prospects. J. Mater. Chem. A 2024, 12, 17992–18046. [Google Scholar] [CrossRef]
- Jiang, T.; Wang, Y.; Chen, G.Z. Electrochemistry of Titanium Carbide MXenes in Supercapacitor. Small Methods 2023, 7, 2201724. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zheng, S.; Lu, P.; Ma, J.; Das, P.; Su, F.; Cheng, H.M.; Wu, Z.S. Kinetic regulation of MXene with water-in-LiCl electrolyte for high-voltage micro-supercapacitors. Natl. Sci. Rev. 2022, 9, nwac024. [Google Scholar] [CrossRef] [PubMed]
- Minakshi, M.; Sharma, A.; Sohel, F.; Pivrikas, A.; Shinde, P.A.; Ariga, K.; Shrestha, L.K. Machine Learning—Guided Design of Biomass-Based Porous Carbon for Aqueous Symmetric Supercapacitors. ChemPlusChem 2025, 90, e202500342. [Google Scholar] [CrossRef]
- Minakshi, M.; Samayamanthry, A.; Whale, J.; Aughterson, R.; Shinde, P.A.; Ariga, K.; Kumar Shrestha, L. Phosphorous–containing activated carbon derived from natural honeydew peel powers aqueous supercapacitors. Chem. Asian J. 2024, 19, e202400622. [Google Scholar] [CrossRef]
- Qian, A.; Hyeon, S.E.; Seo, J.Y.; Chung, C.H. Capacitance changes associated with cation-transport in free-standing flexible Ti3C2Tx (TO, F, OH) MXene film electrodes. Electrochim. Acta 2018, 266, 86–93. [Google Scholar] [CrossRef]
- Gao, X.; Du, X.; Mathis, T.S.; Zhang, M.; Wang, X.; Shui, J.; Gogotsi, Y.; Xu, M. Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage. Nat. Commun. 2020, 11, 6160. [Google Scholar] [CrossRef]
- Tsyganov, A.; Shindrov, A.; Vikulova, M.; Zheleznov, D.; Gorokhovsky, A.; Gorshkov, N. Effect of LiCl electrolyte concentration on energy storage of supercapacitor with multilayered Ti3C2Tx MXene electrodes synthesized by hydrothermal etching. Processes 2023, 11, 2528. [Google Scholar] [CrossRef]
- Tsyganov, A.; Vikulova, M.; Shindrov, A.; Zheleznov, D.; Gorokhovsky, A.; Gorshkov, N. Molten salt-shielded synthesis of Ti3AlC2 as a precursor for large-scale preparation of Ti3C2Tx MXene binder-free film electrode supercapacitors. Dalton Trans. 2024, 53, 5922–5931. [Google Scholar] [CrossRef]
- Zhu, J.; Li, X.; Hu, B.; Ge, S.; Xu, J. Low-Temperature-Tolerant Aqueous Proton Battery with Porous Ti3C2Tx MXene Electrode and Phosphoric Acid Electrolyte. Batteries 2024, 10, 207. [Google Scholar] [CrossRef]
- Shan, Q.; Mu, X.; Alhabeb, M.; Shuck, C.E.; Pang, D.; Zhao, X.; Chu, X.F.; Wei, Y.; Du, F.; Dall’Agnese, Y. Two-dimensional vanadium carbide (V2C) MXene as electrode for supercapacitors with aqueous electrolytes. Electrochem. Commun. 2018, 96, 103–107. [Google Scholar] [CrossRef]
- Hussain, I.; Rehman, F.; Saraf, M.; Zhang, T.; Wang, R.; Das, T.; Luo, Z.; Gogotsi, Y.; Zhang, K. Electrochemical Properties of Mo4VC4Tx MXene in Aqueous Electrolytes. ACS Appl. Mater. Interfaces 2024, 16, 38053–38060. [Google Scholar] [CrossRef] [PubMed]
- Ronchi, R.M.; Chen, N.; Halim, J.; Persson, P.O.; Rosen, J. Defect Engineering of Mo2–xCTz MXenes through Precursor Alloying and Effects on Electrochemical Properties. Chem. Mater. 2025, 37, 4005–4015. [Google Scholar] [CrossRef]
- Bibi, F.; Numan, A.; Tan, Y.S.; Khalid, M. Facile extraction of Mo2Ti2C3Tx MXene via hydrothermal synthesis for electrochemical energy storage. J. Energy Storage 2024, 85, 111154. [Google Scholar] [CrossRef]
- Halim, J.; Kota, S.; Lukatskaya, M.R.; Naguib, M.; Zhao, M.Q.; Moon, E.J.; Pitock, J.; Nanda, J.; May, S.J.; Gogotsi, Y.; et al. Synthesis and Characterization of 2D Molybdenum Carbide (MXene). Adv. Funct. Mater. 2016, 26, 3118–3127. [Google Scholar] [CrossRef]
- Lind, H.; Halim, J.; Simak, S.I.; Rosen, J. Investigation of vacancy-ordered Mo1.33C MXene from first principles and X-ray photoelectron spectroscopy. Phys. Rev. Mater. 2017, 1, 044002. [Google Scholar] [CrossRef]
- Natu, V.; Benchakar, M.; Canaff, C.; Habrioux, A.; Célérier, S.; Barsoum, M.W. A critical analysis of the X-ray photoelectron spectra of Ti3C2Tz MXenes. Matter 2021, 4, 1224–1251. [Google Scholar] [CrossRef]
- Yang, J.; Liu, R.; Jia, N.; Wu, K.; Fu, X.; Wang, Q.; Cui, W. Novel W-based in-plane chemically ordered (W2/3R1/3)2AlC (R = Gd, Tb, Dy, Ho, Er, Tm and Lu) MAX phases and their 2D W1.33C MXene derivatives. Carbon N. Y. 2021, 183, 76–83. [Google Scholar] [CrossRef]
- Sun, S.; Yang, J.; Chen, X.; Cui, W.; Huang, J.; Yang, T.; Zhang, Z.; Wang, Q. A novel two-dimensional rare-earth carbide synthesized by selective etching Al-C slab from nanolaminated YAl3C3. Scr. Mater. 2020, 181, 10–14. [Google Scholar] [CrossRef]
- Druffel, D.L.; Lanetti, M.G.; Sundberg, J.D.; Pawlik, J.T.; Stark, M.S.; Donley, C.L.; McRae, L.M.; Scott, K.M.; Warren, S.C. Synthesis and Electronic Structure of a 3D Crystalline Stack of MXene-Like Sheets. Chem. Mater. 2019, 31, 9788–9796. [Google Scholar] [CrossRef]
- Bashir, T.; Ismail, S.A.; Wang, J.; Zhu, W.; Zhao, J.; Gao, L. MXene terminating groups O, –F or –OH, –F or O, –OH, –F, or O, –OH, –Cl? J. Energy Chem. 2023, 76, 90–104. [Google Scholar] [CrossRef]
Electrode Material | Scan Rate, mV·s−1 | Electrolyte | Capacitance, F·g−1 | Ref. |
---|---|---|---|---|
Ti3C2Tx | 5 | 5 M LiCl | 120 | [57] |
10 | 1 M H2SO4 | 340 | [58] | |
2 | 9 M H3PO4 | 280 | [59] | |
V2CTx | 2 | 1 M H2SO4 | 487 | [60] |
Mo4VC4Tx | 2 | 5 M LiCl | 66 | [61] |
3 M H2SO4 | 219 | |||
Mo1.87CTx | 2 | 1 M H2SO4 | 304 | [62] |
Mo2Ti2C3Tx | 3 | 1 M H2SO4 | 110 | [63] |
Mo1.33CTx | 2 | 2 M H2SO4 | 352 | This work |
1 M H3PO4 | 287 | |||
5 M LiCl | 172 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsyganov, A.; Grapenko, O.; Korotaev, E.; Shindrov, A.; Alferov, A.; Gorokhovsky, A.; Gorshkov, N. Pseudocapacitive Behavior of Blade-Coated Mo1.33CTx i-MXene Electrodes in Aqueous Electrolytes. Nanomaterials 2025, 15, 1593. https://doi.org/10.3390/nano15201593
Tsyganov A, Grapenko O, Korotaev E, Shindrov A, Alferov A, Gorokhovsky A, Gorshkov N. Pseudocapacitive Behavior of Blade-Coated Mo1.33CTx i-MXene Electrodes in Aqueous Electrolytes. Nanomaterials. 2025; 15(20):1593. https://doi.org/10.3390/nano15201593
Chicago/Turabian StyleTsyganov, Alexey, Olga Grapenko, Evgeniy Korotaev, Alexander Shindrov, Andrei Alferov, Alexander Gorokhovsky, and Nikolay Gorshkov. 2025. "Pseudocapacitive Behavior of Blade-Coated Mo1.33CTx i-MXene Electrodes in Aqueous Electrolytes" Nanomaterials 15, no. 20: 1593. https://doi.org/10.3390/nano15201593
APA StyleTsyganov, A., Grapenko, O., Korotaev, E., Shindrov, A., Alferov, A., Gorokhovsky, A., & Gorshkov, N. (2025). Pseudocapacitive Behavior of Blade-Coated Mo1.33CTx i-MXene Electrodes in Aqueous Electrolytes. Nanomaterials, 15(20), 1593. https://doi.org/10.3390/nano15201593