Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (720)

Search Parameters:
Keywords = MnCoS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
56 pages, 1035 KiB  
Review
Trace Elements—Role in Joint Function and Impact on Joint Diseases
by Łukasz Bryliński, Katarzyna Brylińska, Filip Woliński, Jolanta Sado, Miłosz Smyk, Olga Komar, Robert Karpiński, Marcin Prządka and Jacek Baj
Int. J. Mol. Sci. 2025, 26(15), 7493; https://doi.org/10.3390/ijms26157493 (registering DOI) - 2 Aug 2025
Viewed by 235
Abstract
Proper joint function has a significant impact on people’s quality of life. Joints are the point of connection between two or more bones and consist of at least three elements: joint surfaces, the joint capsule, and the joint cavity. Joint diseases are a [...] Read more.
Proper joint function has a significant impact on people’s quality of life. Joints are the point of connection between two or more bones and consist of at least three elements: joint surfaces, the joint capsule, and the joint cavity. Joint diseases are a serious social problem. Risk factors for the development of these diseases include overweight and obesity, gender, and intestinal microbiome disorders. Another factor that is considered to influence joint diseases is trace elements. Under normal conditions, elements such as iron (Fe), copper (Cu), cobalt (Co), iodine (I), manganese (Mn), zinc (Zn), silver (Ag), cadmium (Cd), mercury (Hg), lead (Pb), nickel (Ni) selenium (Se), boron (B), and silicon (Si) are part of enzymes involved in reactions that determine the proper functioning of cells, regulate redox metabolism, and determine the maturation of cells that build joint components. However, when the normal concentration of the above-mentioned elements is disturbed and toxic elements are present, dangerous joint diseases can develop. In this article, we focus on the role of trace elements in joint function. We describe the molecular mechanisms that explain their interaction with chondrocytes, osteocytes, osteoblasts, osteoclasts, and synoviocytes, as well as their proliferation, apoptosis, and extracellular matrix synthesis. We also focus on the role of these trace elements in the pathogenesis of joint diseases: rheumatoid arthritis (RA), osteoarthritis (OA), psoriatic arthritis (PsA), ankylosing spondylitis (AS), and systemic lupus erythematosus (SLE). We describe the roles of increased or decreased concentrations of individual elements in the pathogenesis and development of joint diseases and their impact on inflammation and disease progression, referring to molecular mechanisms. We also discuss their potential application in the treatment of joint diseases. Full article
Show Figures

Figure 1

11 pages, 219 KiB  
Article
Altitude-Linked Distribution Patterns of Serum and Hair Mineral Elements in Healthy Yak Calves from Ganzi Prefecture
by Chenglong Xia, Yao Pan, Jianping Wu, Dengzhu Luorong, Qingting Yu, Zhicai Zuo, Yue Xie, Xiaoping Ma, Lan Lan and Hongrui Guo
Vet. Sci. 2025, 12(8), 718; https://doi.org/10.3390/vetsci12080718 (registering DOI) - 31 Jul 2025
Viewed by 138
Abstract
Mineral imbalances in livestock can critically impair growth, immunity, and productivity. Yaks inhabiting the Qinghai–Tibetan Plateau face unique environmental challenges, including high-altitude-induced nutrient variability. This study investigated the status of mineral elements and their correlations with altitude in healthy yak calves across five [...] Read more.
Mineral imbalances in livestock can critically impair growth, immunity, and productivity. Yaks inhabiting the Qinghai–Tibetan Plateau face unique environmental challenges, including high-altitude-induced nutrient variability. This study investigated the status of mineral elements and their correlations with altitude in healthy yak calves across five regions in Ganzi Prefecture, located at elevations ranging from 3100 to 4100 m. Hair and serum samples from 35 calves were analyzed for 11 essential elements (Na, K, Ca, Mg, S, Cu, Fe, Mn, Zn, Co, and Se). The results revealed widespread deficiencies. Key deficiencies were identified: hair Na and Co were significantly below references value (p < 0.05), and Se was consistently deficient across all regions, with deficiency rates ranging from 35.73% to 56.57%. Serum Mg and Cu were generally deficient (Mg deficiency > 26% above 3800 m). S, Mn (low detection), and Co were also suboptimal. Serum selenium deficiency was notably severe in lower-altitude areas (≤59.07%). Significant correlations with altitude were observed: hair sodium levels decreased with increasing altitude (r = −0.72), while hair manganese (r = 0.88) and cobalt (r = 0.65) levels increased. Serum magnesium deficiency became more pronounced at higher elevations (r = 0.58), whereas selenium deficiency in serum was more severe at lower altitudes (r = −0.61). These findings indicate prevalent multi-element deficiencies in yak calves that are closely linked to altitude and are potentially influenced by soil mineral composition and feeding practices, as suggested by previous studies. The study underscores the urgent need for region-specific nutritional standards and altitude-adapted mineral supplementation strategies to support optimal yak health and development. Full article
(This article belongs to the Section Anatomy, Histology and Pathology)
11 pages, 2689 KiB  
Communication
Synthesis and Structural Characterization of Manganese(I) Complexes Ligated by 2-Azabutadienes (ArS)2C=C(H)-N=CPh2
by Rodolphe Kinghat, Abderrahim Khatyr, Michael Knorr, Yoann Rousselin and Marek M. Kubicki
Molbank 2025, 2025(3), M2042; https://doi.org/10.3390/M2042 - 28 Jul 2025
Viewed by 152
Abstract
The thioether-functionalized 2-azabutadienes (ArS)2C=C(H)-N=CPh2 (L1 Ar = Ph, L2 Ar = p-Tol) ligate to [Mn(CO)5Br] to form the octahedral five-membered S, N-chelate complexes fac-[MnBr(CO)3{(ArS)2C=C(H)-N=CPh2] (1 Ar [...] Read more.
The thioether-functionalized 2-azabutadienes (ArS)2C=C(H)-N=CPh2 (L1 Ar = Ph, L2 Ar = p-Tol) ligate to [Mn(CO)5Br] to form the octahedral five-membered S, N-chelate complexes fac-[MnBr(CO)3{(ArS)2C=C(H)-N=CPh2] (1 Ar = Ph; 2 Ar = p-Tol), whose crystal structures have been solved by X-ray diffraction. Complex 1 crystallizes in the non-centrosymmetric orthorhombic space group P212121, whereas 2 crystallizes in the triclinic space group P1¯. The secondary interactions occurring in the packing have also been assessed by an Atoms in Molecules (AIM) topological analysis. Full article
(This article belongs to the Section Structure Determination)
Show Figures

Figure 1

13 pages, 6483 KiB  
Article
Polyelectrolyte Microcapsule-Assembled Colloidosomes: A Novel Strategy for the Encapsulation of Hydrophobic Substances
by Egor V. Musin, Alexey V. Dubrovskii, Yuri S. Chebykin, Aleksandr L. Kim and Sergey A. Tikhonenko
Polymers 2025, 17(14), 1975; https://doi.org/10.3390/polym17141975 - 18 Jul 2025
Viewed by 274
Abstract
The encapsulation of hydrophobic substances remains a significant challenge due to limitations such as low loading efficiency, leakage, and poor distribution within microcapsules. This study introduces a novel strategy utilizing colloidosomes assembled from polyelectrolyte microcapsules (PMCs). PMCs were fabricated via layer-by-layer (LbL) assembly [...] Read more.
The encapsulation of hydrophobic substances remains a significant challenge due to limitations such as low loading efficiency, leakage, and poor distribution within microcapsules. This study introduces a novel strategy utilizing colloidosomes assembled from polyelectrolyte microcapsules (PMCs). PMCs were fabricated via layer-by-layer (LbL) assembly on manganese carbonate (MnCO3) or calcium carbonate (CaCO3) cores, followed by core dissolution. A solvent gradient replacement method was employed to substitute the internal aqueous phase of PMCs with kerosene, enabling the formation of colloidosomes through self-assembly upon resuspension in water. Comparative analysis revealed that MnCO3-based PMCs with smaller diameters (2.5–3 µm vs. 4.5–5.5 µm for CaCO3) exhibited 3.5-fold greater stability, attributed to enhanced inter-capsule interactions via electrostatic and hydrophobic forces. Confocal microscopy confirmed the structural integrity of colloidosomes, featuring a liquid kerosene core encapsulated within a PMC shell. Temporal stability studies indicated structural degradation within 30 min, though 5% of colloidosomes retained integrity post-water evaporation. PMC-based colloidosomes exhibit significant application potential due to their integration of colloidosome functionality with PMC-derived structural features—semi-permeability, tunable shell thickness/composition, and stimuli-responsive behavior—enabling their adaptability to diverse technological and biomedical contexts. This innovation holds promise for applications in drug delivery, agrochemicals, and environmental technologies, where controlled release and stability are critical. The findings highlight the role of core material selection and solvent engineering in optimizing colloidosome performance, paving the way for advanced encapsulation systems. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

14 pages, 5943 KiB  
Article
Preparation and Optimization of Mn2+-Activated Na2ZnGeO4 Phosphors: Insights into Precursor Selection and Microwave-Assisted Solid-State Synthesis
by Xiaomeng Wang, Siyi Wei, Jiaping Zhang, Jiaren Du, Yukun Li, Ke Chen and Hengwei Lin
Nanomaterials 2025, 15(14), 1117; https://doi.org/10.3390/nano15141117 - 18 Jul 2025
Viewed by 322
Abstract
Mn2+-doped phosphors emitting green light have garnered significant interest due to their potential applications in display technologies and solid-state lighting. To facilitate the rapid synthesis of high-performance Mn2+-activated green phosphors, this research optimizes a microwave-assisted solid-state (MASS) method for [...] Read more.
Mn2+-doped phosphors emitting green light have garnered significant interest due to their potential applications in display technologies and solid-state lighting. To facilitate the rapid synthesis of high-performance Mn2+-activated green phosphors, this research optimizes a microwave-assisted solid-state (MASS) method for the preparation of Na2ZnGeO4:Mn2+. Leveraging the unique attributes of the MASS technique, a systematic investigation into the applicability of various Mn-source precursors was conducted. Additionally, the integration of the MASS approach with traditional solid-state reaction (SSR) methods was assessed. The findings indicate that the MASS technique effectively incorporates Mn ions from diverse precursors (including higher oxidation states of manganese) into the crystal lattice, resulting in efficient green emission from Mn2+. Notably, the photoluminescence quantum yield (PLQY) of the sample utilizing MnCO3 as the manganese precursor was recorded at 2.67%, whereas the sample synthesized from MnO2 exhibited a remarkable PLQY of 17.69%. Moreover, the post-treatment of SSR-derived samples through the MASS process significantly enhanced the PLQY from 0.67% to 8.66%. These results underscore the promise of the MASS method as a novel and efficient synthesis strategy for the rapid and scalable production of Mn2+-doped green luminescent materials. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Graphical abstract

14 pages, 4424 KiB  
Article
Electrochemical and Kinetic Performance of Low-Cobalt and Cobalt-Free Rare-Earth AB5-Type Hydrogen Storage Alloys
by Yingying Shen, Fengji Zhang, Hengyu Ma, Yun Zhao, Yong Wang, Xinfeng Wang, Xiuyan Li, Youcheng Luo and Bingang Lu
Materials 2025, 18(14), 3317; https://doi.org/10.3390/ma18143317 - 14 Jul 2025
Viewed by 276
Abstract
To address the high cost of cobalt in rare-earth hydrogen storage alloys, this study developed cost-effective low-cobalt and cobalt-free AB5-type alloys. The results demonstrate that all synthesized alloys displayed a single-phase LaNi5 structure possessing a homogeneous elemental distribution. Low-cobalt (La, [...] Read more.
To address the high cost of cobalt in rare-earth hydrogen storage alloys, this study developed cost-effective low-cobalt and cobalt-free AB5-type alloys. The results demonstrate that all synthesized alloys displayed a single-phase LaNi5 structure possessing a homogeneous elemental distribution. Low-cobalt (La, Ce) (Ni, Co, Mn, Al)5 alloy 4SC and cobalt-free (La, Ce) (Ni, Mn, Al)5 alloy 7D exhibited similarly excellent electrochemical performance, including high discharge capacity, long cycle life, and superior high-rate discharge (HRD) capability. In addition, the kinetic test results show that the exchange current densities of these two alloys were quite similar, measuring 302.97 mA g−1 and 317.70 mA g−1, respectively. However, the hydrogen diffusion coefficient of 7D was significantly higher than that of 4SC, reaching 9.45 × 10−10 cm2 s−1, while that of 4SC was only 5.88 × 10−10 cm2/s. This work establishes a theoretical foundation for industrial-scale and cost-effective AB5-type hydrogen storage alloys, offering significant commercial potential. Full article
(This article belongs to the Special Issue Advances in Efficient Utilization of Metallurgical Solid Waste)
Show Figures

Figure 1

23 pages, 2707 KiB  
Article
Performance Analysis of Battery State Prediction Based on Improved Transformer and Time Delay Second Estimation Algorithm
by Bo Gao, Xiangjun Li, Fang Guo and Xiping Wang
Batteries 2025, 11(7), 262; https://doi.org/10.3390/batteries11070262 - 13 Jul 2025
Viewed by 422
Abstract
As energy storage technology advances rapidly, the power industry demands accurate state estimation of lithium batteries in energy storage power stations. This study aimed to improve such estimations. An improved Transformer structure was employed to estimate the battery’s state of charge (SOC). The [...] Read more.
As energy storage technology advances rapidly, the power industry demands accurate state estimation of lithium batteries in energy storage power stations. This study aimed to improve such estimations. An improved Transformer structure was employed to estimate the battery’s state of charge (SOC). The Time Delay Second Estimation (TDSE) algorithm optimized the improved Transformer model to overcome traditional models’ limitations in extracting long-term dependency. Innovative particle filter algorithms were proposed to handle the nonlinearity, uncertainty, and dynamic changes in predicting remaining battery life. Results showed that for LiNiMnCoO2 positive electrode datasets, the model’s max SOC estimation error was 2.68% at 10 °C and 2.15% at 30 °C. For LiFePO4 positive electrode datasets, the max error was 2.79% at 10 °C (average 1.25%) and 2.35% at 30 °C (average 0.94%). In full lifecycle calculations, the particle filter algorithm predicted battery capacity with 98.34% accuracy and an RMSE of 0.82%. In conclusion, the improved Transformer and TDSE algorithm enable advanced battery state prediction, and the particle filter algorithm effectively predicts remaining battery life, enhancing the adaptability and robustness of lithium battery state analysis and offering technical support for energy storage station management. Full article
Show Figures

Figure 1

18 pages, 3259 KiB  
Article
Emission Characteristics and Environmental Impact of VOCs from Bagasse-Fired Biomass Boilers
by Xia Yang, Xuan Xu, Jianguo Ni, Qun Zhang, Gexiang Chen, Ying Liu, Wei Hong, Qiming Liao and Xiongbo Chen
Sustainability 2025, 17(14), 6343; https://doi.org/10.3390/su17146343 - 10 Jul 2025
Viewed by 437
Abstract
This study investigates the emission characteristics and environmental impacts of pollutants from bagasse-fired biomass boilers through the integrated field monitoring of two sugarcane processing plants in Guangxi, China. Comprehensive analyses of flue gas components, including PM2.5, NOx, CO, heavy metals, VOCs, [...] Read more.
This study investigates the emission characteristics and environmental impacts of pollutants from bagasse-fired biomass boilers through the integrated field monitoring of two sugarcane processing plants in Guangxi, China. Comprehensive analyses of flue gas components, including PM2.5, NOx, CO, heavy metals, VOCs, HCl, and HF, revealed distinct physicochemical and emission profiles. Bagasse exhibited lower C, H, and S content but higher moisture (47~53%) and O (24~30%) levels compared to coal, reducing the calorific values (8.93~11.89 MJ/kg). Particulate matter removal efficiency exceeded 98% (water film dust collector) and 95% (bag filter), while NOx removal varied (10~56%) due to water solubility differences. Heavy metals (Cu, Cr, Ni, Pb) in fuel migrated to fly ash and flue gas, with Hg and Mn showing notable volatility. VOC speciation identified oxygenated compounds (OVOCs, 87%) as dominant in small boilers, while aromatics (60%) and alkenes (34%) prevailed in larger systems. Ozone formation potential (OFP: 3.34~4.39 mg/m3) and secondary organic aerosol formation potential (SOAFP: 0.33~1.9 mg/m3) highlighted aromatic hydrocarbons (e.g., benzene, xylene) as critical contributors to secondary pollution. Despite compliance with current emission standards (e.g., PM < 20 mg/m3), elevated CO (>1000 mg/m3) in large boilers indicated incomplete combustion. This work underscores the necessity of tailored control strategies for OVOCs, aromatics, and heavy metals, advocating for stricter fuel quality and clear emission standards to align biomass energy utilization with environmental sustainability goals. Full article
Show Figures

Figure 1

15 pages, 9578 KiB  
Article
Interface Engineering of NCMA Cathodes with LATP Coatings for High-Performance Solid-State Lithium Batteries
by Shih-Ping Cho, Muhammad Usman Hameed, Chien-Te Hsieh and Wei-Ren Liu
Nanomaterials 2025, 15(14), 1057; https://doi.org/10.3390/nano15141057 - 8 Jul 2025
Viewed by 414
Abstract
The development of high-performance and stable solid-state lithium batteries (SSBs) is critical for advancing next-generation energy storage technologies. This study investigates LATP (Li1.3Al0.3Ti1.7(PO4)3) coatings to enhance the electrochemical performance and interface stability of [...] Read more.
The development of high-performance and stable solid-state lithium batteries (SSBs) is critical for advancing next-generation energy storage technologies. This study investigates LATP (Li1.3Al0.3Ti1.7(PO4)3) coatings to enhance the electrochemical performance and interface stability of NCMA83 (LiNi0.83Co0.06Mn0.06Al0.05O2) cathodes. Compared to conventional combinations with LPSC (Li6PS5Cl) solid electrolytes, LATP coatings significantly reduce interfacial reactivity and improve cycling stability. Structural and morphological analyses reveal that LATP coatings maintain the crystallinity of NCMA83 while fine-tuning its lattice stress. Electrochemical testing demonstrates that LATP-modified samples (83L5) achieve superior capacity retention (65 mAh/g after 50 cycles) and reduced impedance (Rct ~200 Ω), compared to unmodified samples (83L0). These results highlight LATP’s potential as a surface engineering solution to mitigate degradation effects, enhance ionic conductivity, and extend the lifespan of high-capacity SSBs. Full article
(This article belongs to the Topic Surface Science of Materials)
Show Figures

Figure 1

15 pages, 3736 KiB  
Article
Molecular Characterization of a Restriction Endonuclease PsaI from Pseudomonas anguilliseptica KM9 and Sequence Analysis of the PsaI R-M System
by Beata Furmanek-Blaszk, Iwona Mruk and Marian Sektas
Int. J. Mol. Sci. 2025, 26(14), 6548; https://doi.org/10.3390/ijms26146548 - 8 Jul 2025
Viewed by 198
Abstract
A restriction enzyme PsaI, an isoschizomer of the type II restriction endonuclease HindIII, has been purified to homogeneity from Gram-negative bacilli Pseudomonas anguilliseptica KM9 found in a wastewater treatment plant in Poland. Experimental data revealed that R.PsaI is highly active in the presence [...] Read more.
A restriction enzyme PsaI, an isoschizomer of the type II restriction endonuclease HindIII, has been purified to homogeneity from Gram-negative bacilli Pseudomonas anguilliseptica KM9 found in a wastewater treatment plant in Poland. Experimental data revealed that R.PsaI is highly active in the presence of Co2+, Mg2+, and Zn2+ and reached a maximal level of activity between 2.5 and 10 mM while its activity was significantly decreased in the presence of Ca2+, Fe2+, Mn2+, and Ni2+. Moreover, we found that the purified R.PsaI did not require NaCl for enzyme activity. Restriction cleavage analysis followed by sequencing confirmed 5′-AAGCTT-3′ as the recognition site. The genes for restriction–modification system PsaI were identified and characterized. Downstream of the psaIM gene, we noticed an ORF that shares extensive similarity with recombinase family protein specifically involved in genome rearrangements. Sequence analysis revealed that the PsaI R-M gene complex showed striking nucleotide sequence similarity (>98%) with the genes of the PanI R-M system from a P. anguilliseptica MatS1 strain identified in a soil sample from Sri Lanka. Full article
(This article belongs to the Special Issue Genetic Engineering in Microbial Biotechnology)
Show Figures

Figure 1

12 pages, 23410 KiB  
Article
Recycling and Separation of Valuable Metals from Spent Cathode Sheets by Single-Step Electrochemical Strategy
by Neng Wei, Yaqun He, Guangwen Zhang, Jiahao Li and Fengbin Zhang
Separations 2025, 12(7), 178; https://doi.org/10.3390/separations12070178 - 5 Jul 2025
Viewed by 274
Abstract
The conventional spent lithium-ion batteries (LIBs) recycling method suffers from complex processes and excessive chemical consumption. Hence, this study proposes an electrochemical strategy for achieving reductant-free leaching of high-valence transition metals and efficient separation of valuable components from spent cathode sheets (CSs). An [...] Read more.
The conventional spent lithium-ion batteries (LIBs) recycling method suffers from complex processes and excessive chemical consumption. Hence, this study proposes an electrochemical strategy for achieving reductant-free leaching of high-valence transition metals and efficient separation of valuable components from spent cathode sheets (CSs). An innovatively designed sandwich-structured electrochemical reactor achieved efficient reductive dissolution of cathode materials (CMs) while maintaining the structural integrity of aluminum (Al) foils in a dilute sulfuric acid system. Optimized current enabled leaching efficiencies exceeding 93% for lithium (Li), cobalt (Co), manganese (Mn), and nickel (Ni), with 88% metallic Al foil recovery via cathodic protection. Multi-scale characterization systematically elucidated metal valence evolution and interfacial reaction mechanisms, validating the technology’s tripartite innovation: simultaneous high metal extraction efficiency, high value-added Al foil recovery, and organic removal through single-step electrochemical treatment. The process synergized the dissolution of CM particles and hydrogen bubble-induced physical liberation to achieve clean separation of polyvinylidene difluoride (PVDF) and carbon black (CB) layers from Al foil substrates. This method eliminates crushing pretreatment, high-temperature reduction, and any other reductant consumption, establishing an environmentally friendly and efficient method of comprehensive recycling of battery materials. Full article
Show Figures

Figure 1

15 pages, 2934 KiB  
Article
Assessment of the Area of Heavy Metals and Radionuclides Deposition on the Environment of the Household Waste Landfill on the 9th km of Vilyuisky Tract in Yakutsk City
by Sargylana Mamaeva, Marina Frontasyeva, Kristina Petrova, Vassiliy Kolodeznikov, Galina Ignatyeva, Eugenii Zakharov and Vladlen Kononov
Atmosphere 2025, 16(7), 816; https://doi.org/10.3390/atmos16070816 - 3 Jul 2025
Viewed by 180
Abstract
For the first time, the deposition area of heavy metals and other trace elements (Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, P, Pb, S, Sr, Sb, V, Zn, and Hg) on the territory surrounding a landfill of domestic (municipal) waste at [...] Read more.
For the first time, the deposition area of heavy metals and other trace elements (Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, P, Pb, S, Sr, Sb, V, Zn, and Hg) on the territory surrounding a landfill of domestic (municipal) waste at the 9th km of the Vilyuisky tract of Yakutsk within a radius of 51 km was assessed using the method of moss biomonitors and ICP-OES as an analytical technique. Mosses were analyzed for radionuclide content (40K, 137Cs, 212 Pb, 214Pb, 212Bi, 214Bi, 208Tl, 7Be, and 228Ac) in a number of selected samples by semiconductor gamma spectrometry. The results of the examination of moss samples by ICP-OES indicate the presence of large amounts of toxic Ba and metal debris (Al, Co, Cr, Fe, S, and Pb) at the landfill. In addition, it is shown that the investigated samples contain elements such as Cd, Co, Cr, Cu, Cu, Mn, Ni, Pb, Sr, V, Zn, and Hg. The method of gamma spectrometry revealed that the studied samples contain such radioactive elements as 137Cs, daughter products of 238U and 232Th. Detection of the same heavy metals and radionuclides in the atmospheric air of the city and in the vegetation near the landfill may indicate that one of the sources of environmental pollution may be products of incineration of the landfill contents at the 9th km of the Vilyuisky tract. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

34 pages, 8503 KiB  
Article
Hydrogeochemical Characterization and Determination of Arsenic Sources in the Groundwater of the Alluvial Plain of the Lower Sakarya River Basin, Turkey
by Nisa Talay and İrfan Yolcubal
Water 2025, 17(13), 1931; https://doi.org/10.3390/w17131931 - 27 Jun 2025
Viewed by 454
Abstract
Arsenic (As) contamination in groundwater represents a major global public health threat, particularly in alluvial aquifer systems where redox-sensitive geochemical processes facilitate the mobilization of naturally occurring trace elements. This study investigates groundwater quality, particularly focusing on the origin of arsenic contamination in [...] Read more.
Arsenic (As) contamination in groundwater represents a major global public health threat, particularly in alluvial aquifer systems where redox-sensitive geochemical processes facilitate the mobilization of naturally occurring trace elements. This study investigates groundwater quality, particularly focusing on the origin of arsenic contamination in shallow and deep alluvial aquifers of the Lower Sakarya River Basin, which are crucial for drinking, domestic, and agricultural uses. Groundwater samples were collected from 34 wells—7 tapping the shallow aquifer (<60 m) and 27 tapping the deep aquifer (>60 m)—during wet and dry seasons for the hydrogeochemical characterization of groundwater. Environmental isotope analysis (δ18O, δ2H, 3H) was conducted to characterize origin and groundwater residence times, and the possible hydraulic connection between shallow and deep alluvial aquifers. Mineralogical and geochemical characterization of the sediment core samples were carried out using X-ray diffraction and acid digestion analyses to identify mineralogical sources of As and other metals. Pearson correlation coefficient analyses were also applied to the results of the chemical analyses to determine the origin of metal enrichments observed in the groundwater, as well as related geochemical processes. The results reveal that 33–41% of deep groundwater samples contain arsenic concentrations exceeding the WHO and Turkish drinking water standard of 10 µg/L, with maximum values reaching 373 µg/L. Manganese concentrations exceeded the 50 µg/L limit in up to 44% of deep aquifer samples, reaching 1230 µg/L. On the other hand, iron concentrations were consistently low, remaining below the detection limit in nearly all samples. The co-occurrence of As and Mn above their maximum contaminant levels was observed in 30–33% of the wells, exhibiting extremely low sulfate concentrations (0.2–2 mg/L), notably low dissolved oxygen concentration (1.45–3.3 mg/L) alongside high bicarbonate concentrations (450–1429 mg/L), indicating localized varying reducing conditions in the deep alluvial aquifer. The correlations between molybdenum and As (rdry = 0.46, rwet = 0.64) also indicate reducing conditions, where Mo typically mobilizes with As. Arsenic concentrations also showed significant correlations with bicarbonate (HCO3) (rdry = 0.66, rwet = 0.80), indicating that alkaline or reducing conditions are promoting arsenic mobilization from aquifer materials. All these correlations between elements indicate that coexistence of As with Mn above their MCLs in deep alluvial aquifer groundwater result from reductive dissolution of Mn/Fe(?) oxides, which are primary arsenic hosts, thereby releasing arsenic into groundwater under reducing conditions. In contrast, the shallow aquifer system—although affected by elevated nitrate, sulfate, and chloride levels from agricultural and domestic sources—exhibited consistently low arsenic concentrations below the maximum contaminant level. Seasonal redox fluctuations in the shallow zone influence manganese concentrations, but the aquifer’s more dynamic recharge regime and oxic conditions suppress widespread As mobilization. Mineralogical analysis identified that serpentinite, schist, and other ophiolitic/metamorphic detritus transported by river processes into basin sediments were identified as the main natural sources of arsenic and manganese in groundwater of deep alluvium aquifer. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

16 pages, 499 KiB  
Article
Concentration and Potential Non-Carcinogenic and Carcinogenic Health Risk Assessment of Metals in Locally Grown Vegetables
by Muhammad Saleem, Yuqiang Wang, David Pierce, Donald A. Sens, Seema Somji and Scott H. Garrett
Foods 2025, 14(13), 2264; https://doi.org/10.3390/foods14132264 - 26 Jun 2025
Viewed by 480
Abstract
Heavy metal contamination in food has become a significant global food safety concern. This study assessed the concentrations of As, Ca, Cd, Co, Cr, Cu, Fe, Hg, Mn, K, Mg, Na, Ni, Se, Pb, and Zn in 13 locally grown vegetables using microwave-assisted [...] Read more.
Heavy metal contamination in food has become a significant global food safety concern. This study assessed the concentrations of As, Ca, Cd, Co, Cr, Cu, Fe, Hg, Mn, K, Mg, Na, Ni, Se, Pb, and Zn in 13 locally grown vegetables using microwave-assisted acid digestion and ICP-MS. The potential human health risks associated with their consumption were also evaluated. Vegetable samples were collected from the local farmer’s market in Grand Forks, North Dakota. The mean levels (μg/g) of Na, Mg, K, Ca, Fe, Se, Mn, Cu, Zn, Co, Hg, Cr, Ni, As, Cd, and Pb were 1001, 2935, 30474, 686.0, 52.90, 0.171, 37.63, 4.936, 21.33, 0.069, 0.0030, 0.049, 0.736, 0.083, 0.298, and 0.019, respectively, having the following decreasing trend: K > Mg > Na > Ca > Fe > Mn > Zn > Cu > Ni > Cd > Se > As > Co > Cr > Pb > Hg. The highest total metals level was found in spinach, with the following decreasing order: spinach > tomato > sugar beet > white eggplant > cucumber ~ kale > green chili > green bean > dill ~ potato > capsicum > onion > corn. Spinach exhibited the highest concentrations of Cd, Cr, Pb, and Hg, which suggests a higher risk of metal exposure from its consumption. Toxic metals except Cd were found to be lower than the maximum allowable concentrations set by international agencies among the analyzed vegetables, while Cd levels were higher than maximum allowable levels in most of the vegetables. Health risks associated with metal intake by vegetable consumption were evaluated in terms of estimated daily intake (EDI), non-carcinogenic risks were evaluated by the target hazard quotient (THQ) and Hazard Index (HI), and carcinogenic risks were evaluated by target cancer risk (TCR). The EDI values of all the metals were found to be below the maximum tolerable daily intake (MTDI). The highest EDI value for Mn, Zn, Hg, Cr, Cd, and Pb was noted in spinach. THQ values for Cd, Co, and As were higher than 1 in most of the vegetable species analyzed, indicating non-carcinogenic health effects to consumers. HI results also posed a non-carcinogenic health risk associated with the intake of these vegetables. Mean TCR values of Cr, Ni, As, and Cd indicated carcinogenic risk for consumers. This study showed that there are potential health risks with consumption of these vegetables. Lastly, regular monitoring of metal levels in vegetables is suggested/recommended to minimize health risks and support pollution control efforts. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

14 pages, 752 KiB  
Article
Exposure to Fine Particulate Matter (PM2.5) and Heavy Metals During the Second Trimester of Pregnancy Increases the Risk of Preeclampsia and Eclampsia: An Analysis of National Health Insurance Claims Data from South Korea
by Kuen Su Lee, Won Kee Min, Yoon Ji Choi, Jeongun Cho, Sang Hun Kim and Hye Won Shin
Medicina 2025, 61(7), 1146; https://doi.org/10.3390/medicina61071146 - 25 Jun 2025
Viewed by 373
Abstract
Background and Objectives: Air pollutants have been shown to affect hypertensive disorders and placental hypoxia due to vasoconstriction, inflammation, and oxidative stress. The objective of this study was to evaluate whether high levels of maternal exposure to heavy metals during the second [...] Read more.
Background and Objectives: Air pollutants have been shown to affect hypertensive disorders and placental hypoxia due to vasoconstriction, inflammation, and oxidative stress. The objective of this study was to evaluate whether high levels of maternal exposure to heavy metals during the second trimester of pregnancy are associated with an increased risk of preeclampsia and eclampsia, using national health insurance claim data from South Korea. Methods: Data on mothers and their newborns from 2016 to 2020, provided by the National Health Insurance Service, were used (n = 1,274,671). Exposure data for ambient air pollutants (PM2.5, CO, SO2, NO2, and O3) and heavy metals (Pb, Cd, Cr, Cu, Mn, Fe, Ni, and As) during the second trimester of pregnancy were retrieved from the Korea Environment Corporation. Atmospheric condition data based on the mother’s registration area were matched. A logistic regression model was adjusted for maternal age, infant sex, season of conception, and household income. Results: In total, 16,920 cases of preeclampsia and 592 cases of eclampsia were identified. In the multivariate model, copper exposure remained significantly associated with an increased risk of preeclampsia (odds ratio: 1.011; 95% confidence interval: 1.001–1.023), and higher ozone exposure during pregnancy was associated with an elevated risk of eclampsia. Conclusions: Increased copper exposure during the second trimester of pregnancy was associated with a high incidence of preeclampsia. Full article
(This article belongs to the Section Obstetrics and Gynecology)
Show Figures

Figure 1

Back to TopTop