Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = Mn(II) chelates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2415 KB  
Article
Intercropping with Gramineous Plants in Nutrient Solutions as a Tool to Optimize the Use of Iron in Brassica oleracea
by Teresa Saavedra, Maribela Pestana, João Costa, Paula Gonçalves, David Fangueiro, José Paulo Da Silva and Pedro José Correia
Plants 2025, 14(14), 2215; https://doi.org/10.3390/plants14142215 - 17 Jul 2025
Viewed by 402
Abstract
This study aimed to evaluate the impact of intercropping Brassica oleracea. with three perennial grasses (Poa pratensis L., Lolium perenne L., and Festuca rubra L.) under varying levels of iron (Fe) availability (Fe0, Fe1 and Fe5) in nutrient solutions. The research [...] Read more.
This study aimed to evaluate the impact of intercropping Brassica oleracea. with three perennial grasses (Poa pratensis L., Lolium perenne L., and Festuca rubra L.) under varying levels of iron (Fe) availability (Fe0, Fe1 and Fe5) in nutrient solutions. The research focused on biomass accumulation, photosynthetic efficiency, root development, nutrient uptake, and oxidative stress response. In the absence of Fe, Brassica sp. exhibited chlorosis, reduced biomass, and increased ferric chelate reductase (FCR) enzyme activity as an adaptive response. Brassica plants intercropped with Poa sp. maintained higher chlorophyll (Chl) levels and photosystem II efficiency (Fv/Fm values), mitigating Fe deficiency effects. Catalase activity and polyphenol production varied with intercropping species, indicating differential stress response mechanisms. Intercropping improved Zn, Mn, and P accumulation, with Poa sp. facilitating greater Zn and Mn uptake. Intercropping Brassica sp. with specific grass species offers potential agronomic benefits by improving Fe use efficiency, mitigating stress, and enhancing nutrient uptake. Future research should focus on optimizing intercropping combinations for sustainable agricultural practices. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

11 pages, 276 KB  
Communication
Application of Salicylic Acid Derivative in Modifying the Iron Nutritional Value of Lettuce (Lactuca sativa L.)
by Barbara Frąszczak, Renata Matysiak, Marcin Smiglak, Rafal Kukawka, Maciej Spychalski and Tomasz Kleiber
Plants 2024, 13(2), 180; https://doi.org/10.3390/plants13020180 - 9 Jan 2024
Cited by 2 | Viewed by 2078
Abstract
The present experiment addressed the effects of foliar sprays of different iron (Fe) concentrations (mg L−1), i.e., 2.8 (Fe I), 4.2 (Fe II), and 5.6 (Fe III), as well as an ionic derivative of salicylic acid (iSal) in two doses (10 [...] Read more.
The present experiment addressed the effects of foliar sprays of different iron (Fe) concentrations (mg L−1), i.e., 2.8 (Fe I), 4.2 (Fe II), and 5.6 (Fe III), as well as an ionic derivative of salicylic acid (iSal) in two doses (10 and 20 mg L−1) on lettuce yield, chlorophyll and carotenoids content, and fluorescence parameters. Chemicals were used individually and in combinations two times, 23 and 30 days after the plants were transplanted. This experiment was carried out in a climate chamber. The Fe and iSal applications generally (except Fe I iSal, 10 mg L−1; Fe I iSal, 20 mg L−1; and Fe III iSal, 20 mg L−1) did not influence the fresh and dry matter content. The concentration of chlorophylls and carotenoids was reduced for all treatments in comparison to the control (without spraying). The Fe content in leaves was promoted in the Fe-treated plants (+70% for Fe III + iSal, 10 mg L−1, and Fe I). The iSal treatment promoted the Mn content. For most combinations, the Zn and Cu accumulations, as well as the fluorescence parameters, decreased after the foliar spray applications. Overall, our study revealed the effectiveness of Fe-DTPA chelate, but not iSal, in increasing the Fe content of lettuce grown in soilless cultivation systems. Full article
(This article belongs to the Special Issue Biochemical Interactions of Iron Nutrition in Plants)
15 pages, 4713 KB  
Article
Micronutrient Fertiliser Reinforcement by Fulvate–Lignosulfonate Coating Improves Physiological Responses in Tomato
by Ricardo Gil-Ortiz, Miguel Ángel Naranjo, Sergio Atares, Oscar Vicente and Raphaël Morillon
Agronomy 2023, 13(8), 2013; https://doi.org/10.3390/agronomy13082013 - 29 Jul 2023
Cited by 3 | Viewed by 2707
Abstract
Micronutrients are essential to plants, and enhancing their availability is one of the agronomic challenges to improving crop quality and yield. This study, under controlled greenhouse conditions, compares tomato plants’ responses to two different micronutrient EDTA-chelated formulations, one of them including a newly [...] Read more.
Micronutrients are essential to plants, and enhancing their availability is one of the agronomic challenges to improving crop quality and yield. This study, under controlled greenhouse conditions, compares tomato plants’ responses to two different micronutrient EDTA-chelated formulations, one of them including a newly developed fulvate–lignosulfonate coating. Growth, yield, and several physiological parameters, including photosynthetic gas exchange, water-use efficiency, leaf nutrient content, leaf greenness and the effective quantum yield of photosystem II, were measured to compare their efficiency. The results showed that the new coated formulation significantly improved growth and most of the determined physiological parameters. At the end of the experiment, higher foliar levels of Fe (2.4-fold) and Mn (2.9-fold) were measured, revealing increased availability of lignofulfonate-complexed micronutrients compared to the traditional fertiliser. Moreover, the photosynthesis rate and stomatal conductance were 9- and 20-fold higher, respectively, than when using the standard fertiliser. In conclusion, the new coated fulvate–lignosulfonated fertiliser provided a more suitable source of micronutrients for tomato plant fertilisation, allowing for higher yields, which correlated with a generally improved physiological response. Full article
Show Figures

Figure 1

13 pages, 1990 KB  
Article
Molecular and Electronic Structures of Macrocyclic Compounds Formed at Template Synthesis in the M(II)—Thiocarbohydrazide—Diacetyl Triple Systems: A Quantum-Chemical Analysis by DFT Methods
by Oleg V. Mikhailov and Denis V. Chachkov
Molecules 2023, 28(11), 4383; https://doi.org/10.3390/molecules28114383 - 27 May 2023
Cited by 2 | Viewed by 1712
Abstract
Using density functional theory (DFT) B3PW91/TZVP, M06/TZVP, and OPBE/TZVP chemistry models and the Gaussian09 program, a quantum-chemical calculation of geometric and thermodynamic parameters of Ni(II), Cu(II), and Zn(II) macrotetracyclic chelates, with (NNNN)-coordination of ligand donor centers arising during template synthesis between the indicated [...] Read more.
Using density functional theory (DFT) B3PW91/TZVP, M06/TZVP, and OPBE/TZVP chemistry models and the Gaussian09 program, a quantum-chemical calculation of geometric and thermodynamic parameters of Ni(II), Cu(II), and Zn(II) macrotetracyclic chelates, with (NNNN)-coordination of ligand donor centers arising during template synthesis between the indicated ions of 3d elements, thiocarbohydrazide H2N–HN–C(=S)–NH–NH2 and diacetyl Me–C(=O)–C(=O)–Me, in gelatin-immobilized matrix implants was performed. The key bond lengths and bond angles in these coordination compounds are provided, and it is noted that in all these complexes the MN4 chelate sites, the grouping of N4 atoms bonded to the M atom, and the five-membered and six-membered metal chelate rings are practically coplanar. NBO analysis of these compounds was carried out, on the basis of which it was shown that all these complexes, in full accordance with theoretical expectations, are low-spin complexes. The standard thermodynamic characteristics of the template reactions for the formation of the above complexes are also presented. Good agreement between the data obtained using the above DFT levels is noted. Full article
Show Figures

Figure 1

12 pages, 3601 KB  
Article
Synthesis and Application of a Novel Metal–Organic Frameworks-Based Ion-Imprinted Polymer for Effective Removal of Co(II) from Simulated Radioactive Wastewater
by Li Yu, Tu Lan, Guoyuan Yuan, Chongxiong Duan, Xiaoqin Pu and Ning Liu
Polymers 2023, 15(9), 2150; https://doi.org/10.3390/polym15092150 - 30 Apr 2023
Cited by 11 | Viewed by 2132
Abstract
In this work, a novel metal–organic frameworks (MOFs)-based ion-imprinted polymer (MIIP) was prepared to remove Co(II) from simulated radioactive wastewater. The batch experiments indicated that the sorption was well described by the pseudo-second-order kinetic and Langmuir models, and it is monolayer chemisorption. The [...] Read more.
In this work, a novel metal–organic frameworks (MOFs)-based ion-imprinted polymer (MIIP) was prepared to remove Co(II) from simulated radioactive wastewater. The batch experiments indicated that the sorption was well described by the pseudo-second-order kinetic and Langmuir models, and it is monolayer chemisorption. The theoretical maximum sorption capacity was estimated to be 181.5 mg∙g−1, which is by far the reported maximum value of Co(II) sorption by the imprinted materials. The MIIP presented an excellent selectivity for Co(II) in the presence of common monovalent and divalent metal ions, and the selectivity coefficients were 44.31, 33.19, 10.84, 27.71, 9.45, 16.25, and 7.60 to Li(I), K(I), Mg(II), Ca(II), Mn(II), Ba(II), and Cd(II), respectively. The sorption mechanism was explored by X-ray photoelectron spectroscopy (XPS) technology and density functional theory (DFT) calculations, suggesting that Co(II) was adsorbed by the MIIP via the chelation of 4-vinylpyridine (VP) ligands with Co(II), which was a spontaneous process, and the optimal coordination ratio of VP to Co(II) was 6. This work suggested that the MIIP has a high sorption capacity and excellent selectivity for Co(II), which is of great significance for the selective separation of Co-60 from radioactive wastewater. Full article
(This article belongs to the Special Issue Polymeric Materials for Water/Wastewater Treatment Applications)
Show Figures

Graphical abstract

11 pages, 1115 KB  
Article
Divalent Cation Signaling in Clostridium perfringens Spore Germination
by Roua Almatrafi, Saeed Banawas and Mahfuzur R. Sarker
Microorganisms 2023, 11(3), 591; https://doi.org/10.3390/microorganisms11030591 - 26 Feb 2023
Cited by 6 | Viewed by 2841
Abstract
Spore germination plays an essential role in the pathogenesis of Clostridium perfringens-associated food poisoning. Germination is initiated when bacterial spores sense various stimuli, including chemicals and enzymes. A previous study showed that dipicolinic acid (DPA) chelated with calcium (Ca-DPA) significantly stimulated spore [...] Read more.
Spore germination plays an essential role in the pathogenesis of Clostridium perfringens-associated food poisoning. Germination is initiated when bacterial spores sense various stimuli, including chemicals and enzymes. A previous study showed that dipicolinic acid (DPA) chelated with calcium (Ca-DPA) significantly stimulated spore germination in C. perfringens. However, whether Ca2+ or DPA alone can induce germination is unknown. Therefore, we aimed to evaluate the possible roles of Ca2+ and other divalent cations present in the spore core, such as Mn2+ and Mg2+, in C. perfringens spore germination. Our study demonstrated that (i) Ca-DPA, but not DPA alone, induced C. perfringens spore germination, suggesting that Ca2+ might play a signaling role; (ii) all tested calcium salts induced spore germination, indicating that Ca2+ is critical for germination; (iii) the spore-specific divalent cations Mn2+ and Mg2+, but not Zn2+, induced spore germination, suggesting that spore core-specific divalent cations are involved in C. perfringens spore germination; and (iv) endogenous Ca2+ and Mg2+ are not required for induction of C. perfringens spore germination, whereas exogenous and partly endogenous Mn2+ are required. Collectively, our results suggest that exogenous spore core-specific divalent cation signals are more important than endogenous signals for the induction of spore germination. Full article
(This article belongs to the Special Issue Assembly, Structure, and Germination of Bacterial Spores)
Show Figures

Figure 1

17 pages, 5580 KB  
Article
A Series of Metal–Organic Frameworks with 2,2′-Bipyridyl Derivatives: Synthesis vs. Structure Relationships, Adsorption, and Magnetic Studies
by Vadim A. Dubskikh, Aleksei A. Kolosov, Anna A. Lysova, Denis G. Samsonenko, Alexander N. Lavrov, Konstantin A. Kovalenko, Danil N. Dybtsev and Vladimir P. Fedin
Molecules 2023, 28(5), 2139; https://doi.org/10.3390/molecules28052139 - 24 Feb 2023
Cited by 6 | Viewed by 3603
Abstract
Five new metal–organic frameworks based on Mn(II) and 2,2′-bithiophen-5,5′-dicarboxylate (btdc2–) with various chelating N-donor ligands (2,2′-bipyridyl = bpy; 5,5′-dimethyl-2,2′-bipyridyl = 5,5′-dmbpy; 4,4′-dimethyl-2,2′-bipyridyl = 4,4′-dmbpy) [Mn3(btdc)3(bpy)2]·4DMF, 1; [Mn3(btdc)3(5,5′-dmbpy)2]·5DMF, 2 [...] Read more.
Five new metal–organic frameworks based on Mn(II) and 2,2′-bithiophen-5,5′-dicarboxylate (btdc2–) with various chelating N-donor ligands (2,2′-bipyridyl = bpy; 5,5′-dimethyl-2,2′-bipyridyl = 5,5′-dmbpy; 4,4′-dimethyl-2,2′-bipyridyl = 4,4′-dmbpy) [Mn3(btdc)3(bpy)2]·4DMF, 1; [Mn3(btdc)3(5,5′-dmbpy)2]·5DMF, 2; [Mn(btdc)(4,4;-dmbpy)], 3; [Mn2(btdc)2(bpy)(dmf)]·0.5DMF, 4; [Mn2(btdc)2(5,5′-dmbpy)(dmf)]·DMF, 5 (dmf, DMF = N,N-dimethylformamide) have been synthesized, and their crystal structure has been established using single-crystal X-ray diffraction analysis (XRD). The chemical and phase purities of Compounds 13 have been confirmed via powder X-ray diffraction, thermogravimetric, and chemical analyses as well as IR spectroscopy. The influence of the bulkiness of the chelating N-donor ligand on the dimensionality and structure of the coordination polymer has been analyzed, and the decrease in the framework dimensionality, as well as the secondary building unit’s nuclearity and connectivity, has been observed for bulkier ligands. For three-dimensional (3D) coordination polymer 1, the textural and gas adsorption properties have been studied, revealing noticeable ideal adsorbed solution theory (IAST) CO2/N2 and CO2/CO selectivity factors (31.0 at 273 K and 19.1 at 298 K and 25.7 at 273 K and 17.0 at 298 K, respectively, for the equimolar composition and the total pressure of 1 bar). Moreover, significant adsorption selectivity for binary C2–C1 hydrocarbons mixtures (33.4 and 24.9 for C2H6/CH4, 24.8 and 17.7 for C2H4/CH4, 29.3 and 19.1 for C2H2/CH4 at 273 K and 298 K, respectively, for the equimolar composition and the total pressure of 1 bar) has been observed, making it possible to separate on 1 natural, shale, and associated petroleum gas into valuable individual components. The ability of Compound 1 to separate benzene and cyclohexane in a vapor phase has also been analyzed based on the adsorption isotherms of individual components measured at 298 K. The preferable adsorption of C6H6 over C6H12 by 1 at high vapor pressures (VB/VCH = 1.36) can be explained by the existence of multiple van der Waals interactions between guest benzene molecules and the metal–organic host revealed by the XRD analysis of 1 immersed in pure benzene for several days (1≅2C6H6). Interestingly, at low vapor pressures, an inversed behavior of 1 with preferable adsorption of C6H12 over C6H6 (KCH/KB = 6.33) was observed; this is a very rare phenomenon. Moreover, magnetic properties (the temperature-dependent molar magnetic susceptibility, χp(T) and effective magnetic moments, μeff(T), as well as the field-dependent magnetization, M(H)) have been studied for Compounds 13, revealing paramagnetic behavior consistent with their crystal structure. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Graphical abstract

23 pages, 5830 KB  
Article
Design, Synthesis, Spectroscopic Inspection, DFT and Molecular Docking Study of Metal Chelates Incorporating Azo Dye Ligand for Biological Evaluation
by Mohamed Ali Ibrahim Al-Gaber, Hany M. Abd El-Lateef, Mai M. Khalaf, Saad Shaaban, Mohamed Shawky, Gehad G. Mohamed, Aly Abdou, Mohamed Gouda and Ahmed M. Abu-Dief
Materials 2023, 16(3), 897; https://doi.org/10.3390/ma16030897 - 17 Jan 2023
Cited by 61 | Viewed by 3290
Abstract
A new heterocyclic azo dye ligand (L) was synthesized by the combination of 4-amino antipyrine with 4-aminophenol. The new Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) complexes were synthesized in excellent yields. The metal chelate structures were elucidated using elemental analyses, [...] Read more.
A new heterocyclic azo dye ligand (L) was synthesized by the combination of 4-amino antipyrine with 4-aminophenol. The new Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) complexes were synthesized in excellent yields. The metal chelate structures were elucidated using elemental analyses, FT-IR, 1H-NMR, mass, magnetic moment, diffused reflectance spectral and thermal analysis (TG-DTG), and molar conductivity measurement. According to the FT-IR study, the azo dye ligand exhibited neutral tri-dentate behavior, binding to the metal ions with the azo N, carbonyl O, and protonated phenolic OH. The 1H-NMR spectral study of the Zn(II) complex supported the coordination of the zo dye ligand without proton displacement of the phenolic OH. Diffused reflectance and magnetic moment studies revealed the octahedral geometry of the complexes, as well as their good electrolytic nature, excepting the Zn(II) and Cd(II) complexes, which were nonelectrolytes, as deduced from the molar conductivity study. The theoretical calculations of optimized HOMO–LUMO energies, geometrical parameters, electronic spectra, natural atomic charges, 3D-plots of MEP, and vibrational wavenumbers were computed and elucidated using LANL2DZ and 6-311G (d, p) basis sets of density functional theory (DFT) with the approach of B3LYP DFT and TD-DFT methods. The ligand and complexes have been assayed for their antimicrobial activity and compared with the standard drugs. Most of the complexes have manifested excellent antimicrobial activity against various microbial strains. A molecular docking investigation was also performed, to acquire more information about the binding mode and energy of the ligand and its metal complexes to the Escherichia coli receptor using molecular docking. Altogether, the newly created ligand and complexes showed positive antibacterial effects and are worth future study. Full article
Show Figures

Figure 1

19 pages, 5243 KB  
Article
[MII(H2dapsc)]-[Cr(CN)6] (M = Mn, Co) Chain and Trimer Complexes: Synthesis, Crystal Structure, Non-Covalent Interactions and Magnetic Properties
by Valentina D. Sasnovskaya, Leokadiya V. Zorina, Sergey V. Simonov, Artem D. Talantsev and Eduard B. Yagubskii
Molecules 2022, 27(23), 8518; https://doi.org/10.3390/molecules27238518 - 3 Dec 2022
Cited by 1 | Viewed by 2817
Abstract
Four new heterometallic complexes combining [MII(H2dapsc)]2+ cations with the chelating H2dapsc {2,6-diacetylpyridine-bis(semicarbazone)} Schiff base ligand and [Cr(CN)6]3− anion were synthesized: {[MII(H2dapsc)]CrIII(CN)6K(H2O)2.5(EtOH) [...] Read more.
Four new heterometallic complexes combining [MII(H2dapsc)]2+ cations with the chelating H2dapsc {2,6-diacetylpyridine-bis(semicarbazone)} Schiff base ligand and [Cr(CN)6]3− anion were synthesized: {[MII(H2dapsc)]CrIII(CN)6K(H2O)2.5(EtOH)0.5}n·1.2n(H2O), M = Mn (1) and Co (2), {[Mn(H2dapsc)]2Cr(CN)6(H2O)2}Cl·H2O (3) and {[Co(H2dapsc)]2Cr(CN)6(H2O)2}Cl·2EtOH·3H2O (4). In all the compounds, M(II) centers are seven-coordinated by N3O2 atoms of H2dapsc in the equatorial plane and N or O atoms of two apical –CN/water ligands. Crystals 1 and 2 are isostructural and contain infinite negatively charged chains of alternating [MII(H2dapsc)]2+ and [CrIII(CN)6]3− units linked by CN-bridges. Compounds 3 and 4 consist of centrosymmetric positively charged trimers in which two [MII(H2dapsc)]2+ cations are bound through one [CrIII(CN)6]3− anion. All structures are regulated by π-stacking of coplanar H2dapsc moieties as well as by an extensive net of hydrogen bonding. Adjacent chains in 1 and 2 interact also by coordination bonds via a pair of K+ ions. The compounds containing MnII (1, 3) and CoII (2, 4) show a significant difference in magnetic properties. The ac magnetic measurements revealed that complexes 1 and 3 behave as a spin glass and a field-induced single-molecule magnet, respectively, while 2 and 4 do not exhibit slow magnetic relaxation in zero and non-zero dc fields. The relationship between magnetic properties and non-covalent interactions in the structures 14 was traced. Full article
(This article belongs to the Special Issue Covalent and Noncovalent Interactions in Crystal Chemistry)
Show Figures

Figure 1

14 pages, 1501 KB  
Article
Aziridination Reactivity of a Manganese(II) Complex with a Bulky Chelating Bis(Alkoxide) Ligand
by Sudheer S. Kurup, Natalie M. Woodland, Richard L. Lord and Stanislav Groysman
Molecules 2022, 27(18), 5751; https://doi.org/10.3390/molecules27185751 - 6 Sep 2022
Cited by 2 | Viewed by 3091
Abstract
Treatment of Mn(N(SiMe3)2)2(THF)2 with bulky chelating bis(alkoxide) ligand [1,1′:4′,1′′-terphenyl]-2,2′′-diylbis(diphenylmethanol) (H2[O-terphenyl-O]Ph) formed a seesaw manganese(II) complex Mn[O-terphenyl-O]Ph(THF)2, characterized by structural, spectroscopic, magnetic, and analytical methods. The reactivity of Mn[O-terphenyl-O] [...] Read more.
Treatment of Mn(N(SiMe3)2)2(THF)2 with bulky chelating bis(alkoxide) ligand [1,1′:4′,1′′-terphenyl]-2,2′′-diylbis(diphenylmethanol) (H2[O-terphenyl-O]Ph) formed a seesaw manganese(II) complex Mn[O-terphenyl-O]Ph(THF)2, characterized by structural, spectroscopic, magnetic, and analytical methods. The reactivity of Mn[O-terphenyl-O]Ph(THF)2 with various nitrene precursors was investigated. No reaction was observed between Mn[O-terphenyl-O]Ph(THF)2 and aryl azides. In contrast, the treatment of Mn[O-terphenyl-O]Ph(THF)2 with iminoiodinane PhINTs (Ts = p-toluenesulfonyl) was consistent with the formation of a metal-nitrene complex. In the presence of styrene, the reaction led to the formation of aziridine. Combining varying ratios of styrene and PhINTs in different solvents with 10 mol% of Mn[O-terphenyl-O]Ph(THF)2 at room temperature produced 2-phenylaziridine in up to a 79% yield. Exploration of the reactivity of Mn[O-terphenyl-O]Ph(THF)2 with various olefins revealed (1) moderate aziridination yields for p-substituted styrenes, irrespective of the electronic nature of the substituent; (2) moderate yield for 1,1′-disubstituted α-methylstyrene; (3) no aziridination for aliphatic α-olefins; (4) complex product mixtures for the β-substituted styrenes. DFT calculations suggest that iminoiodinane is oxidatively added upon binding to Mn, and the resulting formal imido intermediate has a high-spin Mn(III) center antiferromagnetically coupled to an imidyl radical. This imidyl radical reacts with styrene to form a sextet intermediate that readily reductively eliminates the formation of a sextet Mn(II) aziridine complex. Full article
Show Figures

Graphical abstract

19 pages, 6089 KB  
Article
Design, Structural Inspection and Bio-Medicinal Applications of Some Novel Imine Metal Complexes Based on Acetylferrocene
by Mai M. Khalaf, Hany M. Abd El-Lateef, Mohamed Gouda, Fatma N. Sayed, Gehad G. Mohamed and Ahmed M. Abu-Dief
Materials 2022, 15(14), 4842; https://doi.org/10.3390/ma15144842 - 12 Jul 2022
Cited by 28 | Viewed by 3158
Abstract
Some novel imine metal chelates with Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, and Cd2+ cations were produced from 2-acetylferrocene and 3-aminophenol. The new acetylferrocene azomethine ligand ((Z)-cyclopenta-1,3-dien-1-yl(2-(1-((3-hydroxyphenyl)imino)ethyl)cyclopenta-2,4-dien-1-yl)iron) [...] Read more.
Some novel imine metal chelates with Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, and Cd2+ cations were produced from 2-acetylferrocene and 3-aminophenol. The new acetylferrocene azomethine ligand ((Z)-cyclopenta-1,3-dien-1-yl(2-(1-((3-hydroxyphenyl)imino)ethyl)cyclopenta-2,4-dien-1-yl)iron) and its metal ion chelates were constructed and elucidated using FT-IR, UV/Vis, 1HNMR, DTA/TGA, CHNClM studies, mass spectrometry and SEM analysis. According to the TGA/DTG investigation, the ferrocene moiety spontaneously disintegrates to liberate FeO. The morphology of the free acetylferrocene azomethine via SEM analysis was net-shaped with a size of 64.73 nm, which differed in Cd(II) complex to be a spongy shape with a size of 42.43 nm. The quantum chemical features of the azomethine ligand (HL) were computed, and its electronic and molecular structure was refined theoretically. The investigated acetylferrocene imine ligand behaves as bidinetate ligand towards the cations under study to form octahedral geometries in case of all complexes except in case of Zn2+ is tetrahedral. Various microorganisms were used to investigate the anti-pathogenic effects of the free acetylferrocene azomethine ligand and its metal chelates. Moreover, the prepared ligand and its metal complexes were tested for anticancer activity utilizing four different concentrations against the human breast cancer cell line (MCF7) and the normal melanocyte cell line (HBF4). Furthermore, the binding of 3-aminophenol, 2-acetylferrocene, HL, Mn2+, Cu2+, and Cd2+ metal chelates to the receptor of breast cancer mutant oxidoreductase was discovered using molecular docking (PDB ID: 3HB5). Full article
Show Figures

Figure 1

19 pages, 9751 KB  
Article
Spectroscopic and Molecular Docking Studies of Cu(II), Ni(II), Co(II), and Mn(II) Complexes with Anticonvulsant Therapeutic Agent Gabapentin
by Moamen S. Refat, Ahmed Gaber, Yusuf S. Althobaiti, Hussain Alyami, Walaa F. Alsanie, Sonam Shakya, Abdel Majid A. Adam, Mohamed I. Kobeasy and Kareem A. Asla
Molecules 2022, 27(13), 4311; https://doi.org/10.3390/molecules27134311 - 5 Jul 2022
Cited by 25 | Viewed by 2879
Abstract
New Cu(II), Ni(II), Co(II), and Mn(II) complexes of the gabapentin (Gpn) bidentate drug ligand were synthesized and studied using elemental analyses, melting temperatures, molar conductivity, UV–Vis, magnetic measurements, FTIR, and surface morphology (scanning (SEM) and transmission (TEM) electron microscopes).The gabapentin ligand was shown [...] Read more.
New Cu(II), Ni(II), Co(II), and Mn(II) complexes of the gabapentin (Gpn) bidentate drug ligand were synthesized and studied using elemental analyses, melting temperatures, molar conductivity, UV–Vis, magnetic measurements, FTIR, and surface morphology (scanning (SEM) and transmission (TEM) electron microscopes).The gabapentin ligand was shown to form monobasic metal:ligand (1:1) stoichiometry complexes with the metal ions Cu(II), Ni(II), Co(II), and Mn(II). Molar conductance measurements in dimethyl-sulfoxide solvent with a concentration of 10−3 M correlated to a non-electrolytic character for all of the produced complexes. A deformed octahedral environment was proposed for all metal complexes. Through the nitrogen atom of the –NH2 group and the oxygen atom of the carboxylate group, the Gpn drug chelated as a bidentate ligand toward the Mn2+, Co2+, Ni2+, and Cu2+ metal ions. This coordination behavior was validated by spectroscopic, magnetic, and electronic spectra using the formulas of the [M(Gpn)(H2O)3(Cl)]·nH2O complexes (where n = 2–6).Transmission electron microscopy was used to examine the nanostructure of the produced gabapentin complexes. Molecular docking was utilized to investigate the comparative interaction between the Gpn drug and its four metal [Cu(II), Ni(II), Co(II), and Mn(II)] complexes as ligands using serotonin (6BQH) and dopamine (6CM4) receptors. AutoDock Vina results were further refined through molecular dynamics simulation, and molecular processes for receptor–ligand interactions were also studied. The B3LYP level of theory and LanL2DZ basis set was used for DFT (density functional theory) studies. The optimized geometries, along with the MEP map and HOMO → LUMO of the metal complexes, were studied. Full article
(This article belongs to the Special Issue Metal-Based Drugs: Past, Present and Future)
Show Figures

Figure 1

18 pages, 3689 KB  
Article
Synthesis, Spectroscopic, Structural and Molecular Docking Studies of Some New Nano-Sized Ferrocene-Based Imine Chelates as Antimicrobial and Anticancer Agents
by Mai M. Khalaf, Hany M. Abd El-Lateef, Abdulrahman Alhadhrami, Fatma N. Sayed, Gehad G. Mohamed, Mohamed Gouda, Saad Shaaban and Ahmed M. Abu-Dief
Materials 2022, 15(10), 3678; https://doi.org/10.3390/ma15103678 - 20 May 2022
Cited by 31 | Viewed by 3068
Abstract
The newly synthesized organometallic acetyl ferrocene imine ligand (HL) was obtained by the direct combination of 2-acetyl ferrocene with 2-aminothiophenol. The electronic and molecular structure of acetyl ferrocene imine ligand (HL) was refined theoretically and the chemical quantum factors were computed. Complexes of [...] Read more.
The newly synthesized organometallic acetyl ferrocene imine ligand (HL) was obtained by the direct combination of 2-acetyl ferrocene with 2-aminothiophenol. The electronic and molecular structure of acetyl ferrocene imine ligand (HL) was refined theoretically and the chemical quantum factors were computed. Complexes of the acetyl ferrocene imine ligand with metal(II)/(III) ions (Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II)) were fabricated. They were inspected by thermal (DTG/TG), spectroscopic techniques (FT-IR, 1H NMR, mass, UV–Vis), molar conductivity, and CHNClM to explicate their structures. Studies using scanning electron microscope (SEM) were conducted on the free acetyl ferrocene imine ligand and its Cd(II) chelate to confirm their nano-structure. To collect an idea about the effect of metal ions on anti-pathogenic properties upon chelation, the newly synthesized acetyl ferrocene imine ligand and some of its metal chelates were tested against a variety of microorganisms, including Bacillus subtilis, Staphylococcus aureus, Salmonella typhimurium, Escherichia coli, Aspergillus fumigatus, and Candida albicans. The ligand and its metal chelate were tested for cytotoxic activity in human cancer (MCF-7 cell viability) and human melanocyte cell line HBF4. It was discovered that the Cd(II) chelate had the lowest IC50 of the three and thus had the prior activity. Molecular docking was utilized to investigate the interaction of acetyl ferrocene imine ligand (HL) with the receptors of the vascular endothelial growth factor receptor VEGFR (PDB ID: 1Y6a), human Topo IIA-bound G-segment DNA crystal structure (PDB ID: 2RGR), and Escherichia coli crystal structure (PDB ID: 3T88). Full article
Show Figures

Figure 1

16 pages, 5381 KB  
Article
Synthetic and Nanotechnological Approaches for a Diagnostic Use of Manganese
by Maddalena Sguizzato, Petra Martini, Lorenza Marvelli, Walter Pula, Markus Drechsler, Martina Capozza, Enzo Terreno, Lucia Del Bianco, Federico Spizzo, Rita Cortesi and Alessandra Boschi
Molecules 2022, 27(10), 3124; https://doi.org/10.3390/molecules27103124 - 13 May 2022
Cited by 6 | Viewed by 2264
Abstract
The development of multimodal imaging techniques such as positron emission tomography (PET) and magnetic resonance imaging (MRI) allows the contemporary obtaining of metabolic and morphological information. To fully exploit the complementarity of the two imaging modalities, the design of probes displaying radioactive and [...] Read more.
The development of multimodal imaging techniques such as positron emission tomography (PET) and magnetic resonance imaging (MRI) allows the contemporary obtaining of metabolic and morphological information. To fully exploit the complementarity of the two imaging modalities, the design of probes displaying radioactive and magnetic properties at the same time could be very beneficial. In this regard, transition metals offer appealing options, with manganese representing an ideal candidate. As nanosized imaging probes have demonstrated great value for designing advanced diagnostic/theranostic procedures, this work focuses on the potential of liposomal formulations loaded with a new synthesized paramagnetic Mn(II) chelates. Negatively charged liposomes were produced by thin-layer hydration method and extrusion. The obtained formulations were characterized in terms of size, surface charge, efficiency of encapsulation, stability over time, relaxivity, effective magnetic moment, and in vitro antiproliferative effect on human cells by means of the MTT assay. The negatively charged paramagnetic liposomes were monodisperse, with an average hydrodynamic diameter not exceeding 200 nm, and they displayed good stability and no cytotoxicity. As determined by optical emission spectroscopy, manganese complexes are loaded almost completely on liposomes maintaining their paramagnetic properties. Full article
Show Figures

Figure 1

12 pages, 4391 KB  
Article
Effects of MN4-Type Coordination Structure in Metallophthalocyanine for Bio-Inspired Oxidative Desulfurization Performance
by Gai Zhang, Yufan Zhang, Amin Tan, Yan Yang and Min Tian
Molecules 2022, 27(3), 904; https://doi.org/10.3390/molecules27030904 - 28 Jan 2022
Cited by 3 | Viewed by 2463
Abstract
Oxidative desulfurization (ODS) is the promising new method for super deep desulfurization of fuel oil. The oxidative desulfurization performance of the metal-N4-chelates metallophthalocyanines (MPcs) is related to the chemical properties of conjugate structures and the central metal ions. Herein, a biomimetic [...] Read more.
Oxidative desulfurization (ODS) is the promising new method for super deep desulfurization of fuel oil. The oxidative desulfurization performance of the metal-N4-chelates metallophthalocyanines (MPcs) is related to the chemical properties of conjugate structures and the central metal ions. Herein, a biomimetic catalytic system composed of metallophthalocyanines (MPcR4, M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II); R = -H, -COOH, -NO2, -NH2) and molecular O2 was performed to study the influence of MN4-type coordination structure in metallophthalocyanines for the degradation of dibenzothiophene (DBT) in model oil containing n-octane. The results reveal that the conjugate structures and the center metal ions of metallophthalocyanines played key roles in oxidative desulfurization performance. The inductive effect of different R substituents strongly affected the electron cloud distribution of the conjugate structures and the catalytic performance. Moreover, the catalytic activity of MPcs, which is related to the d electronic configuration and ligand-field effects, does not sequentially increase with the increase in the d electron number of central metal ions. Full article
(This article belongs to the Special Issue Phthalocyanines – from Prime Dyes to Hightech Chemistry)
Show Figures

Figure 1

Back to TopTop