Intercropping with Gramineous Plants in Nutrient Solutions as a Tool to Optimize the Use of Iron in Brassica oleracea
Abstract
1. Introduction
2. Results
2.1. Chlorophyll Concentration
2.2. Growth Parameters
2.3. Physiological Parameters
2.4. Biochemical Parameters
2.5. Mineral Composition
3. Discussion
4. Materials and Methods
4.1. Plant Growth Conditions
4.2. Leaf Chlorophyll (Chl) Concentration
4.3. Root Ferric Chelate Reductase (FCR) Activity
4.4. Chlorophyll Fluorescence
4.5. Biomass and Leaf Mineral Composition
4.6. Catalase Activity, Total Protein and Total Phenolic Contents
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Broadley, M.; Brown, P.; Cakmak, I.; Rengel, Z.; Zhao, F. Function of nutrients: Micronutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Academic Press: London, UK, 2012; pp. 191–248. [Google Scholar] [CrossRef]
- Abadia, J.; Abadia, A. Iron and pigments. In Iron Chelation in Plants and Soil Microorganisms; Barton, L.L., Hemming, B.C., Eds.; Academic Press Inc.: San Diego, CA, USA, 1993; pp. 327–343. [Google Scholar]
- Pestana, M.; de Varennes, A.; Abadía, J.; Faria, E.A. Differential tolerance to iron deficiency of citrus rootstocks grown in nutrient solution. Sci. Hortic. 2005, 104, 25–36. [Google Scholar] [CrossRef]
- Alvarez-Fernández, A.; Abadía, J.; Abadía, A. Iron Deficiency, Fruit Yield and Fruit Quality. In Iron Nutrition in Plants and Rhizospheric Microorganisms; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar] [CrossRef]
- Marschner, H.; Römheld, V.; Kissel, M. Different strategies in higher plants in mobilization and uptake of iron. J. Plant Nutr. 1986, 9, 695–713. [Google Scholar] [CrossRef]
- Römheld, V. Different strategies for iron acquisition in higher plants. Physiol. Plant. 1987, 70, 231–234. [Google Scholar] [CrossRef]
- Robinson, N.J.; Procter, C.M.; Connolly, E.L.; Guerinot, M.L. A ferric-chelate reductase for iron uptake from soils. Nature 1999, 397, 694–697. [Google Scholar] [CrossRef] [PubMed]
- Eide, D.; Broderies, M.; Fett, J.; Guerinot, M.L. A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc. Natl. Acad. Sci. USA 1996, 93, 5624–5628. [Google Scholar] [CrossRef] [PubMed]
- Ueno, D.; Yamaji, N.; Ma, J.F. Further characterization of ferric-phytosiderophores transporters ZmYS1 and HvYS1 in maize and barley. J. Exp. Bot. 2009, 60, 3513–3520. [Google Scholar] [CrossRef] [PubMed]
- Nozoye, T.; Aung, M.S.; Masuda, H.; Nakanishi, H.; Nishizawa, N.K. Bioenergy grass [Erianthus ravennae (L.) Beauv.] secretes two members of mugineic acid family phytosiderophores which involved in their tolerance to Fe deficiency. Soil Sci. Plant Nutr. 2017, 63, 543–552. [Google Scholar] [CrossRef]
- Ishimaru, Y.; Suzuki, M.; Tsukamoto, T.; Suzuki, K.; Nakazono, M.; Kobayashi, T. Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant J. 2006, 4, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.P.; Santos, C.; Gomes, A.; Vasconcelos, M.W. Cultivar variability of iron uptake mechanisms in rice (Oryza sativa L.). Plant Physiol. Biochem. 2014, 85, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Masuda, H.; Shimochi, E.; Hamada, T.; Senoura, T.; Kobayashi, T.; Aung, M.S.; Ishimaru, Y.; Ogo, Y.; Nakanishi, H.; Nishizawa, N.K. A new transgenic rice line exhibiting enhanced ferric iron reduction and phytosiderophores production confers tolerance to low iron availability in calcareous soil. PLoS ONE 2017, 12, e0173441. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Yoshihara, T.; Jiang, T.; Goto, F.; Nakanishi, H.; Mori, S.; Nishizawa, N.K. Combined deficiency of iron and other divalent cations mitigates the symptoms of iron deficiency in tobacco plants. Physiol. Plant 2003, 119, 400–408. [Google Scholar] [CrossRef]
- Astolfi, S.; Pii, Y.; Mimmo, T.; Lucini, L.; Miras-Moreno, M.B.; Coppa, E.; Violino, S.; Celletti, S.; Cesco, S. Single and combined Fe and S deficiency differentially modulate root exudate composition in tomato: A double strategy for Fe acquisition? Int. J. Mol. Sci. 2020, 21, 4038. [Google Scholar] [CrossRef] [PubMed]
- Kamal, K.; Hagagg, L.; Awad, F. Improved Fe and Zn acquisition by guava seedlings grown in calcareous soils intercropped with graminaceous species. J. Plant Nutr. 2000, 23, 2071–2080. [Google Scholar] [CrossRef]
- Tagliavini, M.; Abadía, J.; Rombolá, A.D.; Abadía, A.; Tsipouridis, C.; Marangoni, B. Agronomic means for the control of iron chlorosis in deciduous fruit trees. J. Plant Nutr. 2000, 23, 2007–2022. [Google Scholar] [CrossRef]
- Zuo, Y.M.; Zhang, F.S.; Li, X.L.; Cao, Y.P. Studies on the improvement in iron nutrition of peanut by intercropping with maize on a calcareous soil. Plant Soil 2000, 220, 13–25. [Google Scholar] [CrossRef]
- Cesco, S.; Rombolà, A.D.; Tagliavini, M.; Varanini, Z.; Pinton, R. Phytosiderophores released by graminaceous species promote 59Fe-uptake in citrus. Plant Soil 2006, 287, 223–233. [Google Scholar] [CrossRef]
- Dietz, S.; Herz, K.; Gorzolka, K.; Jandt, U.; Bruelheide, H.; Scheel, D. Root exudate composition of grass and forb species in natural grasslands. Sci. Rep. 2020, 10, 10691. [Google Scholar] [CrossRef] [PubMed]
- Sadeghzadeh, N.; Hajiboland, R.; Moradtalab, N.; Poschenrieder, C. Growth enhancement of Brassica sp. napus under both deficient and adequate iron supply by intercropping with Hordeum vulgare: A hydroponic study. Plant Biosyst. 2021, 155, 632–646. [Google Scholar] [CrossRef]
- Zhu, L.; He, J.; Tian, Y.; Li, X.; Li, Y.; Wang, F.; Qin, K.; Wang, J. Intercropping wolfberry with Gramineae plants improves productivity and soil quality. Sci. Hortic. 2022, 292, 110632. [Google Scholar] [CrossRef]
- Contreras, F.; Díaz, J.; Rombolà, A.D.; Mora, M.L. Prospecting intercropping between subterranean clover and grapevine as potential strategy for improving grapevine performance. Curr. Plant Biol. 2019, 19, 100–110. [Google Scholar] [CrossRef]
- Dai, J.; Qiu, W.; Wang, N.; Nakanishi, H.; Zuo, Y. Comparative transcriptomic analysis of the roots of intercropped peanut and maize reveals novel insights into peanut iron nutrition. Plant Physiol. Biochem. 2018, 127, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Pestana, M.; Domingos, I.; Gama, F.; Dandlen, S.; Miguel, M.G.; Castro Pinto, J.; de Varennes, A.; Correia, P.J. Strawberry recovers from iron chlorosis after foliar application of a grass-clipping extract. J. Plant Nutr. Soil Sci. 2011, 174, 473–479. [Google Scholar] [CrossRef]
- Saavedra, T.; Gama, G.; Correia, P.J.; da Silva, J.P.; Miguel, M.G.; de Varennes, A.; Pestana, M. A novel plant extract as a biostimulant to recover strawberry plants from iron chlorosis. J. Plant Nutr. 2020, 43, 2054–2066. [Google Scholar] [CrossRef]
- Saavedra, T.; Pestana, M.; da Silva, J.P.; Correia, P.J. Metabolites released by Poaceae roots under iron deficient conditions. J. Plant Nutr. Soil Sci. 2025, 188, 312–323. [Google Scholar] [CrossRef]
- Michel, L.; Peña, Á.; Pastenes, C.; Berríos, P.; Rombolà, A.D.; Covarrubias, J.I. Sustainable strategies to prevent iron deficiency, improve yield and berry composition in blueberry (Vaccinium spp.). Front. Plant Sci. 2019, 10, 255. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Qiu, W.; Wang, N.; Wang, T.; Nakanishi, H.; Zuo, Y. From leguminosae/gramineae intercropping systems to see benefits of intercropping on iron nutrition. Front. Plant Sci. 2019, 10, 605. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Garcia, J.; Martens, H.J.; Quemada, M.; Thorup-Kristensen, K. Intercropping effect on root growth and nitrogen uptake at different nitrogen levels. J. Plant Ecol. 2013, 8, 380–389. [Google Scholar] [CrossRef]
- Wang, Y.; Qin, Y.; Chai, Q.; Feng, F.; Zhao, C.; Yu, A. Interspecies interactions in relation to root distribution across the rooting profile in wheat-maize intercropping under different plant densities. Front. Plant Sci. 2018, 9, 483. [Google Scholar] [CrossRef] [PubMed]
- Lopez, G.; Ahmadi, S.H.; Amelung, W.; Athmann, M.; Ewert, F.; Gaiser, T.; Gocke, M.I.; Kautz, T.; Postma, J.; Rachmilevitch, S.; et al. Nutrient deficiency effects on root architecture and root-to-shoot ratio in arable crops. Front. Plant Sci. 2022, 13, 1067498. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, M.R.; Casanova, L.; Saavedra, T.; Gama, F.; Suárez, M.P.; Correia, P.J.; Pestana, M. Responses of tomato (Solanum lycopersicum L.) plants to iron deficiency in the root zone. Folia Hortic. 2019, 31, 223–234. [Google Scholar] [CrossRef]
- Gama, F.; Saavedra, T.; da Silva, J.P.; Miguel, M.G.; de Varennes, A.; Correia, P.J.; Pestana, M. The memory of iron stress in strawberry plants. Plant Physiol. Biochem. 2016, 104, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Pestana, M.; de Varennes, A.; Faria, E.A. Lime-induced iron chlorosis in fruit trees. In Production Practices and Quality Assessment of Food Crops; Dris, R., Jain, S.M., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; Volume 2, pp. 171–215. [Google Scholar] [CrossRef]
- Bavaresco, L.; Gonçalves, M.I.; Civardi, S.; Gatti, M.; Ferrari, F. Effects of traditional and new methods on overcoming lime-induced chlorosis of grapevine. Am. J. Enol. Vitic. 2010, 61, 186–190. [Google Scholar] [CrossRef]
- Morales, F.; Abadía, A.; Abadía, J. Chlorophyll fluorescence and photon yield of oxygen evolution in iron-deficient sugar beet (Beta vulgaris L.) leaves. Plant Physiol. 1991, 97, 886–893. [Google Scholar] [CrossRef] [PubMed]
- Abadía, J.; Morales, F.; Abadía, A. Photosystem II efficiency in low chlorophyll, iron-deficient leaves. Plant Soil 1999, 215, 183–192. [Google Scholar] [CrossRef]
- Xiong, B.; Li, L.; Li, Q.; Mao, H.; Wang, L.; Bie, Y.; Zeng, X.; Liao, L.; Wang, X.; Deng, H. Identification of photosynthesis characteristics and chlorophyll metabolism in leaves of citrus cultivar (Harumi) with varying degrees of chlorosis. Int. J. Mol. Sci. 2023, 24, 8394. [Google Scholar] [CrossRef] [PubMed]
- Walker, E.L.; Connolly, E.L. Time to pump iron: Iron-deficiency-signaling mechanisms of higher plants. Curr. Opin. Plant Biol. 2008, 11, 530–535. [Google Scholar] [CrossRef] [PubMed]
- Van Doorn, W.G.; Ketsa, S. Cross reactivity between ascorbate peroxidase and phenol (guaiacol) peroxidase. Postharvest Biol. Technol. 2014, 95, 64–69. [Google Scholar] [CrossRef]
- Martins, L.L.; Reis, R.; Moreira, I.; Pinto, F.; Sales, J.; Mourato, M. Antioxidative Response of plants to oxidative stress induced by cadmium. In Cadmium: Characteristics, Sources of Exposure, Health and Environmental Effects; Hasanuzzaman, M., Fujita, M., Eds.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2013; pp. 1–25. [Google Scholar]
- Mourato, M.; Reis, R.; Louro, L. Characterization of plant antioxidative system in response to abiotic stresses: A focus on heavy metal toxicity. In Advances in Selected Plant Physiology Aspects; IntechOpen: London, UK, 2012; pp. 23–44. [Google Scholar] [CrossRef]
- Santos, C.S.; Ozgur, R.; Uzilday, B.; Turkan, I.; Roriz, M.; Rangel, A.O.S.S.; Carvalho, S.M.P.; Vasconcelos, M.W. Understanding the Role of the Antioxidant System and the Tetrapyrrole Cycle in Iron Deficiency Chlorosis. Plants 2019, 8, 348. [Google Scholar] [CrossRef] [PubMed]
- Cui, T.; Fang, L.; Wang, M.; Jiang, M.; Shen, G. Intercropping of Gramineous Pasture Ryegrass (Lolium perenne L.) and Leguminous Forage Alfalfa (Medicago sativa L.) Increases the Resistance of Plants to Heavy Metals. J. Chem. 2018, 2018, 7803408. [Google Scholar] [CrossRef]
- Oke, F.; Aslim, B. Protective effect of two edible mushrooms against oxidative cell damage and their phenolic composition. Food Chem. 2011, 128, 613–619. [Google Scholar] [CrossRef]
- Bostan, C.; Moiscuc, A.; Cojocariu, L.; Horablahga, M.; Horablahga, A.; Marian, F. Allelophatic substances and their ability to influence the grasses quality. Res. J. Agric. Sci. 2012, 44, 179–186. [Google Scholar]
- Martínez-Cuenca, M.R.; Iglesias, D.J.; Talón, M.; Abadía, J.; López-Millán, A.; Primo-Millo, E.; Legaz, F. Metabolic responses to iron deficiency in roots of Carrizo citrange [Citrus sinensis (L.) Osbeck × Poncirus trifoliata (L.) Raf.]. Tree Physiol. 2013, 33, 320–329. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, S.; Pinochet, J.; Abadía, A.; Moreno, M.A.; Gogorcena, Y. Tolerance response to iron chlorosis of Prunus selections as rootstocks. Hortic. Sci. 2008, 43, 304–309. [Google Scholar] [CrossRef]
- Pestana, M.; Correia, P.J.; Saavedra, T.; Gama, F.; Dandlen, S.; Nolasco, G.; Varennes, A. de, Root ferric chelate reductase is regulated by iron and copper in strawberry plants. J. Plant Nutr. 2013, 36, 2035–2047. [Google Scholar] [CrossRef]
- Cohu, C.M.; Pilon, M. Regulation of superoxide dismutase expression by copper availability. Physiol. Plant. 2007, 129, 747–755. [Google Scholar] [CrossRef]
- Fox, P.L. The copper-iron chronicles: The story of an intimate relationship. Biometals 2003, 16, 9–40. [Google Scholar] [CrossRef] [PubMed]
- Palmer, C.M.; Guerinot, M.L. Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat. Chem. Biol. 2009, 5, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Mei, P.P.; Gui, L.G.; Wang, P.; Huang, J.C.; Long, H.Y.; Christie, P.; Li, L. Maize/faba bean intercropping with rhizobia inoculation enhances productivity and recovery of fertilizer P in a reclaimed desert soil. Field Crop Res. 2012, 130, 19–27. [Google Scholar] [CrossRef]
- Fan, Y.F.; Wang, Z.L.; Liao, D.P.; Raza, M.A.; Wang, B.B.; Zhang, J.W.; Chen, J.X.; Feng, L.Y.; Wu, X.L. Maize–legume intercropping promotes N uptake through changing the root spatial distribution legume nodulation capacity soil N availability. J. Integr. Agric. 2020, 21, 1755–1771. [Google Scholar] [CrossRef]
- Kanai, M.; Hirai, M.; Yoshiba, M.; Tadano, T.; Higuchi, K. Iron deficiency causes zinc excess in Zea mays. Soil Sci. Plant Nutr. 2009, 55, 271–276. [Google Scholar] [CrossRef]
- Banakar, R.; Álvarez-Fernández, A.; Díaz-Benito, P.; Abadía, J.; Capell, T.; Christou, P. Phytosiderophores determine thresholds for iron and zinc accumulation in biofortified rice endosperm while inhibiting the accumulation of cadmium. J. Exp. Bot. 2017, 68, 4983–4995. [Google Scholar] [CrossRef] [PubMed]
- Cakmak, S.; Gülüt, K.Y.; Marschner, H.; Graham, R.D. Effect of zinc and iron deficiency on phytosiderophore release in wheat genotypes differing in zinc efficiency. J. Plant Nutr. 1994, 17, 1–17. [Google Scholar] [CrossRef]
- Zuo, Y.; Zhang, F. Iron and zinc biofortification strategies in dicot plants by intercropping with gramineous species: A review. Sustain. Agric. 2009, 29, 571–582. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar] [CrossRef]
- Bienfait, H.F.; Bino, R.J.; Van der Blick, A.M.; Duivenvoorden, J.F.; Fontaine, J.M. Characterization of ferric reducing activity in roots of Fe-deficient Phaseolus vulgaris. Physiol. Plant. 1983, 59, 196–202. [Google Scholar] [CrossRef]
- Osório, J.; Osório, M.L.; Correia, P.J.; de Varennes, A.; Pestana, M. Chlorophyll fluorescence imaging as a tool for under standing the impact of iron deficiency and resupply on photosynthetic performance of strawberry plants. Sci. Hortic. 2014, 165, 148–155. [Google Scholar] [CrossRef]
- A.O.A.C.—Association of Official Agricultural Chemists. Official Methods of Analysis; Association of Official Agricultural Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Rellán-Álvarez, R.; Ortega-Villasante, C.; Álvarez-Fernández, A.; Campo, F.F.D.; Hernández, L.E. Stress responses of Zea mays to cadmium and mercury. Plant Soil 2006, 27, 41–50. [Google Scholar] [CrossRef]
- Tewari, R.K.; Hadacek, F.; Sassmann, S.; Lang, I. Iron deprivation induced reactive oxygen species generation leads to non-autolytic PCD in Brassica sp. napus leaves. Environ. Exp. Bot. 2013, 91, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
Treatment | Plant Height (cm) | Number of Leaves | Dry Weight—DW (g) | Root/Shoot | ||
---|---|---|---|---|---|---|
Root | Shoot | (DW) | ||||
Monocrop—MC | ||||||
Fe0 | 12.3 ± 0.6 d | 7.8 ± 0.3 cd | 0.2 ± 0.03 b | 1.0 ± 0.1 d | 0.3 ± 0.01 bcd | |
Fe1 | 14.2 ± 1.7 c | 9.7 ± 0.3 b | 0.3 ± 0.03 b | 2.0 ± 0.1 c | 0.2 ± 0.01 d | |
Fe5 | 15.5 ± 0.5 bc | 10.7 ± 0.2 a | 0.4 ± 0.02 b | 2.4 ± 0.0 bc | 0.2 ± 0.02 d | |
Intercrop—IC | ||||||
Fe0 | Poa sp. | 9.8 ± 0.0 e | 8.3 ± 0.3 c | 0.2 ± 0.06 b | 0.9 ± 0.1 d | 0.3 ± 0.02 bcd |
Lolium sp. | 12.3 ± 0.3 d | 8.0 ± 0.0 cd | 0.3 ± 0.06 b | 0.8 ± 0.1 d | 0.4 ± 0.10 a | |
Festuca sp. | 12.3 ± 0.4 d | 7.3 ± 0.2 d | 0.4 ± 0.02 b | 1.1 ± 0.1 d | 0.3 ± 0.01 abc | |
Fe1 | Poa sp. | 11.8 ± 0.3 d | 7.3 ± 0.3 d | 0.3 ± 0.07 b | 1.1 ± 0.1 d | 0.3 ± 0.04 bcd |
Lolium sp. | 18.7 ± 0.3 a | 9.7 ± 0.3 b | 0.8 ± 0.02 a | 2.8 ± 0.5 ab | 0.3 ± 0.04 bcd | |
Festuca sp. | 18.7 ± 0.4 a | 10.7 ± 0.2 a | 0.8 ± 0.02 a | 2.3 ± 0.3 bc | 0.4 ± 0.02 ab | |
Fe5 | Poa sp. | 16.0 ± 0.3 b | 10.7 ± 0.3 a | 0.4 ± 0.09 b | 1.9 ± 0.3 c | 0.2 ± 0.08 cd |
Lolium sp. | 19.7 ± 0.3 a | 11.0 ± 0.0 a | 0.6 ± 0.09 a | 3.3 ± 0.0 a | 0.2 ± 0.03 cd | |
Festuca sp. | 19.7 ± 0.3 a | 10.3 ± 0.3 ab | 0.6 ± 0.08 a | 2.5 ± 0.3 bc | 0.3 ± 0.03 bcd | |
Main factors | ||||||
Species × System | ** | ns | *** | *** | * | |
Species × Fe level | *** | *** | *** | *** | *** | |
System × Fe level | *** | *** | *** | *** | *** | |
Species × System × Fe level | *** | *** | *** | *** | ** |
Young Leaves | |||||
---|---|---|---|---|---|
Treatments | Chl | F0 | Fm | Fv/Fm | |
Monocrop—MC | |||||
Fe0 | 163.1 ± 8.3 g | 1475.0 ± 61.0 b | 2271.3 ± 110.4 g | 0.24 ± 0.02 e | |
Fe1 | 606.2 ± 2.7 d | 548.3 ± 8.0 d | 3248.0 ± 47.0 de | 0.82 ± 0.01 a | |
Fe5 | 761.6 ± 14.0 c | 600.9 ± 16.0 d | 3455.0 ± 80.0 cd | 0.83 ± 0.01 a | |
Intercrop—IC | |||||
Fe0 | Poa sp. | 368.0 ± 24.0 f | 1791.0 ± 165.0 a | 2866.0 ± 169.0 f | 0.39 ± 0.03 d |
Lolium sp. | 182.0 ± 16.0 g | 465.0 ± 49.1 d | 524.0 ± 62.4 i | 0.16 ± 0.01 f | |
Festuca sp. | 191.0 ± 23.0 g | 424.2 ± 33.1 d | 546.0 ± 67.3 i | 0.21 ± 0.03 ef | |
Fe1 | Poa sp. | 577.0 ± 12.0 d | 542.0 ± 42.0 d | 3581.0 ± 54.0 bc | 0.84 ± 0.01 a |
Lolium sp. | 529.0 ± 21.0 e | 1477.0 ± 203.0 b | 3908.0 ± 44.0 a | 0.59 ± 0.05 c | |
Festuca sp. | 600.0 ± 23.0 d | 1490.0 ± 94.0 b | 2778.0 ± 31.0 f | 0.69 ± 0.04 b | |
Fe5 | Poa sp. | 919.0 ± 17.0 a | 520.0 ± 27.0 d | 3053.0 ± 177.0 ef | 0.83 ± 0.00 a |
Lolium sp. | 824.0 ± 4.0 b | 1330.0 ± 80.0 b | 3807.0 ± 60.0 ab | 0.81 ± 0.01 a | |
Festuca sp. | 798.0 ± 10.0 bc | 821.0 ± 28.0 c | 3843.0 ± 126.0 ab | 0.87 ± 0.03 a | |
Main factors | |||||
Species × System | ns | ns | ns | ns | |
Species × Fe level | *** | *** | *** | *** | |
System × Fe level | *** | *** | *** | *** | |
Species × System × Fe level | *** | *** | *** | *** |
Treatments | Catalase U g−1 min−1 FW | Proteins µg BSA | Phenols mg GAE L−1 | |
---|---|---|---|---|
Young Leaves | ||||
Monocrop—MC | ||||
Fe0 | 10.4 ± 0.6 bcd | 63.4 ± 1.7 f | 85.1 ± 1.7 f | |
Fe1 | 8.0 ± 0.7 bcde | 85.0 ± 1.1 bc | 102.7 ± 0.6 ab | |
Fe5 | 24.1 ± 3.2 a | 89.0 ± 0.6 ab | 96.9 ± 1.5 cd | |
Intercrop—IC | ||||
Fe0 | Poa sp. | 6.7 ± 0.3 cde | 75.6 ± 0.8 d | 104.4 ± 1.1 a |
Lolium sp. | 10.7 ± 0.6 bc | 76.4 ± 1.2 d | 93.3 ± 1.8 de | |
Festuca sp. | 12.5 ± 1.2 b | 69.7 ± 2.1 e | 90.1 ± 2.4 e | |
Fe1 | Poa sp. | 5.2 ± 0.5 de | 90.3 ± 0.5 a | 99.3 ± 0.5 bc |
Lolium sp. | 3.5 ± 0.3 e | 88.0 ± 0.6 ab | 75.0 ± 2.1 g | |
Festuca sp. | 7.9 ± 0.6 bcde | 73.3 ± 1.1 de | 85.8 ± 2.3 f | |
Fe5 | Poa sp. | 26.0 ± 2.4 a | 82.5 ± 1.8 c | 106.0 ± 0.9 a |
Lolium sp. | 22.0 ± 3.5 a | 77.7 ± 3.4 d | 104.3 ± 0.8 a | |
Festuca sp. | 24.0 ± 0.5 a | 63.6 ± 1.8 f | 107.0 ± 1.8 a | |
Main factors | ||||
Species × System | ns | ** | ns | |
Species × Fe level | *** | *** | *** | |
System × Fe level | *** | *** | *** | |
Species × System × Fe level | *** | *** | *** | |
Roots | ||||
Monocrop—MC | ||||
Fe0 | 20.9 ± 0.8 cd | 45.9 ± 1.1 cd | 17.5 ± 1.2 d | |
Fe1 | 17.5 ± 0.5 e | 53.2 ± 2.3 b | 15.1 ± 0.4 de | |
Fe5 | 24.5 ± 0.2 ab | 61.8 ± 1.1 a | 24.7 ± 0.6 bc | |
Intercrop—IC | ||||
Fe0 | Poa sp. | 22.5 ± 0.5 bc | 60.0 ± 0.9 a | 27.8 ± 1.8 a |
Lolium sp. | 25.1 ± 0.4 a | 61.5 ± 0.9 a | 17.4 ± 0.5 d | |
Festuca sp. | 25.4 ± 0.5 a | 45.0 ± 1.1 d | 16.9 ± 0.6 de | |
Fe1 | Poa sp. | 14.5 ± 0.3 f | 50.8 ± 1,1 b | 27.6 ± 0.5 a |
Lolium sp. | 10.2 ± 0.5 g | 50.1 ± 0.6 bc | 23.5 ± 0.6 c | |
Festuca sp. | 21.1 ± 0.9 cd | 44.2 ± 1.1 d | 14.6 ± 0.6 e | |
Fe5 | Poa sp. | 19.0 ± 0.7 de | 49.6 ± 0.9 bc | 26.5 ± 0.1 ab |
Lolium sp. | 21.2 ± 0.4 cd | 41.7 ± 1.5 de | 22.8 ± 0.6 c | |
Festuca sp. | 21.5 ± 2.0 c | 38.4 ± 2.6 e | 25.1 ± 0.4 bc | |
Main factors | ||||
Species × System | ns | * | *** | |
Species × Fe level | *** | *** | *** | |
System × Fe level | *** | *** | * | |
Species × System × Fe level | *** | *** | *** |
Treatments | K g kg−1 | Ca g kg−1 | Mg g kg−1 | P g kg−1 | S g kg−1 | ||
Fe0 | 40 ± 3.7 b | 24 ± 3.7 abc | 7.2 ± 1.0 cdef | 9.4 ± 0.8 abc | 19 ± 2.2 ab | ||
Fe1 | 31 ± 2.8 b | 20 ± 4.2 bc | 4.1 ± 0.4 f | 7.0 ± 1.0 bcde | 13 ± 1.2 ab | ||
Fe5 | 34 ± 1.3 b | 33 ± 2.8 ab | 5.3 ± 0.5 ef | 6.9 ± 0.4 bcde | 14 ± 1.2 ab | ||
Fe0 | Poa sp. | 43 ± 2.2 b | 21 ± 1.8 c | 6.4 ± 0.4 cdef | 10.5 ± 0.5 a | 18 ± 0.6 ab | |
Lolium sp. | 42 ± 7.7 b | 34 ± 3.9 a | 10.0 ± 0.9 a | 8.3 ± 2.3 abcd | 19 ± 3.1 a | ||
Festuca sp. | 60 ± 12.1 a | 36 ± 4.1 a | 9.1 ± 1.2 ab | 9.5 ± 2.2 ab | 19 ± 3.5 ab | ||
Fe1 | Poa sp. | 46 ± 3.3 b | 31 ± 2.1 abc | 7.3 ± 0.7 bcd | 9.8 ± 0.7 ab | 18 ± 1.8 ab | |
Lolium sp. | 37 ± 3.7 b | 32 ± 2.3 ab | 7.8 ± 0.8 bc | 5.8 ± 0.9 cde | 17 ± 2.1 ab | ||
Festuca sp. | 36 ± 2.4 b | 35 ± 1.4 a | 7.2 ± 0.2 bcde | 7.0 ± 0.8 bcde | 17 ± 1.1 ab | ||
Fe5 | Poa sp. | 38 ± 1.6 b | 31 ± 2.0 abc | 5.7 ± 0.5 cdef | 7.2 ± 0.6 bcde | 12 ± 1.2 b | |
Lolium sp. | 32 ± 1.3 b | 26 ± 3.0 abc | 5.3 ± 0.5 def | 5.2 ± 0.4 de | 13 ± 1.0 ab | ||
Festuca sp. | 36 ± 1.8 b | 25 ± 2.3 abc | 5.6 ± 0.6 cdef | 4.7 ± 0.4 e | 13 ± 1.5 ab | ||
Species × System | ns | ns | * | * | ns | ||
Species × Fe level | * | ** | *** | * | * | ||
System × Fe level | ** | ** | *** | ** | *** | ||
Species × System × Fe level | ** | ** | *** | ** | * | ||
Treatments | B mg kg−1 | Mo mg kg−1 | Fe mg kg−1 | Cu mg kg−1 | Zn mg kg−1 | Mn mg kg−1 | |
Fe0 | 50 ± 4.3 ab | 2.9 ± 0.2 a | 37 ± 6.6 ab | 15 ± 0.2 abc | 106 ± 18.9 a | 134 ± 21.0 ab | |
Fe1 | 38 ± 2.5 bc | 2.3 ± 0.3 bc | 86 ± 33.3 abc | 9 ± 1.6 bc | 38 ± 4.5 cd | 87 ± 14.8 bc | |
Fe5 | 38 ± 1.9 bc | 1.7 ± 0.1 d | 124 ± 35.3 a | 7 ± 0.6 bc | 45 ± 4.7 bc | 136 ± 16 ab | |
Fe0 | Poa sp. | 49 ± 2.4 ab | 2.2 ± 0.2 bcd | 40 ± 5.3 bc | 13 ± 0.5 abc | 76 ± 5.0 a | 90 ± 11.6 bc |
Lolium sp. | 54 ± 7.0 a | 2.3 ± 0.3 abc | 39 ± 8.5 c | 22 ± 13.3 a | 24 ± 8.6 def | 124 ± 15.2 ab | |
Festuca sp. | 51 ± 7.7 a | 2.4 ± 0.2 ab | 31 ± 10.1 c | 13 ± 3.5 abc | 29 ± 7.2 de | 55 ± 10.2 cd | |
Fe1 | Poa sp. | 45 ± 2.3 abc | 2.3 ± 0.2 abc | 68 ± 6.0 abc | 16 ± 1.6 ab | 59 ± 3.6 b | 149 ± 21.8 a |
Lolium sp. | 42 ± 3.5 abc | 1.9 ± 0.1 bcd | 48 ± 3.7 abc | 10 ± 3.5 bc | 8 ± 1.8 fg | 82 ± 14.2 bcd | |
Festuca sp. | 45 ± 1.8 abc | 2.0 ± 0.1 bcd | 47 ± 3.6 abc | 9 ± 2.5 bc | 14 ± 3.1 efg | 62 ± 4.0 cd | |
Fe5 | Poa sp. | 37 ± 1.8 bc | 1.6 ± 0.1 d | 98 ± 27.2 abc | 7 ± 0.2 bc | 45 ± 3.0 bc | 64 ± 9.1 cd |
Lolium sp. | 37 ± 3.6 bc | 1.6 ± 0.1 d | 80 ± 7.8 abc | 5 ± 0.8 bc | 11 ± 1.2 fg | 66 ± 11.6 cd | |
Festuca sp. | 33 ± 3.1 c | 1.7 ± 0.1 cd | 94 ± 27.5 abc | 4 ± 0.3 c | 5 ± 2.1 g | 35 ± 5.9 d | |
Species × System | ns | ns | ns | ns | *** | *** | |
Species × Fe level | ** | *** | * | * | *** | *** | |
System × Fe level | *** | *** | ** | ** | *** | *** | |
Species × System × Fe level | ** | *** | * | * | *** | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saavedra, T.; Pestana, M.; Costa, J.; Gonçalves, P.; Fangueiro, D.; Da Silva, J.P.; Correia, P.J. Intercropping with Gramineous Plants in Nutrient Solutions as a Tool to Optimize the Use of Iron in Brassica oleracea. Plants 2025, 14, 2215. https://doi.org/10.3390/plants14142215
Saavedra T, Pestana M, Costa J, Gonçalves P, Fangueiro D, Da Silva JP, Correia PJ. Intercropping with Gramineous Plants in Nutrient Solutions as a Tool to Optimize the Use of Iron in Brassica oleracea. Plants. 2025; 14(14):2215. https://doi.org/10.3390/plants14142215
Chicago/Turabian StyleSaavedra, Teresa, Maribela Pestana, João Costa, Paula Gonçalves, David Fangueiro, José Paulo Da Silva, and Pedro José Correia. 2025. "Intercropping with Gramineous Plants in Nutrient Solutions as a Tool to Optimize the Use of Iron in Brassica oleracea" Plants 14, no. 14: 2215. https://doi.org/10.3390/plants14142215
APA StyleSaavedra, T., Pestana, M., Costa, J., Gonçalves, P., Fangueiro, D., Da Silva, J. P., & Correia, P. J. (2025). Intercropping with Gramineous Plants in Nutrient Solutions as a Tool to Optimize the Use of Iron in Brassica oleracea. Plants, 14(14), 2215. https://doi.org/10.3390/plants14142215