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Abstract: Oxidative desulfurization (ODS) is the promising new method for super deep desulfur-
ization of fuel oil. The oxidative desulfurization performance of the metal-N4-chelates metalloph-
thalocyanines (MPcs) is related to the chemical properties of conjugate structures and the central
metal ions. Herein, a biomimetic catalytic system composed of metallophthalocyanines (MPcR4,
M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II); R = -H, -COOH, -NO2, -NH2) and molecular O2 was
performed to study the influence of MN4-type coordination structure in metallophthalocyanines for
the degradation of dibenzothiophene (DBT) in model oil containing n-octane. The results reveal that
the conjugate structures and the center metal ions of metallophthalocyanines played key roles in ox-
idative desulfurization performance. The inductive effect of different R substituents strongly affected
the electron cloud distribution of the conjugate structures and the catalytic performance. Moreover,
the catalytic activity of MPcs, which is related to the d electronic configuration and ligand-field effects,
does not sequentially increase with the increase in the d electron number of central metal ions.

Keywords: metallophthalocyanine; MN4-type coordination structure; desulfurization; O2

1. Introduction

With the aggravation of environmental pollution problems, the removal of sulfur com-
pounds in vehicle fuel has become an important research focus. The sulfur oxyacids (SOX)
produced by fuels combustion remained a major source of air pollution and acid rain. Thio-
phene and its derivatives are the main sulfur compounds [1–3]. Oxidative desulfurization
technology is one of the most effective super deep desulfurization methods for thiophene
and its derivatives [4,5]. Many alternative oxidative desulfurization technologies have
been attempted based on the semiconductor materials, graphene, carbonnanotubes, metal
macrocycles and their appropriate combinations. Specially, many reports have pointed
out that metal macrocycles have broad prospects in the field of petroleum refining as the
catalyst for the removal of sulfur-containing compounds [6–8].

Metal-N4-chelate compound is one of numerous metal macrocycles. Metalloporphyrin
(MPs) and metallophthalocyanine (MPcs) with metal-N4-chelate structure have an 18 π

electrons conjugated structure and have the function of biomimetic oxygen carrier resem-
bling hemeproteins in the human body [9] (Figure 1). Compared with MPs, a variety
of substituents can modify with the periphery of the benzene ring of phthalocyanines,
and different substituents can make MPcs have different chemical structures and proper-
ties [10–12]. The catalytic activity of the metal-N4-chelate macrocycles is affected by the
chemical properties of the ligand field and the central metal ion. Owing to the π electron
conjugated structure of the metal-N4-chelates, delocalization effect and weakly bonding
properties, metal-N4-chelate compounds are more easily oxidized and reduced. A phthalo-
cyanine ring is a cyclic rotaene chromophore with 18 π electrons. The p–π conjugation of
substituent and phthalocyanine ring influences the electron cloud density distribution of
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the system and catalytic activity. For MPcs with strong ligand-field effects, the chemical
structure of the phthalocyanine, the radius and the d-filling of the metal center ions are the
main factors that influence catalytic activity [13]. Furthermore, the existence of electronega-
tive substituents extremely reinforced the catalytic activity of the phthalocyanines. Their
catalytic activity is reinforced by the numerous electron-withdrawing substituents on the
periphery of metal Pcs [14]. The results stated clearly that the revision of the main MPcs
skeleton enhanced catalytic performance and encouraged us to design a phthalocyanine
compound with different substituents. In this paper, the metallophthalocyanines ZnPc,
ZnPc(COOH)4, ZnPc(NH2)4 and ZnPc(NO2)4, which have the same central metal ion and
different electron-withdrawing substituents, were prepared to study the influence of chem-
ical structure on oxidative desulfurization. At the same time, the phthalocyanine molecules
themselves do not have catalytic oxidation activity. Metallophthalocyanines have excellent
catalytic performance when the phthalocyanine molecules are coordinated with the metal
ions to form phthalocyanine complexes. Therefore, the type of central metal ions is also the
key factor affecting the catalytic activity of phthalocyanine complexes.
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Additionally, H2O2 is the most common oxidant in catalytic oxidative desulfurization
technologies. However, the reduction product H2O of H2O2 causes a two-phase mass
transfer problem in the reaction system, and further damages oil quality [15,16]. In ad-
dition, the expensive H2O2 results in the catalysts having a significant cost in large-scale
application. Molecular oxygen (O2) would be a desired oxidant for ODS due to the great
advantages, such as being inexpensive, obtainable, and environmentally friendly [17,18].
However, the triplet state molecular oxygen (3O2) makes it difficult to react with an or-
ganic compound of a singlet state at room temperature; that is, spin and symmetry are
prohibited. Phthalocyanine is a P-type semiconductor. The phthalocyanine complex is
excited by visible light to form the triplet excited state (3[MPc]*). The triplet excited state
phthalocyanine(3[MPc]*) interacts with the triplet ground state oxygen molecule (3O2) to
transfer energy and generate singlet state oxygen molecules (1O2) with strong activity.
Singlet state oxygen molecules oxidize and decompose organic compounds [19]. Therefore,
molecular oxygen is an ideal oxidant for the catalytic oxidative desulfurization system of
the phthalocyanine complex. Zhou Xinrui [20] et al. studied the catalytic oxidation of thio-
phene in alkanes by O2/FePc(NO4)4 system. The results showed that the phthalocyanine
complex can effectively activate oxygen molecules and achieve deep desulfurization.

In this paper, the phthalocyanine complexes MPcR4 (MPcR4, M = Mn2+, Fe2+, Co2+,
Ni2+, Cu2+, Zn2+; R = -H, -COOH, -NH2, -NO2, Figure 2) were selected as desulfuriza-
tion catalysts, the O2 molecule was used as the oxidant, dibenzothiophene (DBT) simu-
lated sulfur-containing pollutants, and a biomimetic catalytic system was performed to
study the influence of MN4-type coordination structure in metallophthalocyanines for the
degradation of dibenzothiophene(DBT). Based on the results, a “double active site” of
phthalocyanine complexes for catalytic oxidation desulfurization was proposed.
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2. Results and Discussion
2.1. Structural Characterization of Phthalocyanine Complexes

The metallophthalocyanines MPcR4 were characterized by FT-IR, UV-Vis spectrum
analysis and elemental analysis. The results of quantum mechanical calculations showed
that the UV-Vis spectrum of the phthalocyanine complexes have two absorption bands—the
Q band and the B band—which belong to the π electron transition of the phthalocyanine
ring (Figure 3). The spectral properties of the phthalocyanine complex were further studied
by UV-Vis spectrum, as shown in Figure 4a,b. The Q band is located at 600–700 nm with
the energy of about 3.8 eV, which belongs to the electronic transition of 2a1u (LUMO)→ 6eg
(HOMO). The B-band is located in the wavelength range of 250–350 nm with the energy of
1.8 eV, which belongs to the electronic transition of 4a2u → 6eg [8]. The absorption peak
of the Q band is the characteristic absorption band of phthalocyanine ring. In addition,
when the substituents were introduced on the conjugated system of the phthalocyanine
complex, the red shifts occurred in the B band and Q band. The phthalocyanine ring is a
cyclic rotaene chromophore with 18 π electrons. The p–π conjugation effect between the
substituent and the phthalocyanine ring strongly affected the distribution of the electron
cloud density and the position of Q band. The Q-band shifted to the near-infrared region
because the energy difference ∆E between LUMO (Highest Occupied Molecular Orbital)
and HOMO (Lowest Unoccupied Molecular Orbital) decreased with the orderly increase in
the electron cloud density for the ZnPc, ZnPc (NO2)4, ZnPc (COOH)4 and ZnPc (NH2)4
systems. Additionally, the Q-band intensity of a series of MPc complexes was obviously
enhanced. This was probably due to the increase in d electrons in the central metal ions
(Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+) and the decrease in energy difference ∆E between
LUMO and HOMO. Furthermore, the intensity of Q band decreased, obviously due to
aggregation caused by hydrogen bonds and intermolecular forces [21,22]. The results
indicate that the aggregation effect broadened the UV absorption peaks.
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The FT-IR spectra were recorded to further investigate the structure of the MPcR4
compounds (Figure 4c,d). The characteristic absorption peak at 3342 cm−1 assigned –OH
stretching vibration. The absorption peak in the range of 887–920 cm−1 belonged to the
M-N bond formed by the central metal ion and the nitrogen atom on the pyrrole ring.
The absorption peaks at 1680–1550 cm−1 are attributed to the stretching vibration peak of
C=C and C=N bond on the phthalocyanine ring. The absorptions in 1000–1200 cm−1 were
assigned to the characteristic absorption of the C-H stretching vibration. Noteworthily,
the appearance of strong absorption peak at 750–720cm−1 indicated the formation of
phthalocyanine conjugated macrocycles. In addition, 3324, 3203cm−1 absorption peak
belonged to the NH2 group [23,24]. The stretching vibration peaks of N-O bond were
located at 1522, 1336 cm−1.

2.2. Catalytic Oxidation Activity of Phthalocyanine Complexes (MPcR4)
2.2.1. Effect of Central Metal Ion on Catalytic Oxidation Desulfurization Activity
of Phthalocyanine

The desulfurization activities of phthalocyanine complexes with different center metal
ions are in order of CoPc > FePc > NiPc > CuPc > MnPc > ZnPc (Figure 5). The experimental
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results indicate that the catalytic activity of phthalocyanine complexes does not increase in
an orderly way with the increase in the d-electron number of the central metal ions. The
results show that the d-electron configuration of the central metal ion is the main factor
affecting the catalytic oxidation desulfurization activity of the phthalocyanine complexes.
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phthalocyanine; (b) desulfurization activities at different time.

The catalytic activity is related to the electron delivery ability of central metal ions.
The electron delivery ability of central metal ion M(II) can be obtained by molecular orbital
theory. The quantum chemical theoretical calculation method INDO/S was used to study
the frontier molecular orbital characteristics of the MPc molecule, and the results are shown
in Table 1 [25,26]. The d orbital contribution of metal ions in the highest occupied molecular
orbital (HOMO) is in order of Co(II) > Fe(II) > Ni(II) > Cu(II) > Mn(II) > Zn(II), which is
according with the catalytic oxidative desulfurization activity. Combining the catalytic
activity, it can be concluded that π orbit (Fe2+, Mn2+) has more electron delivery capacity
than σ orbit (Co2+, Ni2+, Cu2+). In the case of the same orbit type, the higher the HOMO
level energy is according to the greater d orbital contribution of metal ion, the stronger
the electron donating ability and the higher the catalytic activity. In addition, Zn(II) ion
has the worst electron donating ability because Zn(II) ion has a fully stable structure of
d10. Considering the coordination effect of HOMO orbital type (σ, π) and metal ion d
orbit contribution, the catalytic activity of phthalocyanine complexes does not sequentially
increase with the increase in d electron number of central metal ions [27,28].
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Table 1. HOMO orbital composition in phthalocyanine complex molecule [18,19].

M(II)Pc
HOMO

Orbital Type Pc ring Component M(II) d Orbital Composition

Mn(II) σ s, px py (C,N) 4s, 4px dx2−y2 (−0.0845)
Fe(II) σ s, px py (C,N) 4s, 4px dx2−y2 (0.1032)
Co(II) π pz (C,N) dxz, dyz (0.0102)
Ni(II) π pz (C,N) dxz, dyz (0.0509)
Cu(II) π pz (C,N) dxz, dyz (0.0070)
Zn(II) π pz (C,N) dxz, dyz (d10)

2.2.2. Effect of Conjugation Structure on Catalytic Oxidative Desulfurization Activity
of Phthalocyanine

In addition, the nature of the substituents on the phthalocyanine ring strongly af-
fects the catalytic oxidation desulfurization activity of the MN4-type conjugation system
(Figure 6). The desulfurization activity is in order of ZnPc < ZnPc(NO2)4 < ZnPc(COOH)4
< ZnPc(NH2)4. The activity of the different substituted phthalocyanine complexes is shown
in Figure 7. The results show that inductive effect and p–π conjugation effect of four R sub-
stituents are another main factor affecting the electron cloud density distribution of metal
phthalocyanine and its catalytic performance. The phthalocyanine ring is a cyclic rotaene
chromophore with 18 π electrons. Due to the delocalized and weakly bound character of
π electron clouds, the conjugated compounds with relatively high π electron density can
be oxidized and reduced relatively easily [29,30]. Considering the same central metals,
the π electron density of MPcR4 is higher than that of MPcs because of the p–π conjugate
effects of four R substituents (Figure 6). The p–π conjugate effects are benefits for the acti-
vation process of O2. The electron cloud density of ZnPc < ZnPc(NO2)4 < ZnPc(COOH)4 <
ZnPc(NH2)4 system increases sequentially with the increase in inductive effect and p–π
conjugation effect. The higher electron cloud density is conducive to transfer an electron
from phthalocyanine to the oxygen molecule, and the catalytic oxidative desulfurization
activity of phthalocyanine complexes increased sequentially.
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2.2.3. Effect of MN4-Type Coordination Structure on Catalytic Oxidation Desulfurization
Activity of Phthalocyanine

The catalytic oxidative desulfurization activity of phthalocyanine complexes was stud-
ied taking an O2 molecule as oxidant and dibenzothiophene as simulated sulfur pollutant.
The maximum removal rate of dibenzothiophene reached 96.46% after reacting for 180 min
at 60 ◦C. The reaction mechanism for oxidative desulfurization is shown in Figure 8. Under
natural light irradiation, the singlet phthalocyanine complexes [MPcR4-3O2] were excited
to form triplet excited state 3[MPcR4-3O2]*; 3[MPcR4-3O2]* triplet excited state phthalocya-
nine interacts with triplet ground state oxygen molecule 3O2 to conduct energy transfer
and generate singlet oxygen molecule 1O2. The active intermediates *O2-MPcR4

+ formed
strong activity oxidants [MPcR4]+ and O2, which converted DBT to sulfuric acid radical
ion and sulphone. The quantum yield of the photocatalytic redox process increased as a
result of the additional formation of oxidants [MPcR4]+ and O2 [16].

It was found that the catalytic activity of *O2-MPcR4
+ is related to the molecular

frontier orbital (HOMO and LUMO) properties. The molecular frontier orbital properties
are determined by the electron delivery ability of the central ion and the electron cloud
distribution of the conjugated system of phthalocyanine ring. The results indicate that
the M2+ and PcR4 rings are both active centers. The molecular orbital theory further
indicated that the properties of the frontier molecular orbitals (HOMO and LUMO) have
an important influence in the reaction properties of the molecules. In the same system, the
ability of donating electrons increased with the higher HOMO level energy. The ability of
accepting electrons increased with the lower LUMO level energy. The catalytic activity of
the metal-N4-chelates macrocycles is affected by the chemical properties of the ligand effect
and the central metal ion.

Radical trapping experiments were designed to reveal the active oxygen species •O2
−

on the photocatalysis process through using appropriate quenchers p-benzoquinone(BQ).
The obtained results are shown in Figure 9. The dramatic decline from 94.42% to 51.61%
of DBT removal is achieved with the addition of 1mM BQ. The results suggest that •O2 is
the main active species for DBT degradation under visible light irradiation. Additionally,
photostability of the catalysts is a major property for their practical application. DBT
degradation was performed to test the reusability of MPc. The reaction was cooled to room
temperature before being filtered off. After being separated, the catalysts were washed
with distilled water for 3 times and dried at 100 ◦C under vacuum. The obtained results
are shown in Figure 10. Although there is a decrease in the degradation ratio for each
photocatalyst, more than 93.98% of dibenzothiophene can be degraded in the second circle.
To further investigate the reusability of MPcs, DBT degradation was performed five times.
The catalysts of ZnPc could be used at least five times with only a 10% change. The results
indicate that the MPcs compounds processed high stability.
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3. Experimental Part
3.1. Experimental Reagents and Instruments

Phthalic anhydride and 1,2,4-benzoic anhydride (Aladdin Chemical Reagent Co., Ltd.,
Shanghai, China), M(COOH)2, Sinopharm Chemical Reagent Co., Ltd., Shanghai, China),
urea (CO(NH2)2, Tianjin Kemer Chemical Reagent Co., Ltd., Tianjin, China), dibenzoth-
iophene(DBT) (Chengdu Kailong Chemical Reagent Co., Ltd., Chengdu, China), and all
other reagents were analytical reagent grade and were used without further purification.

An elemental analyzer was used (Elementar Vario EL III, PE). The IR spectra were
recorded on a Germany Bruker Equinox55 spectrometer. The UV-vis absorbance was
recorded on a UV-Visible spectrophotometer (UV-2550, Shimadzu, Shanghai, China) using
a quartz cell with a path length of 10 mm at room temperature. The dibenzothiophene
(DBT) content was determined using an Agilent GC 6890 (Shanghai, China) with FPD
detector.

3.2. Synthesis of Metallophthalocyanine

Metallophthalocyanine was prepared according to the method in the literature [13].
The target MPcR4 compounds were prepared by taking phthalic anhydride with different
R substituents(R = -H, -COOH, -NH2, -NO2) and the corresponding metal salts (M = Mn2+,
Fe2+, Co2+, Ni2+, Cu2+, Zn2+) as the raw materials; a mixture of 6.0000 g of urea, 0.2500 g of
NH4Cl, and 0.1200 g of (NH4)2Mo2O7 was further added into a 100 mL three-necked flask
and heated at 140 ◦C for 0.5 h with magnetic stirrer and reflux condenser, and then kept
at 220 ◦C for 6 h under ambient air conditions. The by-products were washed with water,
followed by 6 mol·L−1 hydrochloric acid for several times. Then the purification of blue
solid (green solid) was achieved by refluxing with 150 mL of acetone and trichloromethane
about 12 h.

Mn(II)Pc—1.1524 g (40.61%)Yield; green solid; m.p. >300 ◦C; IR(KBr) νmax/cm−1:
1617(νC=N); 914(νM-N); 1382, 1091, 731 (νPc); UV-Vis(DMF) λmax/nm: 267, 617, 719; Anal.
Cald. for C32H16N8Mn: C, 67.73; H, 2.84; N, 19.45; Found: C, 67.25; H, 2.31; N, 20.18.

Fe(II)Pc—1.3562 g, (47.79%)Yield; blue solid; m.p. >300 ◦C; IR(KBr) νmax/cm−1:
1640(νC=N); 903(νM-N); 1380, 1080, 731 (νPc); UV-Vis(DMF) λmax/nm: 272, 662; Anal. Cald.
for C32H16N8Fe: C, 67.62; H, 2.84; N, 19.71; Found: C, 67.33; H, 2.64; N, 19.56.

Co(II)Pc—1.2892 g, (45.39%)Yield; blue solid; m.p. >300 ◦C; IR(KBr) νmax/cm−1:
1637(νC=N); 903(νM-N); 1384, 1120, 730 (νPc); UV-Vis(DMF) λmax/nm: 331, 666; Anal. Cald.
for C32H16N8Co: C, 66.27; H, 2.83; N, 19.73; Found: C, 66.83; H, 2.78; N, 19.43.

Ni(II)Pc—1.1299 g, (39.76%)Yield; green solid; m.p. >300 ◦C; IR(KBr) νmax/cm−1:
1635(νC=N); 916(νM-N); 1380, 1091, 725 (νPc); UV-Vis(DMF) λmax/nm: 267, 363, 670; Anal.
Cald. for C32H16N8Ni: C, 67.28; H, 2.82; N, 19.62; Found: C, 66.45; H, 2.43; N, 19.90.
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Cu(II)Pc—1.3832 g, (48.62%)Yield; blue solid; m.p. >300 ◦C; IR(KBr) νmax/cm−1:
1637(νC=N); 898(νM-N); 1384, 1091, 727 (νPc); UV-Vis(DMF) λmax/nm: 344,668; Anal. Cald.
for C32H16N8Cu: C, 66.72; H, 2.80; N, 19.26; Found: C, 66.47; H, 2.36; N, 19.55.

Zn(II)Pc—1.1776 g, (41.52%)Yield; green solid; m.p. >300 ◦C; IR(KBr) νmax/cm−1:
1635(νC=N); 887(νM-N); 1384, 1087, 727 (νPc); UV-Vis(DMF) λmax/nm: 341, 670; Anal. Cald.
for C32H16N8Zn: C, 67.63; H, 2.84; N, 19.72; Found: C, 67.01; H, 2.24; N, 19.26.

Zn(II)Pc(NH2)4—1.6608 g, (51.67%)Yield; blue solid; m.p. >300 ◦C; IR(KBr) νmax/cm−1:
3346, 3203(νNH2); 1614, 830(νN-H); 927(νM-N); 1386, 1092, 737 (νPc); UV-Vis(DMF) λmax/nm:
355, 715; Anal. Cald. for C36H20N12Zn: C, 57.56; H, 2.18; N, 22.22; Found: C, 57.01; H, 2.23;
N, 21.36.

Zn(II)Pc(COOH)4—0.3976 g, (23.94%)Yield; green solid; m.p. >300 ◦C; IR(KBr) νmax/
cm−1: 3342(νO-H); 1718(νC=O); 1660(νC=N); 907(νM-N); 1438, 1346, 1083, 728 (νPc); UV-
Vis(DMF) λmax/nm: 274, 695; Anal. Cald. for C36H16 N8O8Zn: C, 57.33; H, 2.17; N, 14.90;
Found: C, 57.01; H, 2.44; N, 15.46.

Zn(II)Pc(NO2)4—1.3614 g (35.4%)Yield; green solid; m.p. >300 ◦C; IR (KBr) νmax/cm−1:
3089(νC-H); 1522, 1336(νN-O); 1615(νC=N); 916 (νM-N); 1094, 737(νPc); UV–Vis (DMF) λmax/nm:
273, 674; Anal. Cald. For C36H12N12O8Zn: C, 53.65; H, 1.50; N, 20.86; Found: C, 52.05; H,
1.44; N, 20.33.

3.3. Evaluation of the Photocatalytic Activity

A 100 mL three-neck flask was selected for the oxidative desulfurization experiment;
the oxygen cylinder and reflux condenser were linked to the flask. Catalyst powder
(20 mg) was added to the model fuel system (100 mL, 800 µL·L−1) and oxygen with the
rate of 100 mL·min−1 was bubbled into it. The experimental temperature of oxidative
desulfurization was selected as 60 ◦C and carried out at standard atmospheric pressure [20].
The sample (2 mL) was collected every 30 min and put into the centrifuge to eliminate
the catalyst particles. The residue sulfur concentration and the oxidation products of
dibenzothiophene(DBT) in model fuel were analyzed by gas chromatography (Flame
Photometric Detector, Agilent 6890 (Shanghai, China). The GC was equipped with a HP-
5 capillary column (30 mm × 0.2 mm × 0.5 µm). The calculation formula of desulfurization
rate of the model fuel was calculated by the equation given below (1):

D(%) = (C0 − C)/C0 × 100% (1)

where C0 is the initial concentration, and C is the sulfur content concentration after a period
of time.

4. Conclusions

In conclusion, a biomimetic catalytic system composed of metallophthalocyanines
MPcR4 and molecular O2 was performed to study the significant influence of MN4-type
coordination structure on the degradation of dibenzothiophene(DBT). The results reveal
that the conjugate structures of phthalocyanines and the center metal ions played key roles
in oxidative desulfurization performance. The inductive effect of different R substituents
and the d electronic configuration strongly affected the electron cloud distribution of the
conjugate structures and the catalytic performance of phthalocyanines. Additionally, mech-
anistic studies revealed that the MPcR4−O2·species were the main active intermediates.
The results indicate that the skeleton structure of MPcR4 strongly affected the catalytic
performance of phthalocyanines and encouraged us to design phthalocyanine compounds
with different substituents.
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