Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (119)

Search Parameters:
Keywords = Micromagnetic Simulations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4107 KiB  
Article
Thermal Influence on Chirality-Driven Dynamics and Pinning of Transverse Domain Walls in Z-Junction Magnetic Nanowires
by Mohammed Al Bahri, Salim Al-Kamiyani, Mohammed M. Al Hinaai and Nisar Ali
Symmetry 2025, 17(8), 1184; https://doi.org/10.3390/sym17081184 - 24 Jul 2025
Abstract
Magnetic nanowires with domain walls (DWs) play a crucial role in the advancement of next-generation memory and spintronic devices. Understanding the thermal effects on domain wall behavior is essential for optimizing performance and stability. This study investigates the thermal chirality-dependent dynamics and pinning [...] Read more.
Magnetic nanowires with domain walls (DWs) play a crucial role in the advancement of next-generation memory and spintronic devices. Understanding the thermal effects on domain wall behavior is essential for optimizing performance and stability. This study investigates the thermal chirality-dependent dynamics and pinning of transverse domain walls (TDWs) in Z-junction nanowires using micromagnetic simulations. The analysis focuses on head-to-head (HHW) and tail-to-tail (TTW) domain walls with up and down chirality under varying thermal conditions. The results indicate that higher temperatures reduce the pinning strength and depinning current density, leading to enhanced domain wall velocity. At 200 K, the HHWdown domain wall depins at a critical current density of 1.2 × 1011 A/m2, while HHWup requires a higher depinning temperature, indicating stronger pinning effects. Similarly, the depinning temperature (Td) increases with Z-junction depth (d), reaching 300 K at d = 50 nm, while increasing Z-junction (λ) weakens pinning, reducing Td to 150 K at λ = 50 nm. Additionally, the influence of Z-junction geometry and magnetic properties, such as saturation magnetization (Ms) and anisotropy constant (Ku), is examined to determine their effects on thermal pinning and depinning. These findings highlight the critical role of chirality and thermal activation in domain wall motion, offering insights into the design of energy-efficient, high-speed nanowire-based memory devices. Full article
Show Figures

Figure 1

14 pages, 2951 KiB  
Article
Magnetic Properties of an Ensemble of Core-Shell Fe/FeOX Nanoparticles: Experimental Study and Micromagnetic Simulation
by Grigory Yu. Melnikov, Ekaterina A. Burban, Andrey V. Svalov and Galina V. Kurlyandskaya
Magnetochemistry 2025, 11(7), 57; https://doi.org/10.3390/magnetochemistry11070057 - 2 Jul 2025
Viewed by 223
Abstract
Spherical magnetic nanoparticles consisting of an iron core and iron oxide shell (α-Fe/FeOX) were fabricated by the electric explosion of the wire technique (EEW). The structure and magnetic properties of synthesized nanoparticles were experimentally investigated. Magnetic properties of an iron nanoparticle [...] Read more.
Spherical magnetic nanoparticles consisting of an iron core and iron oxide shell (α-Fe/FeOX) were fabricated by the electric explosion of the wire technique (EEW). The structure and magnetic properties of synthesized nanoparticles were experimentally investigated. Magnetic properties of an iron nanoparticle ensemble for individual defect-free, non-interacting iron-based nanoparticles having different diameters were calculated using micromagnetic modeling. Experimental and calculated magnetic hysteresis loops were comparatively analyzed. Full article
(This article belongs to the Section Magnetic Materials)
Show Figures

Figure 1

13 pages, 4780 KiB  
Article
Impact of Chirality on the Dynamic Susceptibility of Concentric Nanotori
by Ulises Guevara, Eduardo Saavedra, Liliana Pedraja-Rejas, Miguel-Angel Garrido-Tamayo, Solange Aranzubia, Eduardo Cisternas, Pablo Díaz and David Laroze
Nanomaterials 2025, 15(13), 989; https://doi.org/10.3390/nano15130989 - 26 Jun 2025
Viewed by 266
Abstract
This study investigates the influence of chirality on the dynamic susceptibility of concentric nanotori via micromagnetic simulations. The aim is to analyze the ferromagnetic resonance characteristics of coupled nanotori structures and compare them across various ring separation distances, thus providing an insight into [...] Read more.
This study investigates the influence of chirality on the dynamic susceptibility of concentric nanotori via micromagnetic simulations. The aim is to analyze the ferromagnetic resonance characteristics of coupled nanotori structures and compare them across various ring separation distances, thus providing an insight into how vortex configurations with identical or differing chiralities affect their dynamic properties. We analyze the energetic differences between the two vortex configurations and find them to be negligible; however, these minor differences suffice to explain the significant discrepancies in the demagnetization field observed between the nanotori. We examine the dynamic susceptibility spectrum and the spatial localization of the ferromagnetic resonance modes for different nanotori separations. Our findings demonstrate that the resonant oscillation frequencies are significantly influenced by the magnetostatic interactions between the nanotori, which can be effectively modulated by varying the distance between them. Furthermore, for smaller separations, the frequency peaks in the dynamic susceptibility markedly diverge between the two vortex configurations, demonstrating that the observed differences in the demagnetization field between the rings strongly influence the frequency response. In summary, our results indicate that both the inter-ring distance and the vortex configuration play a crucial role in determining the frequency response of the system. Full article
(This article belongs to the Special Issue Theoretical Chemistry and Computational Simulations in Nanomaterials)
Show Figures

Figure 1

20 pages, 5035 KiB  
Article
Magnetic, Electronic Structure and Micromagnetic Properties of Ferrimagnetic DyCo3 as a Platform for Ferrimagnetic Skyrmions
by Radu George Hategan, Andrei Aldea, Razvan Dan Miclea, Razvan Hirian, Ioan Botiz, Roxana Dudric, Lokesh Rasabathina, Olav Hellwig, Georgeta Salvan, Dietrich R. T. Zahn, Romulus Tetean and Coriolan Tiusan
Nanomaterials 2025, 15(8), 606; https://doi.org/10.3390/nano15080606 - 15 Apr 2025
Viewed by 788
Abstract
We demonstrate tunable ferrimagnetic properties in both bulk and thin film ferrimagnetic DyCo3 compatible with the hosting of topological magnetic chiral textures, namely skyrmions suitable for integration into spintronic applications with classic, neuromorphic and quantum functionalities. The bulk samples were prepared by [...] Read more.
We demonstrate tunable ferrimagnetic properties in both bulk and thin film ferrimagnetic DyCo3 compatible with the hosting of topological magnetic chiral textures, namely skyrmions suitable for integration into spintronic applications with classic, neuromorphic and quantum functionalities. The bulk samples were prepared by arc-melting of stoichiometric mixtures under purified argon atmosphere and the thin films by Ultra-High-Vacuum magnetron sputtering from a stoichiometric target. Magnetometry allows us to extract the main magnetic properties of bulk and thin films: the saturation magnetization, the magnetic anisotropy and their variation with temperature. These results are successfully complemented by band structure ab initio DFT calculations. Based on the critical magnetic parameters extracted from experiments, we performed micromagnetic simulations that reveal the skyrmionic potential of our samples in both continuous thin film and nano-patterned architectures. Full article
(This article belongs to the Special Issue Nanoscale Spintronics and Magnetism: From Fundamentals to Devices)
Show Figures

Graphical abstract

10 pages, 4363 KiB  
Article
Temperature-Dependent Compensation Points in GdxFe1−x Ferrimagnets
by Chao Chen, Cuixiu Zheng, Shanshan Hu, Jianwei Zhang and Yaowen Liu
Materials 2025, 18(6), 1193; https://doi.org/10.3390/ma18061193 - 7 Mar 2025
Cited by 1 | Viewed by 799
Abstract
Recent experiments have reported distinct handedness of spin waves across the compensation temperatures of ferrimagnets, offering promising functionalities for ferrimagnet-based magnonic applications with two distinct polarizations. This paper investigates the effects of various factors on the compensation points of GdFe ferrimagnets through atomistic-level [...] Read more.
Recent experiments have reported distinct handedness of spin waves across the compensation temperatures of ferrimagnets, offering promising functionalities for ferrimagnet-based magnonic applications with two distinct polarizations. This paper investigates the effects of various factors on the compensation points of GdFe ferrimagnets through atomistic-level spin dynamics simulations. The results show that as the Gd composition increases, both the magnetization compensation temperature and the angular momentum compensation temperature of the GdFe alloy increase, with a linear relationship observed between the two compensation temperatures. Furthermore, we show that external magnetic fields and antiferromagnetic exchange strength can also modulate the compensation temperatures. Moreover, the antiferromagnetic exchange strength also affects the resonance frequency of ferrimagnetic materials. In the absence of an external field, the resonance frequency of GdFe is divided into two branches and both increase linearly with the increase in antiferromagnetic exchange strength. This study may stimulate fundamental research on compensated ferrimagnets, which may be useful for building chirality-based spintronics. Full article
Show Figures

Graphical abstract

15 pages, 1020 KiB  
Article
The Role of Blood Perfusion in the Thermal Interaction Between Magnetic Nanoparticles and Cancerous Tumors: A Computational Study
by Nikolaos Maniotis, Spyridon Mitropoulos, Nikolaos Vordos and Vassilios Tsiantos
Magnetism 2025, 5(1), 6; https://doi.org/10.3390/magnetism5010006 - 5 Mar 2025
Cited by 1 | Viewed by 1159
Abstract
In this study, the role of blood perfusion in modulating the thermal response of tumors during magnetic nanoparticle hyperthermia was investigated through computational modeling. The thermal dissipation of 15 nm magnetite nanoparticles was estimated using micromagnetic simulations of their hysteresis loops under a [...] Read more.
In this study, the role of blood perfusion in modulating the thermal response of tumors during magnetic nanoparticle hyperthermia was investigated through computational modeling. The thermal dissipation of 15 nm magnetite nanoparticles was estimated using micromagnetic simulations of their hysteresis loops under a magnetic field of 20 mT and a frequency of 100 kHz. These calculations provided precise energy loss parameters, serving as inputs to simulate the temperature distribution in a tumor embedded within healthy tissue. Temperature-dependent blood perfusion rates, derived from experimental models, were integrated to differentiate the vascular dynamics in normal and cancerous tissues. The simulations were conducted using a bioheat transfer model on a 2D axisymmetric tumor geometry with magnetite nanoparticles dispersed uniformly in the tumor volume. Results showed that tumor tissues exhibit limited blood perfusion enhancement under hyperthermic conditions compared to healthy tissues, leading to localized heat retention favorable for therapeutic purposes. The computational framework validated these findings by achieving therapeutic tumor temperatures (41–45 °C) without significant overheating of surrounding healthy tissues, highlighting the critical interplay between perfusion and energy dissipation. These results demonstrate the efficacy of combining nanoparticle modeling with temperature-dependent perfusion for optimizing magnetic nanoparticle-based hyperthermia protocols. Full article
(This article belongs to the Special Issue Mathematical Modelling and Physical Applications of Magnetic Systems)
Show Figures

Figure 1

21 pages, 8014 KiB  
Article
Harnessing Magnetic Properties for Precision Thermal Control of Vortex Domain Walls in Constricted Nanowires
by Mohammed Al Bahri and Salim Al-Kamiyani
Nanomaterials 2025, 15(5), 372; https://doi.org/10.3390/nano15050372 - 27 Feb 2025
Viewed by 688
Abstract
This study investigates the thermal pinning and depinning behaviors of vortex domain walls (VWs) in constricted magnetic nanowires, focusing on the influence of intrinsic magnetic properties on VW stability under thermal stress. Using micromagnetic simulations, we analyze the roles of saturation magnetization (Ms), [...] Read more.
This study investigates the thermal pinning and depinning behaviors of vortex domain walls (VWs) in constricted magnetic nanowires, focusing on the influence of intrinsic magnetic properties on VW stability under thermal stress. Using micromagnetic simulations, we analyze the roles of saturation magnetization (Ms), uniaxial magnetic anisotropy (Ku), and nanowire geometry in determining VW thermal stability. The modeled nanowire has dimensions of 200 nm (width), 30 nm (thickness), and a 50 nm constriction length, chosen based on the dependence of VW formation on nanowire geometry. Our results show that increasing Ms and Ku enhances VW pinning, while thermal fluctuations at higher temperatures promote VW depinning. We demonstrate that temperature and magnetic parameters significantly impact VW structural stability, offering insights for designing high-reliability nanowire-based memory devices. These findings contribute to optimizing nanowire designs for thermally stable, energy-efficient spintronic memory systems. Full article
(This article belongs to the Special Issue Research on Ferroelectric and Spintronic Nanoscale Materials)
Show Figures

Figure 1

17 pages, 4113 KiB  
Review
Electron Holography for Advanced Characterization of Permanent Magnets: Demagnetization Field Mapping and Enhanced Precision in Phase Analysis
by Sujin Lee
Nanomaterials 2024, 14(24), 2046; https://doi.org/10.3390/nano14242046 - 20 Dec 2024
Viewed by 1097
Abstract
This review explores a method of visualizing a demagnetization field (Hd) within a thin-foiled Nd2Fe14B specimen using electron holography observation. Mapping the Hd is critical in electron holography as it provides the only information on [...] Read more.
This review explores a method of visualizing a demagnetization field (Hd) within a thin-foiled Nd2Fe14B specimen using electron holography observation. Mapping the Hd is critical in electron holography as it provides the only information on magnetic flux density. The Hd map within a Nd2Fe14B thin foil, derived from this method, showed good agreement with the micromagnetic simulation result, providing valuable insights related to coercivity. Furthermore, this review examines the application of the wavelet hidden Markov model (WHMM) for noise suppression in thin-foiled Nd2Fe14B crystals. The results show significant suppression of artificial phase jumps in the reconstructed phase images due to the poor visibility of electron holograms under the narrowest fringe spacing required for spatial resolution in electron holography. These techniques substantially enhance the precision of phase analysis and are applicable to a wide range of magnetic materials, enabling more accurate magnetic characterization. Full article
(This article belongs to the Special Issue Exploring Nanomaterials through Electron Microscopy and Spectroscopy)
Show Figures

Figure 1

11 pages, 5820 KiB  
Article
Enhancing the Thermal Stability of Skyrmion in Magnetic Nanowires for Nanoscale Data Storage
by Mohammed Al Bahri, Mohammed Al Hinaai, Rayya Al Balushi and Salim Al-Kamiyani
Nanomaterials 2024, 14(21), 1763; https://doi.org/10.3390/nano14211763 - 3 Nov 2024
Cited by 2 | Viewed by 1469
Abstract
Magnetic skyrmion random switching and structural stability are critical limitations for storage data applications. Enhancing skyrmions’ magnetic properties could improve their thermal structural stability. Hence, micromagnetic calculation was carried out to explore the thermal nucleation and stability of skyrmions in magnetic nanodevices. Different [...] Read more.
Magnetic skyrmion random switching and structural stability are critical limitations for storage data applications. Enhancing skyrmions’ magnetic properties could improve their thermal structural stability. Hence, micromagnetic calculation was carried out to explore the thermal nucleation and stability of skyrmions in magnetic nanodevices. Different magnetic properties such as uniaxial magnetic anisotropy energy (Ku), saturation magnetization (Ms) and Dzyaloshinskii—Moriya interaction (DMI) were used to assess the thermal stability of skyrmions in magnetic nanowires. For some values of Ms and Ku, the results verified that the skyrmion structure is stable at temperatures above 800 K, which is higher than room temperature. Additionally, manipulating the nanowire geometry was found to have a substantial effect on the thermal structural stability of the skyrmion in storage nanodevices. Increasing the nanowire dimensions, such as length or width, enhanced skyrmions’ structural stability against temperature fluctuations in nanodevices. Furthermore, the random nucleation of the skyrmions due to the device temperature was examined. It was shown that random skyrmion nucleation occurs at temperature values greater than 700 K. These findings make skyrmion devices suitable for storage applications. Full article
(This article belongs to the Special Issue Magnetism and Spintronics at the Nanoscale)
Show Figures

Figure 1

9 pages, 3264 KiB  
Article
Spin Wave Chiral Scattering by Skyrmion Lattice in Ferromagnetic Nanotubes
by Na Li, Mingming Fan, Xiaoyan Zeng and Ming Yan
Symmetry 2024, 16(10), 1336; https://doi.org/10.3390/sym16101336 - 10 Oct 2024
Cited by 1 | Viewed by 1183
Abstract
Previous studies have demonstrated that the surface curvature of cylindrical magnetic nonawires can induce fascinating dynamic magnetization properties. It was recently proposed that ferromagnetic nanotubes can be utilized as skyrmion guides, enabling the avoidance of the annihilation of skyrmions in the lateral boundaries [...] Read more.
Previous studies have demonstrated that the surface curvature of cylindrical magnetic nonawires can induce fascinating dynamic magnetization properties. It was recently proposed that ferromagnetic nanotubes can be utilized as skyrmion guides, enabling the avoidance of the annihilation of skyrmions in the lateral boundaries as in flat thin-film strips. In this work, we demonstrate via micromagnetic simulation that multiple skyrmions can be stabilized in a cross-section of a ferromagnetic nanotube with interfacial Dzyaloshinskii–Moriya interaction (iDMI). When uniformly arranged, these skyrmions together can perform as a crystal lattice for spin waves (SWs) propagating in the nanotube. Our simulations show that the skyrmion lattice can contribute a chiral effect to the SW passing through, namely a circular polarization of the SW. The handedness of the polarization is found to be determined by the polarity of the skyrmions. A physical explanation of the observed effect is provided based on the exchange of angular momentum between SWs and skyrmions during the scattering process. Our results display more possibilities to exploit magnetic nanotubes as SW and skyrmion guide in the development of novel spintronic devices. Full article
(This article belongs to the Special Issue Spin Chirality and Molecular Magnetism)
Show Figures

Figure 1

14 pages, 6170 KiB  
Article
Vortex Domain Wall Thermal Pinning and Depinning in a Constricted Magnetic Nanowire for Storage Memory Nanodevices
by Mohammed Al Bahri, Salim Al-Kamiyani and Al Maha Al Habsi
Nanomaterials 2024, 14(18), 1518; https://doi.org/10.3390/nano14181518 - 19 Sep 2024
Cited by 2 | Viewed by 1184
Abstract
In this study, we investigate the thermal pinning and depinning behaviors of vortex domain walls (VDWs) in constricted magnetic nanowires, with a focus on potential applications in storage memory nanodevices. Using micromagnetic simulations and spin transfer torque, we examine the impacts of device [...] Read more.
In this study, we investigate the thermal pinning and depinning behaviors of vortex domain walls (VDWs) in constricted magnetic nanowires, with a focus on potential applications in storage memory nanodevices. Using micromagnetic simulations and spin transfer torque, we examine the impacts of device temperature on VDW transformation into a transverse domain wall (TDW), mobility, and thermal strength pinning at the constricted area. We explore how thermal fluctuations influence the stability and mobility of domain walls within stepped nanowires. The thermal structural stability of VDWs and their pinning were investigated considering the effects of the stepped area depth (d) and its length (λ). Our findings indicate that the thermal stability of VDWs in magnetic stepped nanowires increases with decreasing the depth of the stepped area (d) and increasing nanowire thickness (th). For th ≥ 50 nm, the stability is maintained at temperatures ≥ 1200 K. In the stepped area, VDW thermal pinning strength increases with increasing d and decreasing λ. For values of d ≥ 100 nm, VDWs depin from the stepped area at temperatures ≥ 1000 K. Our results reveal that thermal effects significantly influence the pinning strength at constricted sites, impacting the overall performance and reliability of magnetic memory devices. These insights are crucial for optimizing the design and functionality of next-generation nanodevices. The stepped design offers numerous advantages, including simple fabrication using a single electron beam lithography exposure step on the resist. Additionally, adjusting λ and d allows for precise control over the pinning strength by modifying the dimensions of the stepped areas. Full article
Show Figures

Figure 1

16 pages, 5730 KiB  
Article
Stability and Spin Waves of Skyrmion Tubes in Curved FeGe Nanowires
by Miguel-Angel Garrido-Tamayo, Eduardo Saavedra, Carlos Saji, Ulises Guevara, Laura M. Pérez, Liliana Pedraja-Rejas, Pablo Díaz and David Laroze
Nanomaterials 2024, 14(18), 1468; https://doi.org/10.3390/nano14181468 - 10 Sep 2024
Cited by 1 | Viewed by 1454
Abstract
In this work, we investigate the influence of curvature on the dynamic susceptibility in FeGe nanowires, both curved and straight, hosting a skyrmionic tube texture under the action of an external bias field, using micromagnetic simulations. Our results demonstrate that both the resonance [...] Read more.
In this work, we investigate the influence of curvature on the dynamic susceptibility in FeGe nanowires, both curved and straight, hosting a skyrmionic tube texture under the action of an external bias field, using micromagnetic simulations. Our results demonstrate that both the resonance frequencies and the number of resonant peaks are highly dependent on the curvature of the system. To further understand the nature of the spin wave modes, we analyze the spatial distributions of the resonant mode amplitudes and phases, describing the differences among resonance modes observed. The ability to control the dynamic properties and frequencies of these nanostructures underscores their potential application in frequency-selective magnetic devices. Full article
(This article belongs to the Special Issue Modeling, Simulation and Optimization of Nanomaterials)
Show Figures

Figure 1

11 pages, 3939 KiB  
Article
Thermal Effects on Domain Wall Stability at Magnetic Stepped Nanowire for Nanodevices Storage
by Mohammed Al Bahri and Salim Al-Kamiyani
Nanomaterials 2024, 14(14), 1202; https://doi.org/10.3390/nano14141202 - 15 Jul 2024
Cited by 4 | Viewed by 1604
Abstract
In the future, DW memory will replace conventional storage memories with high storage capacity and fast read/write speeds. The only failure in DW memory arises from DW thermal fluctuations at pinning sites. This work examines, through calculations, the parameters that might help control [...] Read more.
In the future, DW memory will replace conventional storage memories with high storage capacity and fast read/write speeds. The only failure in DW memory arises from DW thermal fluctuations at pinning sites. This work examines, through calculations, the parameters that might help control DW thermal stability at the pinning sites. It is proposed to design a new scheme using a stepped area of a certain depth (d) and length (λ). The study reveals that DW thermal stability is highly dependent on the geometry of the pinning area (d and λ), magnetic properties such as saturation magnetization (Ms) and magnetic anisotropy energy (Ku), and the dimensions of the nanowires. For certain values of d and λ, DWs remain stable at temperatures over 500 K, which is beneficial for memory applications. Higher DW thermal stability is also achieved by decreasing nanowire thickness to less than 10 nm, making DW memories stable below 800 K. Finally, our results help to construct DW memory nanodevices with nanodimensions less than a 40 nm width and less than a 10 nm thickness with high DW thermal stability. Full article
Show Figures

Figure 1

12 pages, 2435 KiB  
Article
Coercivity of (Fe0.7Co0.3)2B Nanowire and Its Bonded Magnet
by Xubo Liu and Ikenna C. Nlebedim
Crystals 2024, 14(7), 624; https://doi.org/10.3390/cryst14070624 - 6 Jul 2024
Viewed by 1109
Abstract
(Fe0.7Co0.3)2B are potential permanent magnets material due to its large saturation magnetization and high Curie temperature. However, it has moderate magnetocrystalline anisotropy (MCA) and low coercivity. One way to improve its coercivity is to combine the contributions [...] Read more.
(Fe0.7Co0.3)2B are potential permanent magnets material due to its large saturation magnetization and high Curie temperature. However, it has moderate magnetocrystalline anisotropy (MCA) and low coercivity. One way to improve its coercivity is to combine the contributions from magnetocrystalline- and magnetic-shape anisotropy by preparing (Fe0.7Co0.3)2B nanowires. We study the effects of size, morphology, and surface defects on the hard magnetic properties of nanowires using micromagnetic simulation. The hard magnetic properties of (Fe0.7Co0.3)2B nanowire-bonded magnets are estimated, including the role of inter-wire magnetostatic interaction. By considering the existence of local reductions in MCA energy of up to 30% on the surface layer of nanowires, the anisotropic bonded magnet with a 65% vol. of (Fe0.7Co0.3)2B nanowires would have typical remanence, Br= 7.6–8.4 kG, coercivity, Hci= 9.6–9.9 kOe, and maximum energy product, (BH)m = 14–17.8 MGOe. Developing effective technology for synthesizing nanowires and fabricating corresponding bonded magnets is promising for manufacturing practical magnets based on the magnetic phase with a relatively low or moderate MCA, such as (Fe0.7Co0.3)2B. Full article
(This article belongs to the Special Issue Magnetoelectric Materials and Their Application)
Show Figures

Figure 1

12 pages, 2436 KiB  
Article
Effect of the Core–Shell Exchange Coupling on the Approach to Magnetic Saturation in a Ferrimagnetic Nanoparticle
by Sergey V. Komogortsev, Sergey V. Stolyar, Alexey A. Mokhov, Vladimir A. Fel’k, Dmitriy A. Velikanov and Rauf S. Iskhakov
Magnetochemistry 2024, 10(7), 47; https://doi.org/10.3390/magnetochemistry10070047 - 1 Jul 2024
Cited by 4 | Viewed by 1745
Abstract
The generally accepted model of the magnetic structure of an iron oxide core–shell nanoparticle includes a single-domain magnetically ordered core surrounded by a layer with a frozen spin disorder. Due to the exchange coupling between the shell and core, the spin disorder should [...] Read more.
The generally accepted model of the magnetic structure of an iron oxide core–shell nanoparticle includes a single-domain magnetically ordered core surrounded by a layer with a frozen spin disorder. Due to the exchange coupling between the shell and core, the spin disorder should lead to nonuniform magnetization in the core. Suppression of this inhomogeneity by an external magnetic field causes the nonlinear behavior of the magnetization as a function of the field in the region of the approach to magnetic saturation. The equation proposed to describe this effect is tested using a micromagnetic simulation. Analysis of the approach to magnetic saturation of iron oxide nanoparticles at different temperatures using this equation can be used to estimate the temperature evolution of the core–shell coupling energy and the size of the uniformly magnetized nanoparticle core and the temperature behavior of this size. Full article
(This article belongs to the Special Issue Ferrimagnetic Materials: State of the Art and Future Perspective)
Show Figures

Figure 1

Back to TopTop