Temperature-Dependent Compensation Points in GdxFe1−x Ferrimagnets
Abstract
:1. Introduction
2. Atomistic-Level Simulation Model
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Back, C.H.; Allenspach, R.; Weber, W.; Parkin, S.S.P.; Weller, D.; Garwin, E.L.; Siegman, H.C. Minimum Field Strength in Precessional Magnetization Reversal. Science 1999, 285, 864. [Google Scholar] [CrossRef] [PubMed]
- Gerrits, T.; Van den Berg, H.A.M.; Hohlfeld, J.; Bär, L.; Rasing, T. Ultrafast precessional magnetization reversal by picosecond magnetic field pulse shaping. Nature 2002, 418, 509–512. [Google Scholar] [CrossRef]
- Kimel, A.V.; Kirilyuk, A.; Tsvetkov, A.; Pisarev, R.V.; Rasing, T. Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3. Nature 2004, 429, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Kimel, A.; Kirilyuk, A.; Usachev, P.; Pisarev, R.; Balbashov, A.; Rasing, T. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 2005, 435, 655–657. [Google Scholar] [CrossRef]
- Vahaplar, K.; Kalashnikova, A.M.; Kimel, A.V.; Hinzke, D.; Nowak, U.; Chantrell, R.; Tsukamoto, A.; Itoh, A.; Kirilyuk, A.; Rasing, T. Ultrafast path for optical magnetization reversal via a strongly nonequilibrium state. Phys. Rev. Lett. 2009, 103, 117201. [Google Scholar] [CrossRef]
- Ostler, T.A.; Evans, R.F.L.; Chantrell, R.W.; Atxitia, U.; Chubykalo-Fesenko, O.; Radu, I.; Abrudan, R.; Radu, F.; Tsukamoto, A.; Itoh, A.; et al. Crystallographically amorphous ferrimagnetic alloys: Comparing a localized atomistic spin model with experiments. Phys. Rev. B 2011, 84, 024407. [Google Scholar] [CrossRef]
- Yu, T.; Luo, Z.; Bauer, G.E.W. Chirality as generalized spin–orbit interaction in spintronics. Phys. Rep. 2023, 1009, 1–115. [Google Scholar] [CrossRef]
- Lyberatos, A.; Berkov, D.V.; Chantrell, R.W. A method for the numerical simulation of the thermal magnetization fluctuations in micromagnetics. J. Phys. Condens. Matter 1993, 5, 8911. [Google Scholar] [CrossRef]
- Gomonay, E.V.; Loktev, V.M. Spintronics of antiferromagnetic systems (Review Article). Low Temp. Phys. 2014, 40, 17–35. [Google Scholar] [CrossRef]
- Cheng, R.; Daniels, M.W.; Zhu, J.G.; Xiao, D. Antiferromagnetic Spin Wave Field-Effect Transistor. Sci. Rep. 2016, 6, 24223. [Google Scholar] [CrossRef]
- Li, S.; Li, Q.; Xu, J.; Yan, S.; Miao, G.X.; Kang, S.; Dai, Y.; Jiao, J.; Lü, Y. Tunable Optical Mode Ferromagnetic Resonance in FeCoB/Ru/FeCoB Synthetic Antiferromagnetic Trilayers under Uniaxial Magnetic Anisotropy. Adv. Funct. Mater. 2016, 26, 3738–3744. [Google Scholar] [CrossRef]
- Khymyn, R.; Lisenkov, I.; Tiberkevich, V.; Ivanov, B.A.; Slavin, A. Antiferromagnetic THz-frequency Josephson-like Oscillator Driven by Spin Current. Sci. Rep. 2017, 7, 43705. [Google Scholar] [CrossRef] [PubMed]
- Baltz, V.; Manchon, A.; Tsoi, M.; Moriyama, T.; Ono, T.; Tserkovnyak, Y. Antiferromagnetic spintronics. Rev. Mod. Phys. 2018, 90, 015005. [Google Scholar] [CrossRef]
- Duine, R.A.; Lee, K.-J.; Parkin, S.S.P.; Stiles, M.D. Synthetic antiferromagnetic spintronics. Nat. Phys. 2018, 14, 217–219. [Google Scholar] [CrossRef] [PubMed]
- Gomonay, O.; Baltz, V.; Brataas, A.; Tserkovnyak, Y. Antiferromagnetic spin textures and dynamics. Nat. Phys. 2018, 14, 213–216. [Google Scholar] [CrossRef]
- Hu, S.; Zheng, C.; Fan, W.; Liu, Y. Terahertz magnetic excitations in non-collinear antiferromagnetic Mn3Pt: Atomistic-scale dynamical simulations. J. Magn. Magn. Mater. 2023, 588, 171393. [Google Scholar] [CrossRef]
- Hu, S.; Zheng, C.; Chen, C.; Zhou, Y.; Liu, Y. Current-driven spin oscillations in noncollinear antiferromagnetic tunnel junctions. Phys. Rev. B 2024, 109, 174433. [Google Scholar] [CrossRef]
- Zheng, C.; Chen, C.; Hu, S.; Chen, H.-H.; Liu, Y. Terahertz magnetic excitation in a collinear antiferromagnet: Canonical transformation model and atomistic spin simulations. Phys. Lett. A 2024, 516, 129639. [Google Scholar] [CrossRef]
- Kirilyuk, A.; Kimel, A.V.; Rasing, T. Laser-induced magnetization dynamics and reversal in ferrimagnetic alloys. Rep. Prog. Phys. 2013, 76, 026501. [Google Scholar] [CrossRef]
- Fu, Z.; Zhang, Z.; Liu, Y. Temperature-Dependent Magnetization Switching in FeGd Ferrimagnets. SPIN 2018, 8, 1850014. [Google Scholar] [CrossRef]
- Li, W.J.; Wang, C.J.; Zhang, X.M.; Irfan, M.; Khan, U.; Liu, Y.W.; Han, X.F. Experimental investigation and micromagnetic simulations of hybrid CoCr 2 O 4/Ni coaxial nanostructures. Nanotechnology 2018, 29, 245601. [Google Scholar] [CrossRef] [PubMed]
- Stanciu, C.D.; Kimel, A.V.; Hansteen, F.; Tsukamoto, A.; Itoh, A.; Kirilyuk, A.; Rasing, T. Ultrafast spin dynamics across compensation points in ferrimagnetic GdFeCo: The role of angular momentum compensation. Phys. Rev. B 2006, 73, 220402. [Google Scholar] [CrossRef]
- Le Guyader, L.; El Moussaoui, S.; Buzzi, M.; Chopdekar, R.V.; Heyderman, L.J.; Tsukamoto, A.; Itoh, A.; Kirilyuk, A.; Rasing, T.; Kimel, A.V.; et al. Demonstration of laser induced magnetization reversal in GdFeCo nanostructures. Appl. Phys. Lett. 2012, 101, 022410. [Google Scholar] [CrossRef]
- Li, S.; Gao, R.; Cheng, C.; Yan, Y.; Lai, T. Intrinsic subpicosecond magnetization reversal driven by femtosecond laser pulses in GdFeCo amorphous films. Appl. Phys. Lett. 2013, 103, 242411. [Google Scholar] [CrossRef]
- He, W.; Wu, H.-Y.; Cai, J.-W.; Liu, Y.-W.; Cheng, Z.-H. Laser-Induced Magnetization Dynamics of GdFeCo Film Probing by Time Resolved Magneto-Optic Kerr Effect. SPIN 2015, 5, 1540014. [Google Scholar] [CrossRef]
- Wilson, R.B.; Gorchon, J.; Yang, Y.; Lambert, C.-H.; Salahuddin, S.; Bokor, J. Ultrafast magnetic switching of GdFeCo with electronic heat currents. Phys. Rev. B 2017, 95, 180409. [Google Scholar] [CrossRef]
- Stanciu, C.D.; Hansteen, F.; Kimel, A.V.; Kirilyuk, A.; Tsukamoto, A.; Itoh, A.; Rasing, T. All-Optical Magnetic Recording with Circularly Polarized Light. Phys. Rev. Lett. 2007, 99, 047601. [Google Scholar] [CrossRef]
- Radu, I.; Vahaplar, K.; Stamm, C.; Kachel, T.; Pontius, N.; Dürr, H.A.; Ostler, T.A.; Barker, J.; Evans, R.F.L.; Chantrell, R.W.; et al. Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins. Nature 2011, 472, 205–208. [Google Scholar] [CrossRef]
- Ostler, T.A.; Barker, J.; Evans, R.F.L.; Chantrell, R.W.; Atxitia, U.; Chubykalo-Fesenko, O.; El Moussaoui, S.; Le Guyader, L.; Mengotti, E.; Heyderman, L.J.; et al. Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet. Nat. Commun. 2012, 3, 666. [Google Scholar] [CrossRef]
- Graves, C.E.; Reid, A.H.; Wang, T.; Wu, B.; de Jong, S.; Vahaplar, K.; Radu, I.; Bernstein, D.P.; Messerschmidt, M.; Müller, L.; et al. Nanoscale spin reversal by non-local angular momentum transfer following ultrafast laser excitation in ferrimagnetic GdFeCo. Nat. Mater. 2013, 12, 293–298. [Google Scholar] [CrossRef]
- Mangin, S.; Gottwald, M.; Lambert, C.H.; Steil, D.; Uhlíř, V.; Pang, L.; Hehn, M.; Alebrand, S.; Cinchetti, M.; Malinowski, G.; et al. Engineered materials for all-optical helicity-dependent magnetic switching. Nat. Mater. 2014, 13, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Kirilyuk, A.; Kimel, A.V.; Rasing, T. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 2010, 82, 2731–2784. [Google Scholar] [CrossRef]
- Kim, C.; Lee, S.; Kim, H.G.; Park, J.H.; Moon, K.W.; Park, J.Y.; Yuk, J.M.; Lee, K.J.; Park, B.G.; Kim, S.K.; et al. Distinct handedness of spin wave across the compensation temperatures of ferrimagnets. Nat. Mater. 2020, 19, 980–985. [Google Scholar] [CrossRef]
- Wang, L.; Shen, L.; Bai, H.; Zhou, H.-A.; Shen, K.; Jiang, W. Electrical Excitation and Detection of Chiral Magnons in a Compensated Ferrimagnetic Insulator. Phys. Rev. Lett. 2024, 133, 166705. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, Z.; Liu, L.; Zhang, K.; Meng, Y.; Sun, Y.; Gao, P.; Zhao, H.-W.; Niu, Q.; Li, J. Switching magnon chirality in artificial ferrimagnet. Nat. Commun. 2022, 13, 1264. [Google Scholar] [CrossRef]
- Chen, C.; Zheng, C.; Zhang, J.; Liu, Y. Chirality reversal of resonant modes in GdFe ferrimagnets. Appl. Phys. Lett. 2023, 123, 212403. [Google Scholar] [CrossRef]
- Okamoto, S. Flipping handedness in ferrimagnets. Nat. Mater. 2020, 19, 929–930. [Google Scholar] [CrossRef] [PubMed]
- Hahn, M.B. Temperature in micromagnetism: Cell size and scaling effects of the stochastic Landau–Lifshitz equation. J. Phys. Commun. 2019, 3, 075009. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowjetunion 1935, 8, 153–169. [Google Scholar]
- Gilbert, T.L.; Kelly, J.M. Anomalous Rotational Damping in Ferromagnetic Sheets. In Proceedings of the First Conference on Magnetism and Magnetic Materials, Pittsburgh, PA, USA, 14–16 June 1955. [Google Scholar]
- Jiao, X.; Zhang, Z.; Liu, Y. Modeling of Temperature Dependence of Magnetization in TbFe Films—An Atomistic Spin Simulation Study. SPIN 2016, 6, 1650003. [Google Scholar] [CrossRef]
- Mekonnen, A.; Cormier, M.; Kimel, A.V.; Kirilyuk, A.; Hrabec, A.; Ranno, L.; Rasing, T. Femtosecond laser excitation of spin resonances in amorphous ferrimagnetic Gd1-xCox alloys. Phys. Rev. Lett. 2011, 107, 117202. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Zheng, C.; Hu, S.; Zhang, J.; Liu, Y. Temperature-Dependent Compensation Points in GdxFe1−x Ferrimagnets. Materials 2025, 18, 1193. https://doi.org/10.3390/ma18061193
Chen C, Zheng C, Hu S, Zhang J, Liu Y. Temperature-Dependent Compensation Points in GdxFe1−x Ferrimagnets. Materials. 2025; 18(6):1193. https://doi.org/10.3390/ma18061193
Chicago/Turabian StyleChen, Chao, Cuixiu Zheng, Shanshan Hu, Jianwei Zhang, and Yaowen Liu. 2025. "Temperature-Dependent Compensation Points in GdxFe1−x Ferrimagnets" Materials 18, no. 6: 1193. https://doi.org/10.3390/ma18061193
APA StyleChen, C., Zheng, C., Hu, S., Zhang, J., & Liu, Y. (2025). Temperature-Dependent Compensation Points in GdxFe1−x Ferrimagnets. Materials, 18(6), 1193. https://doi.org/10.3390/ma18061193