Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (100)

Search Parameters:
Keywords = Michelson’s interferometer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 10012 KiB  
Article
Beam Emittance and Bunch Length Diagnostics for the MIR-FEL Beamline at Chiang Mai University
by Kittipong Techakaew, Kanlayaporn Kongmali, Siriwan Pakluea and Sakhorn Rimjaem
Particles 2025, 8(3), 64; https://doi.org/10.3390/particles8030064 - 21 Jun 2025
Viewed by 1065
Abstract
The generation of high-quality mid-infrared free-electron laser (MIR-FEL) radiation depends critically on precise control of electron beam parameters, including energy, energy spread, transverse emittance, bunch charge, and bunch length. At the PBP-CMU Electron Linac Laboratory (PCELL), effective beam diagnostics are essential for optimizing [...] Read more.
The generation of high-quality mid-infrared free-electron laser (MIR-FEL) radiation depends critically on precise control of electron beam parameters, including energy, energy spread, transverse emittance, bunch charge, and bunch length. At the PBP-CMU Electron Linac Laboratory (PCELL), effective beam diagnostics are essential for optimizing FEL performance. However, dedicated systems for direct measurement of transverse emittance and bunch length at the undulator entrance have been lacking. This paper addresses this gap by presenting the design, simulation, and analysis of diagnostic stations for accurate characterization of these parameters. A two-quadrupole emittance measurement system was developed, enabling independent control of beam-focusing in both transverse planes. An analytical model was formulated specifically for this configuration to enhance emittance reconstruction accuracy. Systematic error analysis was conducted using ASTRA beam dynamics simulations, incorporating 3D field maps from CST Studio Suite and fully including space-charge effects. Results show that transverse emittance values as low as 0.15 mm·mrad can be measured with less than 20% error when the initial RMS beam size is under 2 mm. Additionally, quadrupole misalignment effects were quantified, showing that alignment within ±0.95 mm limits systematic errors to below 33.3%. For bunch length measurements, a transition radiation (TR) station coupled with a Michelson interferometer was designed. Spectral and interferometric simulations reveal that transverse beam size and beam splitter properties significantly affect measurement accuracy. A 6% error due to transverse size was identified, while Kapton beam splitters introduced additional systematic distortions. In contrast, a 6 mm-thick silicon beam splitter enabled accurate, correction-free measurements. The finite size of the radiator was also found to suppress low-frequency components, resulting in up to 10.6% underestimation of bunch length. This work provides a practical and comprehensive diagnostic framework that accounts for multiple error sources in both transverse emittance and bunch length measurements. These findings contribute valuable insight for the beam diagnostics community and support improved control of beam quality in MIR FEL systems. Full article
(This article belongs to the Special Issue Generation and Application of High-Power Radiation Sources 2025)
Show Figures

Figure 1

15 pages, 7516 KiB  
Article
Correction of Error Interference Fringes Based on Automatic Spectral Analysis
by Siqian Yang, Xinqiang Wang, Tingli Song, Wei Xiong, Song Ye and Fangyuan Wang
Optics 2025, 6(2), 26; https://doi.org/10.3390/opt6020026 - 6 Jun 2025
Viewed by 515
Abstract
When interferograms in space heterodyne spectrometers exhibit tilted or distorted fringes, significant errors may occur in the demodulated spectral information. To address this issue, we propose a method for interferogram correction based on automatic spectral analysis. Simulations on erroneous interferograms of monochromatic and [...] Read more.
When interferograms in space heterodyne spectrometers exhibit tilted or distorted fringes, significant errors may occur in the demodulated spectral information. To address this issue, we propose a method for interferogram correction based on automatic spectral analysis. Simulations on erroneous interferograms of monochromatic and polychromatic light demonstrate that this method effectively corrects fringe tilts and significantly improves spectral demodulation accuracy. The standard deviations between the corrected spectra and ideal spectra for monochromatic and polychromatic light are 0.016 and 0.019, respectively, compared to 0.104 and 0.127 for uncorrected spectra. Additionally, the method successfully corrects experimental interferograms of potassium and neon lamps, accurately demodulating characteristic peaks of potassium and neon emission lines. It also enables accurate displacement measurement in a Michelson interferometer experiment. This method, through automatic analysis and one-sided spectral correction, efficiently and accurately corrects erroneous interferograms and enhances spectral demodulation accuracy, showing broad application potential. Full article
Show Figures

Figure 1

13 pages, 40037 KiB  
Article
Interferometric Surface Analysis of a Phase-Only Spatial Light Modulator for Surface Deformation Compensation
by Rania M. Abdelazeem, Mostafa Agour and Salah Hassab Elnaby
Photonics 2025, 12(3), 285; https://doi.org/10.3390/photonics12030285 - 20 Mar 2025
Viewed by 577
Abstract
A spatial light modulator (SLM) is a key element in several applications, but it is subject to surface deformation due to manufacturing imperfections or environmental factors. Therefore, the current study aims to analyze and compensate for such deformations in a phase-only SLM using [...] Read more.
A spatial light modulator (SLM) is a key element in several applications, but it is subject to surface deformation due to manufacturing imperfections or environmental factors. Therefore, the current study aims to analyze and compensate for such deformations in a phase-only SLM using a Michelson interferometer. The recorded interferogram represents the interference between the wavefront reflected from the SLM surface (object wave) and a reference wave. Noise in the recorded interferogram can degrade the accuracy of phase measurements. Various digital filtering techniques were applied to improve the signal-to-noise ratio (SNR) of the interferogram. The filtered interferogram enabled accurate phase extraction through Fourier transform processing and side peak selection using a spatial carrier frequency method. Additionally, phase errors caused by the tilt of the reference beam were corrected. Thereafter, the conjugate of the corrected phase distribution was used to calculate a phase-only computer-generated hologram (CGH), which was displayed on the SLM to compensate for surface deformations. The effectiveness of the proposed compensation procedure was confirmed by a second phase measurement, which demonstrated improved SLM performance. This study highlights the impact of combining the interferometric techniques with digital processing for precise surface deformation analysis. Full article
Show Figures

Figure 1

25 pages, 31664 KiB  
Article
Takagi–Sugeno Fuzzy Nonlinear Control System for Optical Interferometry
by Murilo Franco Coradini, Luiz Henrique Vitti Felão, Stephany de Souza Lyra, Marcelo Carvalho Minhoto Teixeira and Claudio Kitano
Sensors 2025, 25(6), 1853; https://doi.org/10.3390/s25061853 - 17 Mar 2025
Cited by 1 | Viewed by 662
Abstract
The Takagi-Sugeno (T-S) fuzzy control is a nonlinear method that uses a combination of linear controllers as its control law. This method has been applied in various fields of scientific research: buck converters, biomedicine, civil engineering, etc. To the best of the authors’ [...] Read more.
The Takagi-Sugeno (T-S) fuzzy control is a nonlinear method that uses a combination of linear controllers as its control law. This method has been applied in various fields of scientific research: buck converters, biomedicine, civil engineering, etc. To the best of the authors’ knowledge, although works on traditional fuzzy control and optical interferometry have already been published, this is the first time that T-S fuzzy (specifically) is applied to demodulate interferometry signals. Through a proof-of-concept experiment, the paper describes the fusion of an open-loop interferometer with an external closed-loop digital observer based on T-S fuzzy (both simple and inexpensive), which actuates like a closed-loop interferometer (but without its drawbacks). The observer design is based on stability conditions using linear matrix inequalities (LMIs) solutions. The system is maintained at the optimal 90 operation point (compensating for environmental drifts) and enables the demodulation of optical phase signals with low modulation index. Simulations and measurements were performed by using a Michelson interferometer, verifying that the method demodulates signals up to π/2 rad amplitudes and higher than 100 Hz frequencies (with maximum error of 0.45%). When compared to the important arc tangent method, both presented the same frequency response for the test PZT actuator. Full article
(This article belongs to the Special Issue Advanced Sensing and Measurement Control Applications)
Show Figures

Figure 1

14 pages, 4295 KiB  
Article
ZEMAX Simulations and Experimental Validation of Laser Interferometers
by Muddasir Naeem and Tayyab Imran
Photonics 2025, 12(3), 206; https://doi.org/10.3390/photonics12030206 - 27 Feb 2025
Cited by 1 | Viewed by 1679
Abstract
This study presents the design, simulation, and experimental validation of six fundamental laser interferometer types: Sagnac, Mach–Zehnder, Michelson, Twyman–Green, Fizeau, and Fabry–Pérot. Using ZEMAX OpticStudio in non-sequential mode with the physical optics propagation (POP) algorithm, the simulations provide detailed insights into the optical [...] Read more.
This study presents the design, simulation, and experimental validation of six fundamental laser interferometer types: Sagnac, Mach–Zehnder, Michelson, Twyman–Green, Fizeau, and Fabry–Pérot. Using ZEMAX OpticStudio in non-sequential mode with the physical optics propagation (POP) algorithm, the simulations provide detailed insights into the optical performance of these interferometers. A direct comparison is made between the simulated and experimental fringe patterns, coherent irradiance distributions, and phase plots, demonstrating strong agreement and validating the accuracy of computational modeling for interferometric analysis. The Mach–Zehnder and Michelson configurations exhibit high adaptability and measurement precision, while the Fabry–Pérot interferometer achieves superior spectral resolution. Twyman–Green interferometry proves particularly effective in mapping surface irregularities for optical testing. The results confirm the reliability of ZEMAX OpticStudio for high-precision optical system design and analysis. The novelty of this work lies in the comparative study between ZEMAX simulations and experimental interferometric results, particularly fringe patterns and phase distributions. This approach provides a clearer understanding of interferometer performance and enhances the accuracy of optical metrology, offering valuable insights for both theoretical modeling and practical applications. Full article
(This article belongs to the Special Issue Advances in Interferometric Optics and Applications)
Show Figures

Figure 1

19 pages, 3781 KiB  
Article
Validation of Atmospheric Wind Fields from MIGHTI/ICON: A Comprehensively Comparative Analysis with Meteor Radars, FPI and TIMED/TIDI
by Dini Gong, Shengyang Gu, Yusong Qin, Na Li, Yiding Chen, Wei Yuan and Yafei Wei
Remote Sens. 2025, 17(5), 794; https://doi.org/10.3390/rs17050794 - 24 Feb 2025
Viewed by 732
Abstract
The Michelson interferometer for global high-resolution thermospheric imaging (MIGHTI) aboard the NASA ionospheric connection (ICON) satellite offers extensive atmospheric wind field data for mid-latitude regions and has recently released its version 5 (v05) data. We conducted a comprehensive comparison and validation of MIGHTI [...] Read more.
The Michelson interferometer for global high-resolution thermospheric imaging (MIGHTI) aboard the NASA ionospheric connection (ICON) satellite offers extensive atmospheric wind field data for mid-latitude regions and has recently released its version 5 (v05) data. We conducted a comprehensive comparison and validation of MIGHTI v05 level 2.2 data for the period from December 2019 to October 2022, covering all MIGHTI data in orbit. In a comparison of raw wind speeds, MIGHTI demonstrates good agreement with the ground-based Fabry–Pérot interferometer (FPI), meteor radars, and the space-borne instrument TIMED Doppler interferometer (TIDI). However, some differences still exist. Comparisons with meteor radars revealed differences attributable to observational altitude, day–night variations, and latitude distribution. Below 100 km, MIGHTI and meteor radar exhibit excellent consistency (r = 0.819 for zonal and r = 0.782 for meridional winds). Day–night differences are minimal, with closer amplitude values observed at night. MIGHTI shows stronger correlations with low-latitude meteor radar, with coefficients of 0.859 (zonal) and 0.891 (meridional) at Ledong. The meridional wind correlation is better in low-latitude regions, in contrast to mid-latitudes. Similar observations were made in a comparison with FPI, emphasizing the need for caution when considering the meridional wind component of MIGHTI at observational boundaries (~40 °N). In addition to comparing raw wind speed data, we analyzed the amplitude of fluctuations extracted by MIGHTI and TIDI by employing the least squares method to extract planetary waves. The results indicate that both TIDI and MIGHTI observe the same fluctuation events, but TIDI extracts larger fluctuation amplitudes than MIGHTI. Finally, we present, for the first time, the spatial structure of a five-day wave that occurred in March 2020. Full article
Show Figures

Graphical abstract

7 pages, 944 KiB  
Proceeding Paper
Fast Method for the Measurement of Dispersion of Integrated Waveguides by Utilizing Michelson Interferometry Effects
by Isaac Yorke, Lars Emil Gutt, Peter David Girouard and Michael Galili
Phys. Sci. Forum 2024, 10(1), 4; https://doi.org/10.3390/psf2024010004 - 20 Dec 2024
Viewed by 572
Abstract
In this paper we demonstrate a new approach to the measurement of dispersion of light reflected in integrated optical devices. The approach utilizes the fact that light reflected from the end facet of an integrated waveguide will interfere with light reflected from points [...] Read more.
In this paper we demonstrate a new approach to the measurement of dispersion of light reflected in integrated optical devices. The approach utilizes the fact that light reflected from the end facet of an integrated waveguide will interfere with light reflected from points inside the device under test (DUT), effectively creating a Michelson interferometer. The distance between the measured fringes of this interferometric signal will depend directly on the group delay experienced in the device under test, allowing for fast and easy measurement of waveguide dispersion. This approach has been used to determine the dispersion of a fabricated linearly chirped Bragg gratings waveguide and the result agrees well with the designed value. Full article
(This article belongs to the Proceedings of The 1st International Online Conference on Photonics)
Show Figures

Figure 1

18 pages, 6433 KiB  
Article
High-Performance Telescope System Design for Space-Based Gravitational Waves Detection
by Huiru Ji, Lujia Zhao, Zichao Fan, Rundong Fan, Jiamin Cao, Yan Mo, Hao Tan, Zhiyu Jiang and Donglin Ma
Sensors 2024, 24(22), 7309; https://doi.org/10.3390/s24227309 - 15 Nov 2024
Cited by 1 | Viewed by 1194
Abstract
Space-based gravitational wave (GW) detection employs the Michelson interferometry principle to construct ultra-long baseline laser interferometers in space for detecting GW signals with a frequency band of 10−4–1 Hz. The spaceborne telescope, as a core component directly integrated into the laser [...] Read more.
Space-based gravitational wave (GW) detection employs the Michelson interferometry principle to construct ultra-long baseline laser interferometers in space for detecting GW signals with a frequency band of 10−4–1 Hz. The spaceborne telescope, as a core component directly integrated into the laser link, comes in various configurations, with the off-axis four-mirror design being the most prevalent. In this paper, we present a high-performance design based on this configuration, which exhibits a stable structure, ultra-low wavefront aberration, and high-level stray light suppression capabilities, effectively eliminating background noise. Also, a scientifically justified positioning of the entrance and exit pupils has been implemented, thereby paving adequate spatial provision for the integration of subsequent optical systems. The final design realizes a wavefront error of less than λ/500 in the science field of view, and after tolerance allocation and Monte Carlo analysis, a wavefront error of less than λ/30 can be achieved with a probability of 92%. The chief ray spot diagram dimensions are significantly small, indicating excellent control of pupil aberrations. Additionally, the tilt-to-length (TTL) noise and stray light meet the stringent requirements for space-based gravitational wave detection. The refined design presented in this paper proves to be a more fitting candidate for GW detection projects, offering more accurate and rational guidance. Full article
(This article belongs to the Special Issue Advanced Optics and Sensing Technologies for Telescopes)
Show Figures

Figure 1

19 pages, 2630 KiB  
Article
Enhancing Long-Term Robustness of Inter-Space Laser Links in Space Gravitational Wave Detection: An Adaptive Weight Optimization Method for Multi-Attitude Sensors Data Fusion
by Zhao Cui, Xue Wang, Jinke Yang, Haoqi Shi, Bo Liang, Xingguang Qian, Zongjin Ye, Jianjun Jia, Yikun Wang and Jianyu Wang
Remote Sens. 2024, 16(22), 4179; https://doi.org/10.3390/rs16224179 - 8 Nov 2024
Cited by 1 | Viewed by 782
Abstract
The stable and high-precision acquisition of attitude data is crucial for sustaining the long-term robustness of laser links to detect gravitational waves in space. We introduce an effective method that utilizes an adaptive weight optimization approach for the fusion of attitude data obtained [...] Read more.
The stable and high-precision acquisition of attitude data is crucial for sustaining the long-term robustness of laser links to detect gravitational waves in space. We introduce an effective method that utilizes an adaptive weight optimization approach for the fusion of attitude data obtained from charge-coupled device (CCD) spot-positioning-based attitude measurements, differential power sensing (DPS), and differential wavefront sensing (DWS). This approach aims to obtain more robust and lower-noise-level attitude data. A system is designed based on the Michelson interferometer for link simulations; validation experiments are also conducted. The experimental results demonstrate that the fused data exhibit higher robustness. Even in the case of a single sensor failure, valid attitude data can still be obtained. Additionally, the fused data have lower noise levels, with root mean square errors of 9.5%, 37.4%, and 93.4% for the single CCD, DPS, and DWS noise errors, respectively. Full article
Show Figures

Figure 1

13 pages, 3982 KiB  
Article
All-Optical Encryption Controlled by Multiphotonic Absorption in Carbon Nanotubes
by Alexia Lopez-Bastida, Cecilia Mercado-Zúñiga, Jhovani Bornacelli, José Manuel de la Rosa and Carlos Torres-Torres
Photonics 2024, 11(11), 1029; https://doi.org/10.3390/photonics11111029 - 31 Oct 2024
Cited by 2 | Viewed by 1212
Abstract
This study presents an all-optical approach based on an XOR logic gate for encryption by interference and the assistance of multiphotonic effects exhibited by carbon nanotubes. We integrate a Michelson interferometer to propose the encryption system. The key innovation lies in the use [...] Read more.
This study presents an all-optical approach based on an XOR logic gate for encryption by interference and the assistance of multiphotonic effects exhibited by carbon nanotubes. We integrate a Michelson interferometer to propose the encryption system. The key innovation lies in the use of multiwalled carbon nanotubes (MWCNT) to control the XOR operation through intensity-dependent nonlinear optical absorption. We introduce control based on nanosecond nonlinear optical absorption in MWCNT. By measuring irradiance propagation through thin-film samples of MWCNT, we demonstrate a threshold-based binary data recording system that is highly resistant to unauthorized access. The combination of interferometric response, MWCNT-based intensity control, and multicriteria decision analysis through nonlinear absorption presents a powerful and versatile approach to optical encryption. This method has the potential to be a base for secure communication systems and optical computing, with possible extensions to biological computing and microbiology. While challenges in power optimization and scaling remain, this research marks a significant step towards advanced, ultrafast encryption systems. Full article
Show Figures

Figure 1

1 pages, 157 KiB  
Correction
Correction: Hofstetter et al. Monolithically Integrated Michelson Interferometer Using an InGaAs/InAlAs Quantum Cascade Laser at λ = 4 µm. Photonics 2024, 11, 593
by Daniel Hofstetter, Hans Beck and David P. Bour
Photonics 2024, 11(10), 992; https://doi.org/10.3390/photonics11100992 - 21 Oct 2024
Viewed by 691
Abstract
There was an error in the original publication [...] Full article
18 pages, 6433 KiB  
Article
Dual-Wavelength Interferometric Detection Technology for Wind and Temperature Fields in the Martian Middle and Upper Atmosphere Based on LCTF
by Yanqiang Wang, Biyun Zhang, Chunmin Zhang, Shiping Guo, Tingyu Yan, Yifan He and William Ward
Remote Sens. 2024, 16(19), 3591; https://doi.org/10.3390/rs16193591 - 26 Sep 2024
Viewed by 996
Abstract
A dual-wavelength spaceborne Martian polarized wind imaging Michelson interferometer based on liquid crystal tunable filters (LCTF-MPWIMI) has been proposed for the remote sensing detection of dynamic parameters such as wind speed and temperature in the middle and upper atmosphere of Mars. Using the [...] Read more.
A dual-wavelength spaceborne Martian polarized wind imaging Michelson interferometer based on liquid crystal tunable filters (LCTF-MPWIMI) has been proposed for the remote sensing detection of dynamic parameters such as wind speed and temperature in the middle and upper atmosphere of Mars. Using the detected Martian oxygen atom emission lines at 557.7 nm and 630.0 nm as observation spectral lines, this technology extends the detection altitude range for Martian atmospheric wind speed and temperature to 60–180 km. By leveraging the different spectral line visibility of the interferograms at the two wavelengths, a novel method for measuring Martian atmospheric temperature is proposed: the dual-wavelength spectral line visibility product method. This new approach reduces the uncertainty of temperature detection compared to traditional single spectral line visibility methods, while maintaining the precision of wind speed measurements. The feasibility of the LCTF-MPWIMI for measuring wind and temperature fields in the Martian middle and upper atmosphere has been validated through theoretical modeling and computer simulations. The interferometer, as a key component of the system, has been designed and analyzed. The proposed LCTF-MPWIMI instrument is free of mechanical moving parts, offering flexible wavelength selection and facilitating miniaturization. The dual-wavelength temperature measurement method introduced in this work provides superior temperature measurement precision compared to any single spectral line when the signal-to-noise ratio (SNR) of the interferograms is comparable. Moreover, this method does not impose specific requirements on the atomic state of the spectral lines, making it broadly applicable to similar interferometric wind measurement instruments. These innovations offer advanced tools and methodologies for measuring wind speeds and temperatures in the atmospheres of Mars and other planets. Full article
Show Figures

Figure 1

14 pages, 4102 KiB  
Article
In Situ Measurement of Deep-Sea Salinity Using Optical Salinometer Based on Michelson Interferometer
by Shuqing Yang, Jie Xu, Lanting Ji, Qingquan Sun, Muzi Zhang, Shanshan Zhao and Chi Wu
J. Mar. Sci. Eng. 2024, 12(9), 1569; https://doi.org/10.3390/jmse12091569 - 6 Sep 2024
Cited by 5 | Viewed by 1373
Abstract
Ocean salinity plays an important role in oceanographic research as one of the fundamental parameters. An optical salinometer based on the Michelson interferometer (MI) suitable for in situ measurement in deep-sea environments is proposed in this work, and it features real-time calibration and [...] Read more.
Ocean salinity plays an important role in oceanographic research as one of the fundamental parameters. An optical salinometer based on the Michelson interferometer (MI) suitable for in situ measurement in deep-sea environments is proposed in this work, and it features real-time calibration and multichannel multiplexing using the frequency modulated continuous wave (FMCW) technique. The symmetrical sapphire structure used to withstand deep-sea pressure can not only achieve automatic temperature compensation, but also counteract the changes in optical path length under deep-sea pressure. A model formula suitable for optical salinity demodulation is proposed through the nonlinear least squares fitting method. In vertical profile testing, the optical salinometer demonstrated remarkable tracking performance, achieving an error of less than 0.001 psu. The sensor displays a stable salinity demodulation error within ±0.002 psu during a three-month long-term test at a depth of 4000 m. High stability and resolution make this optical salinometer have broad development prospects in ocean observation. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

14 pages, 8963 KiB  
Article
Twenty-Meter Laser Strainmeter “Popova Isl.”
by Mikhail Bolsunovskii, Grigory Dolgikh, Stanislav Dolgikh, Vladimir Chupin, Viacheslav Shvets and Sergey Yakovenko
Sensors 2024, 24(17), 5788; https://doi.org/10.3390/s24175788 - 5 Sep 2024
Cited by 1 | Viewed by 977
Abstract
This paper describes the design and principle of operation of a 20 m laser strainmeter of unequal-arm type created on the basis of a Michelson interferometer and frequency-stabilized helium–neon laser. The interferometry methods used allow the measurement of the displacement of an Earth’s [...] Read more.
This paper describes the design and principle of operation of a 20 m laser strainmeter of unequal-arm type created on the basis of a Michelson interferometer and frequency-stabilized helium–neon laser. The interferometry methods used allow the measurement of the displacement of an Earth’s crust section on the base of the laser strainmeter with an accuracy of 30 pm in the frequency range from 0 (conventionally) to 1000 Hz. This laser strainmeter, when connected to an accurate time system providing an accuracy of 1 μs, should structurally become a part of the laser interferometric seismoacoustic observatory, consisting of spatially separated laser strainmeters installed in various regions of Russia. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

12 pages, 3079 KiB  
Article
Michelson Interferometric Methods for Full Optical Complex Convolution
by Haoyan Kang, Hao Wang, Jiachi Ye, Zibo Hu, Jonathan K. George, Volker J. Sorger, Maria Solyanik-Gorgone and Behrouz Movahhed Nouri
Nanomaterials 2024, 14(15), 1262; https://doi.org/10.3390/nano14151262 - 28 Jul 2024
Cited by 2 | Viewed by 1633
Abstract
Optical real-time data processing is advancing fields like tensor algebra acceleration, cryptography, and digital holography. This technology offers advantages such as reduced complexity through optical fast Fourier transform and passive dot-product multiplication. In this study, the proposed Reconfigurable Complex Convolution Module (RCCM) is [...] Read more.
Optical real-time data processing is advancing fields like tensor algebra acceleration, cryptography, and digital holography. This technology offers advantages such as reduced complexity through optical fast Fourier transform and passive dot-product multiplication. In this study, the proposed Reconfigurable Complex Convolution Module (RCCM) is capable of independently modulating both phase and amplitude over two million pixels. This research is relevant for applications in optical computing, hardware acceleration, encryption, and machine learning, where precise signal modulation is crucial. We demonstrate simultaneous amplitude and phase modulation of an optical two-dimensional signal in a thin lens’s Fourier plane. Utilizing two spatial light modulators (SLMs) in a Michelson interferometer placed in the focal plane of two Fourier lenses, our system enables full modulation in a 4F system’s Fourier domain. This setup addresses challenges like SLMs’ non-linear inter-pixel crosstalk and variable modulation efficiency. The integration of these technologies in the RCCM contributes to the advancement of optical computing and related fields. Full article
Show Figures

Figure 1

Back to TopTop