Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = Mg-Zn-Al-Ca alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7246 KiB  
Article
Coated Mg Alloy Implants: A Spontaneous Wettability Transition Process with Excellent Antibacterial and Osteogenic Functions
by Sijia Yan, Shu Cai, You Zuo, Hang Zhang, Ting Yang, Lei Ling, Huanlin Zhang, Jiaqi Lu and Baichuan He
Materials 2025, 18(9), 1908; https://doi.org/10.3390/ma18091908 - 23 Apr 2025
Viewed by 533
Abstract
AZ31B magnesium alloy (wt.%: Al 2.94; Zn 0.87; Mn 0.57; Si 0.0112; Fe 0.0027; Cu 0.0008; Ni 0.0005; Mg remaining) has appropriate mechanical properties, good biodegradability and biocompatibility and can be used as a good orthopedic implant material. AZ31B magnesium alloy with a [...] Read more.
AZ31B magnesium alloy (wt.%: Al 2.94; Zn 0.87; Mn 0.57; Si 0.0112; Fe 0.0027; Cu 0.0008; Ni 0.0005; Mg remaining) has appropriate mechanical properties, good biodegradability and biocompatibility and can be used as a good orthopedic implant material. AZ31B magnesium alloy with a superhydrophobic surface exhibits excellent corrosion resistance and antibacterial adhesion performance, but superhydrophobic surfaces also hinder osteoblast adhesion and proliferation on the implants, resulting in unsatisfactory osteogenic properties. Therefore, it is necessary to achieve the wettability transition of the superhydrophobic surface at an early stage of implantation. In this work, superhydrophobic hydroxyapatite (HA)/calcium myristate (CaMS)/myristic acid (MA) composite coatings were prepared on AZ31B magnesium alloy using the hydrothermal and immersion methods. The composite coatings can spontaneously undergo the wettability transition from superhydrophobic to hydrophilic after complete exposure to simulated body fluid (SBF, a solution for modeling the composition and concentration of human plasma ions) for 9 h. The wettability transition mainly originated from the deposition and growth of the newly formed CaMS among the HA nanopillars during immersing, which deconstructed the micro-nano structure of the superhydrophobic coatings and directly exposed the HA to the water molecules, thereby significantly altering the wettability of the coatings. Benefiting from the superhydrophobic surface, the composite coating exhibited excellent antibacterial properties. After the wettability transition, the HA/CaMS/MA composite coating exhibited superior osteoblast adhesion performance. This work provides a strategy to enable a superhydrophobic coating to undergo spontaneous wettability transition in SBF, thereby endowing the coated magnesium alloy with a favorable osteogenic property. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

27 pages, 25194 KiB  
Article
As-Cast Magnesium Alloys with Ca Addition as a Replacement for Magnesium Alloys with Rare Earth Metals
by Tomasz Rzychoń and Agnieszka Fornalczyk
Materials 2025, 18(8), 1860; https://doi.org/10.3390/ma18081860 - 18 Apr 2025
Viewed by 435
Abstract
This article evaluates the possibility of replacing creep-resistant magnesium Mg-Zn-RE-Zr alloys (EZ33) with Mg-Al-Ca-Sr alloys. (1) Background: Mg alloys with RE metals show excellent properties. Due to their high cost, new, more economical Mg alloys are being developed. Replacing RE metals with cheaper [...] Read more.
This article evaluates the possibility of replacing creep-resistant magnesium Mg-Zn-RE-Zr alloys (EZ33) with Mg-Al-Ca-Sr alloys. (1) Background: Mg alloys with RE metals show excellent properties. Due to their high cost, new, more economical Mg alloys are being developed. Replacing RE metals with cheaper elements such as Al and Ca allows us to obtain high mechanical properties at elevated temperatures due to the tendency to form stable intermetallic phases. (2) Methods: Microstructure analysis (LM, SEM, TEM, and XRD) was performed and mechanical properties were tested at ambient and elevated temperatures. (3) Results: Increasing the Ca content and decreasing the Al content leads to the formation of a continuous skeleton of high-melting and brittle Ca-rich Laves phases and Sr-rich intermetallic phases and the formation of plate-like precipitates of the C15 phase inside the α-Mg solid solution. The crystallographic orientation of plate-like precipitates contributes to the blocking of dislocations in slip systems activated at elevated temperatures. Increasing the Ca and Sr content allows for the regulation of the Al concentration in the α-Mg, providing solution strengthening and stability of the α-Mg solid solution. These factors contribute to a significant improvement in creep resistance of Mg-Al-Ca-Sr alloys. (4) Conclusions: The strength properties and elongation at ambient temperature of the Mg alloys with Ca and Sr addition are comparable to those of the EZ33 alloy, and due to the presence of lighter alloying elements, a better specific strength is achieved. Ca-rich Mg-Al-Ca-Sr alloys exhibit better creep resistance at temperatures of up to 200 °C compared to the EZ33 alloy. Full article
(This article belongs to the Special Issue Manufacturing, Characterization and Modeling of Advanced Materials)
Show Figures

Figure 1

13 pages, 3043 KiB  
Article
Prediction of Grain Structure and Texture in Twin-Roll Cast Aluminum Alloys Using Cellular Automaton–Finite Element Method
by Han-Gyoung Cho, Young Do Kim and Min-Seok Kim
Materials 2025, 18(5), 1075; https://doi.org/10.3390/ma18051075 - 27 Feb 2025
Cited by 1 | Viewed by 805
Abstract
The twin-roll casting (TRC) process has gained significant attention for aluminum sheet production due to its cost-effectiveness and high processing efficiency. However, controlling the initial grain structure of TRC strips remains challenging due to the absence of a hot rolling stage, necessitating an [...] Read more.
The twin-roll casting (TRC) process has gained significant attention for aluminum sheet production due to its cost-effectiveness and high processing efficiency. However, controlling the initial grain structure of TRC strips remains challenging due to the absence of a hot rolling stage, necessitating an advanced predictive modeling approach. In this study, a cellular automaton–finite element (CA-FE) model was developed to predict the grain structure and texture of aluminum strips fabricated via TRC. Both pure Al and AA7075 alloys were cast under identical conditions using a pilot-scale horizontal twin-roll caster, and their microstructures were characterized experimentally. The developed model incorporated a Gaussian nucleation distribution function and an equivalent binary approach to account for the solidification behavior of multicomponent alloys. The CA-FE simulation results successfully reproduced the key aspects of solidification, grain structure, and texture evolution of TRC strips. The predicted temperature distribution and solid fraction evolution showed distinct differences between the alloys, with pure Al forming columnar grains and AA7075 developing a fully equiaxed structure, which closely matched the experimental findings. Additionally, texture analysis using inverse pole figures (IPFs) and pole figures (PFs) revealed a clear <001> orientation in pure Al, whereas AA7075 exhibited a random texture, both of which were well captured by the CA-FE model. The findings indicate that the developed model offers a reliable prediction of the solidification microstructure and texture evolution in TRC strips, making it a valuable tool for optimizing continuous casting processes. Full article
Show Figures

Figure 1

19 pages, 10292 KiB  
Article
Annealing Behavior of a Mg-Y-Zn-Al Alloy Processed by Rapidly Solidified Ribbon Consolidation
by Jenő Gubicza, Kristián Máthis, Péter Nagy, Péter Jenei, Zoltán Hegedűs, Andrea Farkas, Jozef Vesely, Shin-ichi Inoue, Daria Drozdenko and Yoshihito Kawamura
Materials 2024, 17(18), 4511; https://doi.org/10.3390/ma17184511 - 13 Sep 2024
Cited by 3 | Viewed by 1275
Abstract
Mg-Y-Zn-Al alloys processed by the rapidly solidified ribbon consolidation (RSRC) technique are candidate materials for structural applications due to their improved mechanical performance. Their outstanding mechanical strength is attributed to solute-enriched stacking faults (SESFs), which can form cluster-arranged layers (CALs) and cluster-arranged nanoplates [...] Read more.
Mg-Y-Zn-Al alloys processed by the rapidly solidified ribbon consolidation (RSRC) technique are candidate materials for structural applications due to their improved mechanical performance. Their outstanding mechanical strength is attributed to solute-enriched stacking faults (SESFs), which can form cluster-arranged layers (CALs) and cluster-arranged nanoplates (CANaPs) or complete the long-period stacking ordered (LPSO) phase. The thermal stability of these solute arrangements strongly influences mechanical performance at elevated temperatures. In this study, an RSRC-processed Mg—0.9%, Zn—2.05%, Y—0.15% Al (at%) alloy was heated at a rate of 0.666 K/s up to 833 K, a temperature very close to melting point. During annealing, in situ X-ray diffraction (XRD) measurements were performed using synchrotron radiation in order to monitor changes in the structure. These in situ XRD experiments were completed with ex situ electron microscopy investigations before and after annealing. At 753 K and above, the ratio of the matrix lattice constants, c/a, decreased considerably, which was restored during cooling. This decrease in c/a could be attributed to partial melting in the volumes with high solute contents, causing a change in the chemical composition of the remaining solid material. In addition, the XRD intensity of the secondary phase increased at the beginning of cooling and then remained unchanged, which was attributed to a long-range ordering of the solute-enriched phase. Both the matrix grains and the solute-enriched particles were coarsened during the heat treatment, as revealed by electron microscopy. Full article
Show Figures

Figure 1

14 pages, 9244 KiB  
Article
Effect of Zn Addition on the Microstructure and Discharge Performance of Mg-Al-Mn-Ca Alloys for Magnesium-Air Batteries
by Yiwei Gong, Kezheng Wei, Wenlong Jiang, Chongchen Xiang, Hanlin Ding and Zijian Wang
Metals 2024, 14(9), 1014; https://doi.org/10.3390/met14091014 - 5 Sep 2024
Cited by 3 | Viewed by 1305
Abstract
This study explores the effects of Zn addition through micro-alloying on the microstructure and discharge performance of Mg-Al-Mn-Ca alloy anodes for magnesium-air batteries. The results show that the second-phase particles (d > 1 μm) in a Mg-Al-Mn-Ca alloy promote dynamic recrystallization (DRX) via [...] Read more.
This study explores the effects of Zn addition through micro-alloying on the microstructure and discharge performance of Mg-Al-Mn-Ca alloy anodes for magnesium-air batteries. The results show that the second-phase particles (d > 1 μm) in a Mg-Al-Mn-Ca alloy promote dynamic recrystallization (DRX) via particle-stimulated nucleation (PSN), resulting in a uniform equiaxed grain structure and fiber texture. In contrast, Zn and Ca co-segregation in a Mg-Al-Mn-Ca-Zn alloy facilitates continuous dynamic recrystallization (CDRX) and, combined with the PSN mechanism, forms a unique structure where three types of grains with different grain boundary densities coexist. The addition of Zn and Ca effectively reduces the c/a axis ratio, promoting texture homogenization. The Mg-Al-Mn-Ca alloy exhibits rough discharge surfaces due to simultaneous discharge at numerous grain boundaries and severe hydrogen evolution corrosion from micro-galvanic effects, inducing the chunk effect (CE). Conversely, the structure where three types of grains with different grain boundary densities coexist in the Mg-Al-Mn-Ca-Zn alloy promotes discharge product detachment through stress cracking, achieving uniform discharge and significantly enhancing discharge performance. The uniform texture reduces hydrogen evolution corrosion, improving anode utilization. This study demonstrates that controlling the microstructure, particularly grain boundary density and grain texture, enables the development of high-performance Mg-Al-Mn-Ca-Zn alloy anodes, especially at higher current densities, offering a new strategy for designing efficient magnesium alloy anode materials. Full article
Show Figures

Figure 1

14 pages, 4242 KiB  
Article
Fabrication of Vanadate-Exchanged Electrodeposited Zn-Al Layered Double Hydroxide (LDH) Coating on a ZX21 Mg Alloy to Improve the Corrosion Resistance
by Wei-Lun Hsiao and Peng-Wei Chu
Coatings 2024, 14(8), 1047; https://doi.org/10.3390/coatings14081047 - 16 Aug 2024
Cited by 2 | Viewed by 1681
Abstract
This study presents a vanadate-exchanged Zn-Al layered double hydroxide (LDH) coating on a ZX21 Mg alloy (Mg-2.15 wt%Zn-0.97 wt%Ca) by electrodeposition and immersion anion-exchange post-treatment. With the prepared vanadate-exchanged electrodeposited Zn-Al LDH coating, the corrosion resistance of the ZX21 Mg alloy improves with [...] Read more.
This study presents a vanadate-exchanged Zn-Al layered double hydroxide (LDH) coating on a ZX21 Mg alloy (Mg-2.15 wt%Zn-0.97 wt%Ca) by electrodeposition and immersion anion-exchange post-treatment. With the prepared vanadate-exchanged electrodeposited Zn-Al LDH coating, the corrosion resistance of the ZX21 Mg alloy improves with a decrease in the corrosion current density from 62.4 μA/cm2 to 3.32 μA/cm2. The fabricated vanadate-exchanged electrodeposited Zn-Al LDH coating contains complex anions in the interlayers, including mainly nitrate (NO3), carbonate (CO32−), and different vanadates. The coating not only serves as a physical barrier on the ZX21 Mg alloy but also absorbs chloride ions in the environment through anion exchange and inhibits corrosion with the reduction of the interlayer vanadates. Furthermore, the vanadates can also be released into the damaged area of the coating. Full article
(This article belongs to the Special Issue Advances in Corrosion-Resistant Coatings, 2nd Edition)
Show Figures

Figure 1

10 pages, 24169 KiB  
Article
Effects of Zn Addition and Twin Roll Casting Process on the Microstructure, Texture, and Mechanical Properties of the Mg-Al-Mn-Ca Sheet
by Donghwan Eom, Sangbong Yi, Dietmar Letzig and No-Jin Park
Metals 2024, 14(3), 261; https://doi.org/10.3390/met14030261 - 22 Feb 2024
Cited by 2 | Viewed by 1665
Abstract
In this work, the microstructure and texture of Mg-1.0Al-xZn-0.2Mn-0.5Ca (wt.%, x = 0, 1) alloys, which were produced via conventional casting or twin roll casting (TRC), were investigated, and their relation to the mechanical properties of the sheets at the final gage was [...] Read more.
In this work, the microstructure and texture of Mg-1.0Al-xZn-0.2Mn-0.5Ca (wt.%, x = 0, 1) alloys, which were produced via conventional casting or twin roll casting (TRC), were investigated, and their relation to the mechanical properties of the sheets at the final gage was analyzed. In the Zn-containing AZMX1100 alloy sheets, the amount and size of the secondary phases were significantly reduced, in comparison to the Zn-free AMX100 alloy sheet. The TRC sheet shows a smaller grain structure and fine secondary phases in comparison to the sheets produced via the conventional casting process. The texture of the AMX100 sheet is characterized by the basal poles tilted in the sheet rolling direction (RD). In the AZMX1100 sheets, the texture with the tilted basal poles towards the RD and transverse direction (TD) was developed after recrystallization annealing, while the tilting angle of the basal pole in the TD is larger than in the RD. There is no significant difference in the texture between the sheets produced by the casting and TRC process. The highest yield strength was obtained in the AZMX1100 sheet produced by the TRC process, and all examined sheets showed the mechanical anisotropy in accordance with their textures. Full article
(This article belongs to the Topic Advanced Processes in Metallurgical Technologies)
Show Figures

Figure 1

10 pages, 4412 KiB  
Article
Cold Formability of Twin-Roll Cast, Rolled and Annealed Mg Strips
by Madlen Ullmann, Kristina Kittner and Ulrich Prahl
Metals 2024, 14(1), 121; https://doi.org/10.3390/met14010121 - 19 Jan 2024
Cited by 1 | Viewed by 1961
Abstract
This study investigates the cold formability of twin-roll cast and rolled magnesium strips, specifically focusing on AZ31 and ZAX210 alloys. The aim is to assess the suitability of these alloys for various forming processes. The mechanical properties and formability characteristics of the strips [...] Read more.
This study investigates the cold formability of twin-roll cast and rolled magnesium strips, specifically focusing on AZ31 and ZAX210 alloys. The aim is to assess the suitability of these alloys for various forming processes. The mechanical properties and formability characteristics of the strips were thoroughly examined to provide insights into their potential applications in transportation industries such as automotive and aerospace. The AZ31 and ZAX210 alloys were subjected to twin-roll casting and rolling processes to produce thin strips. The resulting strips were then evaluated for their cold formability. The results indicate that both alloys exhibit favourable cold formability. The ZAX210 alloy, in particular, demonstrates medium strengths with an average tensile strength of approximately 240 MPa at room temperature. The 0.2% proof stress values range between 136 MPa and 159 MPa, depending on the sampling direction. The total elongation values vary from 28% in the transverse direction to 32% at a 45° angle, indicating excellent ductility. Comparing the two alloys, the AZ31 alloy shows higher strengths due to its higher aluminium content. However, it also exhibits a more pronounced directional dependence of mechanical properties due to the formation of a strong basal texture during hot rolling. The transverse direction experiences reduced total elongation compared to the rolling direction, achieving only about 50% of the total elongation. The average Erichsen Index recorded for AZ31 and ZAX210 strips were 4.9 mm and 7.1 mm, respectively. The ZAX210 strip displays superior formability, which can be attributed to the fine-grained microstructure and the texture softening resulting from the weakening of the basal texture intensity and the splitting of the basal pole towards the rolling direction. In conclusion, the investigated twin-roll cast, rolled and annealed AZ31 and ZAX210 magnesium strips exhibit promising cold formability characteristics. The findings of this study contribute to the understanding of their mechanical behaviour and can guide the selection and optimisation of these alloys for various forming applications. Full article
(This article belongs to the Special Issue Preparation and Processing Technology of Advanced Magnesium Alloys)
Show Figures

Figure 1

18 pages, 6337 KiB  
Article
Enhancing Multiple Properties of a Multicomponent Mg-Based Alloy Using a Sinterless Turning-Induced Deformation Technique
by Michael Johanes, Amirin Adli Bin Gombari and Manoj Gupta
Technologies 2023, 11(6), 181; https://doi.org/10.3390/technologies11060181 - 13 Dec 2023
Cited by 3 | Viewed by 2223
Abstract
A magnesium-based multi-component alloy (MCA), Mg70Al18Zn6Ca4Y2, was successfully synthesized using the Turning-Induced Deformation (TID) method, with promising improvements in multiple properties such as damping capabilities, hardness (11% to 34% increase), and strength (5% [...] Read more.
A magnesium-based multi-component alloy (MCA), Mg70Al18Zn6Ca4Y2, was successfully synthesized using the Turning-Induced Deformation (TID) method, with promising improvements in multiple properties such as damping capabilities, hardness (11% to 34% increase), and strength (5% to 15% increase) over its conventional cast and extruded equivalent which has already been established as a high-performance MCA exhibiting superior mechanical properties over other Mg-based materials while retaining acceptable ductility. This new TID-based MCA comes only at a slight compromise in the aspects of ductility, ignition resistance, and corrosion resistance, which was previously observed in other TID-based materials. In addition, the general microstructure and secondary phases of this MCA were retained even when using the TID method, with only minimal porosity (<1%) incurred during the process. Furthermore, the ignition temperature of the TID Mg70Al18Zn6Ca4Y2 remained very high at 915 °C, positioning it as a potential Mg-based material suitable for aerospace applications with a high ignition resistance. This is tantamount to a successful application of TID to yet another class of Mg-based materials and opening the door to future explorations of such materials. Full article
(This article belongs to the Section Innovations in Materials Science and Materials Processing)
Show Figures

Graphical abstract

13 pages, 2269 KiB  
Article
First-Principles Dynamics Investigation of Germanium as an Anode Material in Multivalent-Ion Batteries
by Chaewon Kim, Useul Hwang, Sangjin Lee and Young-Kyu Han
Nanomaterials 2023, 13(21), 2868; https://doi.org/10.3390/nano13212868 - 30 Oct 2023
Cited by 6 | Viewed by 2194
Abstract
Germanium, a promising electrode material for high-capacity lithium ion batteries (LIBs) anodes, attracted much attention because of its large capacity and remarkably fast charge/discharge kinetics. Multivalent-ion batteries are of interest as potential alternatives to LIBs because they have a higher energy density and [...] Read more.
Germanium, a promising electrode material for high-capacity lithium ion batteries (LIBs) anodes, attracted much attention because of its large capacity and remarkably fast charge/discharge kinetics. Multivalent-ion batteries are of interest as potential alternatives to LIBs because they have a higher energy density and are less prone to safety hazards. In this study, we probed the potential of amorphous Ge anodes for use in multivalent-ion batteries. Although alloying Al and Zn in Ge anodes is thermodynamically unstable, Mg and Ca alloys with Ge form stable compounds, Mg2.3Ge and Ca2.4Ge that exhibit higher capacities than those obtained by alloying Li, Na, or K with Ge, corresponding to 1697 and 1771 mA·h·g–1, respectively. Despite having a slightly lower capacity than Ca–Ge, Mg–Ge shows an approximately 150% smaller volume expansion ratio (231% vs. 389%) and three orders of magnitude higher ion diffusivity (3.0 × 10−8 vs. 1.1 × 10−11 cm2 s−1) than Ca–Ge. Furthermore, ion diffusion in Mg–Ge occurs at a rate comparable to that of monovalent ions, such as Li+, Na+, and K+. The outstanding performance of the Mg–Ge system may originate from the coordination number of the Ge host atoms and the smaller atomic size of Mg. Therefore, Ge anodes could be applied in multivalent-ion batteries using Mg2+ as the carrier ion because its properties can compete with or surpass monovalent ions. Here, we report that the maximum capacity, volume expansion ratio, and ion diffusivities of the alloying electrode materials can be understood using atomic-scale structural properties, such as the host–host and host–ion coordination numbers, as valuable indicators. Full article
(This article belongs to the Special Issue First-Principle Calculation Study of Nanomaterials)
Show Figures

Figure 1

19 pages, 9117 KiB  
Article
Phase Composition and Microstructure of Cast Al-6%Mg-2%Ca-2%Zn Alloy with Fe and Si Additions
by Vitali Doroshenko, Pavel Shurkin, Tatyana Sviridova, Anastasiya Fortuna and Ivan Shkaley
Metals 2023, 13(9), 1584; https://doi.org/10.3390/met13091584 - 12 Sep 2023
Cited by 9 | Viewed by 1695
Abstract
Investigating the effect of Fe and Si is essential for any new Al-based composition, as these impurities can be easily found both after primary production and recycling. This study is dedicated to filling the gap in revealing the phase composition of an Al-6%Mg-2%Ca-2%Zn [...] Read more.
Investigating the effect of Fe and Si is essential for any new Al-based composition, as these impurities can be easily found both after primary production and recycling. This study is dedicated to filling the gap in revealing the phase composition of an Al-6%Mg-2%Ca-2%Zn alloy after the combined and separate addition of Fe and Si. This was addressed by permanent mold casting and solid solution heat treatment. The investigation of slowly solidified samples also contributed to understanding potential phase transitions. It was found that the alloy containing 0.5%Fe can have nearly spherical intermetallics after heat treatment, whereas a higher Fe content brought the formation of a needle-shaped Al3Fe intermetallic. We explain this by the formation of a ternary α-Al + Al10CaFe2 + Al4Ca eutectic, which is more compact in as-cast condition compared to divorced binary α-Al + Al4Ca and α-Al + Al3Fe eutectics. Similarly, 0.5%Si readily incurred the formation of a needle-shaped Al2CaSi2 intermetallic, probably also by a binary reaction L → α-Al + Al2CaSi2. In the solidified samples, no Mg2Si phase was found, even in slowly solidified samples. This is contrary to the thermodynamic calculation, which suggests a peritectic reaction L + Al2CaSi2 Mg2Si. Interestingly, the addition of 0.5%Si caused an even coarser microstructure compared to the addition of 1%Fe, which caused the appearance of a primary Al3Fe phase. We conclude that the new alloy is more tolerable to Fe rather than Si. Specifically, the addition of 0.5%Fe can be added while maintaining a fine morphology of the eutectic network. It was suggested that the morphology of eutectic and solid solution hardening governed the mechanical properties. The strength of the alloys containing separate 0.5%Fe (UTS = 215 ± 8 MPa and YS 146 ± 4 = MPa) and the combined 0.5%Fe and 0.5%Si additions (UTS = 195 ± 14 MPa and YS ± 1 = 139 MPa) was not compromised compared to the alloy containing 0.5%Si (UTS 201 ± 24 = MPa and YS = 131 ± 1 MPa). Full article
Show Figures

Figure 1

10 pages, 5205 KiB  
Article
Improving the Mechanical Properties of Mg-5Al-2Ca-1Mn-0.5Zn Alloy through Rotary Swaging
by Bin Li, Hao Chen, Xiangnan Ke, Guobing Wei and Qingshan Yang
Materials 2023, 16(12), 4489; https://doi.org/10.3390/ma16124489 - 20 Jun 2023
Cited by 5 | Viewed by 1631
Abstract
To meet the demand for more extensive applications of Mg alloys, a Mg-5Al-2Ca-1Mn-0.5Zn alloy without RE was prepared in this paper, and its mechanical properties were further improved by conventional hot extrusion and subsequent rotary swaging. The results show that the hardness of [...] Read more.
To meet the demand for more extensive applications of Mg alloys, a Mg-5Al-2Ca-1Mn-0.5Zn alloy without RE was prepared in this paper, and its mechanical properties were further improved by conventional hot extrusion and subsequent rotary swaging. The results show that the hardness of the alloy decreases along the radial central region after rotary swaging. The strength and hardness of the central area are lower, but the ductility is higher. The yield strength and ultimate tensile strength of the alloy in the peripheral area after rotary swaging reach 352 MPa and 386 MPa, respectively, while the elongation remains at 9.6%, exhibiting better strength–ductility synergy. The grain refinement and dislocation increase caused by rotary swaging promoted strength improvement. The activation of non-basal slips during rotary swaging is an important reason for the alloy to maintain good plasticity while improving strength. Full article
Show Figures

Figure 1

17 pages, 7670 KiB  
Article
Influence of Al Addition on the Microstructure and Mechanical Properties of Mg-Zn-Sn-Mn-Ca Alloys
by Shujuan Yan, Caihong Hou, Angui Zhang and Fugang Qi
Materials 2023, 16(10), 3664; https://doi.org/10.3390/ma16103664 - 11 May 2023
Cited by 3 | Viewed by 1554
Abstract
The effects of Al addition on the microstructure and mechanical properties of Mg-Zn-Sn-Mn-Ca alloys are studied in this paper. It was found that the Mg-6Sn-4Zn-1Mn-0.2Ca-xAl (ZTM641-0.2Ca-xAl, x = 0, 0.5, 1, 2 wt.%; hereafter, all compositions are in weight percent unless stated otherwise) [...] Read more.
The effects of Al addition on the microstructure and mechanical properties of Mg-Zn-Sn-Mn-Ca alloys are studied in this paper. It was found that the Mg-6Sn-4Zn-1Mn-0.2Ca-xAl (ZTM641-0.2Ca-xAl, x = 0, 0.5, 1, 2 wt.%; hereafter, all compositions are in weight percent unless stated otherwise) alloys have α-Mg, Mg2Sn, Mg7Zn3, MgZn, α-Mn, CaMgSn, AlMn, Mg32(Al,Zn)49 phases. The grain is also refined when the Al element is added, and the angular-block AlMn phases are formed in the alloys. For the ZTM641-0.2Ca-xAl alloy, the higher Al content is beneficial to elongation, and the double-aged ZTM641-0.2Ca-2Al alloy has the highest elongation, which is 13.2%. The higher Al content enhances the high-temperature strength for the as-extruded ZTM641-0.2Ca alloy; overall, the as-extruded ZTM641-0.2Ca-2Al alloy has the best performance; that is, the tensile strength and yield strength of the ZTM641-0.2Ca-2Al alloy are 159 MPa and 132 MPa at 150 °C, and 103 MPa and 90 MPa at 200 °C, respectively. Full article
Show Figures

Figure 1

11 pages, 4626 KiB  
Article
On the Aging Kinetics of a Flame-Resistant AZ91D-1.5%Ca Magnesium Alloy Processed with Ultrasonic Vibration
by Inês V. Gomes, Fabrizio D’Errico, José L. Alves and Hélder Puga
Materials 2023, 16(8), 3152; https://doi.org/10.3390/ma16083152 - 17 Apr 2023
Cited by 2 | Viewed by 1766
Abstract
The Mg-Al-Zn-Ca system has demonstrated excellent flame resistance and mechanical properties in the as-cast condition. However, the potential of these alloys to be heat-treated, e.g., by aging, as well as the influence of the initial microstructure on the precipitation kinetics, is yet to [...] Read more.
The Mg-Al-Zn-Ca system has demonstrated excellent flame resistance and mechanical properties in the as-cast condition. However, the potential of these alloys to be heat-treated, e.g., by aging, as well as the influence of the initial microstructure on the precipitation kinetics, is yet to be comprehensively explored. Ultrasound treatment was applied during the solidification of an AZ91D-1.5%Ca alloy to promote microstructure refinement. Samples from treated and non-treated ingots were subjected to solution treatment at 415 °C for 480 min, followed by aging at 175 °C for up to 4920 min. The results showed that the ultrasound-treated material could reach the peak-age condition in a shorter period than the non-treated one, suggesting accelerated precipitation kinetics and, thus, enhanced aging response. However, the tensile properties showed a decrease in the peak age compared to the as-cast condition, probably due to the formation of precipitates at the grain boundaries that promote the formation of microcracks and intergranular early fracture. This research shows that tailoring the material’s as-cast microstructure may positively affect its aging response, shortening the heat treatment duration, thereby making the process less expensive and more sustainable. Full article
(This article belongs to the Special Issue Physical Metallurgy of Metals and Alloys)
Show Figures

Figure 1

17 pages, 11287 KiB  
Article
Effect of Radial-Shear Rolling on the Structure and Hardening of an Al–8%Zn–3.3%Mg–0.8%Ca–1.1%Fe Alloy Manufactured by Electromagnetic Casting
by Yury V. Gamin, Nikolay A. Belov, Torgom K. Akopyan, Victor N. Timofeev, Stanislav O. Cherkasov and Mikhail M. Motkov
Materials 2023, 16(2), 677; https://doi.org/10.3390/ma16020677 - 10 Jan 2023
Cited by 6 | Viewed by 2227
Abstract
Aluminum alloys are one of the most common structural materials. To improve the mechanical properties, an alloy of the Al–Zn–Mg–Ca–Fe system was proposed. In this alloy, when Fe and Ca are added, compact particles of the Al10CaFe2 compound are formed, [...] Read more.
Aluminum alloys are one of the most common structural materials. To improve the mechanical properties, an alloy of the Al–Zn–Mg–Ca–Fe system was proposed. In this alloy, when Fe and Ca are added, compact particles of the Al10CaFe2 compound are formed, which significantly reduces the negative effect of Fe on the mechanical properties. Because of the high solidification rate (about 600 K/s) during cylindrical ingot (~33 mm) production, the electromagnetic casting method (ECM) makes it possible to obtain a highly dispersed structure in the cast state. The size of the dendritic cell is ~7 μm, while the entire amount of Fe is bound into eutectic inclusions of the Al10CaFe2 phase with an average size of less than 3 μm. In this study, the effect of radial shear rolling (RSR) on the formation of the structure and hardening of the Al–8%Zn–3.3%Mg–0.8%Ca–1.1%Fe alloy obtained by EMC was studied. Computer simulation of the RSR process made it possible to analyze the temperature and stress–strain state of the alloy and to select the optimal rolling modes. It was shown that the flow features during RSR and the severe shear strains near the surface of the rod (10 mm) provided a refining and decrease in the size of the initial Fe-containing particles. Full article
(This article belongs to the Special Issue Radial-Shear and Screw Rolling Process)
Show Figures

Figure 1

Back to TopTop