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Abstract: To meet the demand for more extensive applications of Mg alloys, a Mg-5Al-2Ca-1Mn-0.5Zn
alloy without RE was prepared in this paper, and its mechanical properties were further improved by
conventional hot extrusion and subsequent rotary swaging. The results show that the hardness of the
alloy decreases along the radial central region after rotary swaging. The strength and hardness of the
central area are lower, but the ductility is higher. The yield strength and ultimate tensile strength of
the alloy in the peripheral area after rotary swaging reach 352 MPa and 386 MPa, respectively, while
the elongation remains at 9.6%, exhibiting better strength–ductility synergy. The grain refinement and
dislocation increase caused by rotary swaging promoted strength improvement. The activation of
non-basal slips during rotary swaging is an important reason for the alloy to maintain good plasticity
while improving strength.

Keywords: RE-free Mg alloy; rotary swaging; fine grains; mechanical property; microstructure

1. Introduction

With the rise in global temperature, the Earth on which human beings live is being
irreversibly damaged, and the living environment is under great threat [1,2]. Therefore,
under the requirement of “double carbon”, developing new materials and applying new
technologies and processes are of great significance for achieving green development [3,4].
As the lightest structural metal material, magnesium (Mg) alloys have many advantages
such as high specific strength, high heat dissipation, recyclability, etc. [5–7]. Magnesium
is widely used in aerospace, transportation, electronics, medical and other fields, and is
known as “the most developable green material in the 21st century” [8]. Therefore, it is
an effective way to reduce carbon emissions to reasonably apply Mg alloys to various
fields [4].

Compared with steel, aluminum, titanium, and other structural materials, the strength
and ductility of Mg alloys are relatively low [4,9,10]. Alloying and grain refinement are
the main ways to improve the mechanical properties of Mg alloys [11]. Previous studies
have shown that the addition of rare earth (RE) elements can significantly enhance the
mechanical properties of Mg alloys [12,13]. However, in general, RE elements are not only
dense but also expensive, which is not suitable for large-scale commercial applications.
Therefore, RE-free Mg alloys are also one of the important ways to research Mg alloys at
present [14].

Mg-Al-Zn-series alloys, like AZ31 and AZ91, are the most extensively used commercial
Mg alloy in engineering [15–17]. The addition of Ca can not only enhance the strength of
Mg alloys by refining the grain but also weaken the texture and improve their ductility [18].
Moreover, the Mn element is a microalloy which is also widely used in Mg alloys for
several reasons. Firstly, Mn can eliminate Fe in Mg alloy melt, thus achieving the purpose
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of purification [19,20]. Moreover, the addition of Mn can reduce stacking faults energy and
improve ductility [21]. In addition, the Al-Mn phase with a high melting point will not
decompose during hot deformation, improving the thermal stability of Mg alloys [21–23].
Therefore, the Mg-5Al-2Ca-1Mn-0.5Zn alloy was designed to improve the mechanical
properties of Mg alloys (denoted as AXMZ5210).

It is widely known that Mg alloys cannot achieve a high strength only through alloy-
ing [24,25]. Plastic deformation is a common means to enhance the strength of metallic
materials owing to the size effect [24]. Common plastic deformation methods, such as
rolling, extrusion, and forging, cannot obtain the large plastic deformation degree and
ultrafine grains [26,27]. Therefore, various methods of severe plastic deformation (SPD)
were invented to produce polycrystalline metals with ultrafine or nanosized grains [28,29].
Compared with traditional SPD methods such as equal channel angular pressing (ECAP),
high-pressure torsion (HPT), accumulated roll bonding (ARB), etc. [30,31], rotary swaging
(RS) is a cost-effective process owing to its advantages of low forming force required for
processing and excellent mechanical properties of products [32,33]. As the sample passes
through the RS mold, it is subjected to continuous pulse pressure along the radial direction
of the mold, which can produce higher hydrostatic stress, effectively refine the grains, and
obtain a work hardening effect. Yang et al. [24] increased the ultimate tensile strength
(UTS) of the Mg-4Li alloy to 405 MPa using RS. Chen et al. [16] used cryogenic RS to
prepare AZ31B alloy with an average grain size of only ~93 nm, which exhibits ultra-high
UTS (560 MPa) and yield strength (YS, 495 MPa). Wan et al. [7] obtained equiaxed grains
with an average grain size of 80 nm after four passes of RS of the Mg-Gd-Y-Zr alloy, and
a UTS of up to 710 MPa after aging. However, there are still few reports about RE-free
Mg-Al-Mn-series alloys prepared by RS, especially on the microstructure evolution during
RS and the strengthening mechanism.

In the present study, AXMZ5210 alloy rods were prepared via conventional hot extru-
sion and RS. A high-strength Mg alloy with a UTS of 386 MPa and an elongation of ~10%
was obtained by RS. The microstructure inhomogeneity during RS was investigated, and
the effect of RS on mechanical properties was discussed.

2. Materials and Methods

The AXMZ5210 alloy was prepared using commercial pure Mg, pure Zn, pure Al,
Mg-3 wt.% Ca, and Mg-3 wt.% Mn master alloy. The alloys were weighed according to
design composition and then were melted at 780 ◦C in a resistance furnace with a protection
mixed gas of CO2 and SF6. After all of the alloys in the crucible were completely melted,
the melt was stirred to make the alloy elements diffuse evenly. Finally, the AXMZ5210
ingots were fabricated by direct-chill casting, and then subjected to solid solution treatment
at 350 ◦C for 11 h, immediately followed by water quenching. Then, the ingots were cut
into a round rod with a size of Φ80 mm × 50 mm. After pre-heating at 360 ◦C for 2 h,
the ingots were extruded to Φ16 mm rods at 360 ◦C. After extrusion, the alloy rod was
subjected to 5 passes of RS at room temperature. The working principle of RS is shown in
Figure 1a. The striking frequency of RS is 100 times/min, the axial movement speed of the
sample is ca. 60 mm/s, and the reduction is 1 mm for the first pass and ca. 0.2 mm for each
subsequent pass. Finally, an alloy rod with a diameter of ca. 14.3 mm and a strain of ca.
20.2% was obtained.

Dog-bone-shaped tensile samples with a gauge length of 10 mm were prepared along
the extrusion direction (ED), as shown in Figure 1b. The microhardness of the RS cross-
section was tested by a 310HVS-5 hardness tester. The load was 100 gf, the dwelling time
was 10 s, and the distance between adjacent indentations was 1 mm. The phase composition
of the alloy was determined by X-ray diffraction (XRD, D/max-2500pc, Cu Kα radiation)
at the scan rate of 3◦ min−1 approximately from 10 to 90◦. The tensile tests of the alloys
were conducted on a SANS CMT-5105 tensile tester with a strain rate of 1 mm min−1. The
microstructure was characterized by optical microscopy (OM, OLYMPUS PMG3, Tokyo,
Japan) and scanning electron microscope (SEM, JEOL JSM-7800F, Tokyo, Japan) equipped
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with an Oxford Aztec electron backscatter diffraction (EBSD, Abingdon, UK) detector and
an energy-dispersive spectrometer (EDS). The grain size distribution histogram of OM
images was obtained by using IPwin32 software (Image-Pro Plus 6.0). EBSD data were
analyzed in detail using HKL Channel 5 software (Aztec 3.1).
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Figure 1. (a) Schematic illustration of rotary swaging process, and (b) the cutting parts for different
purposes (unit: mm).

3. Results and Discussion
3.1. Microstructure Analyses

The OM images of the as-swaged AXMZ5210 alloy are shown in Figure 2a,b. The
original grain size after extrusion is ca. 2.42 µm, and more details can be found in our
previous study [34]. Compared with the as-extruded AXMZ5210 alloy [34], the grain size
of the alloy is further refined after RS (Figure 2c,d). The average grain size in the central
and peripheral areas of RS is reduced by 22.3% and 31.8%, respectively, from the original
extruded alloy. Nevertheless, the microstructure of the swaged alloy is not homogeneous.
The microstructure of the central area has a typical bimodal structure, which is composed
of fine equiaxed grains and large grains elongated along the ED. The grain size of the
peripheral area is finer (1.65 µm) because it is first subjected to continuous pulse pressure
along the radial direction of the mold and has higher strain [33,35]. Its organization is also
more homogeneous than the central area.
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Our previous study [34] showed that the as-extruded AXMZ5210 alloy has more
second-phase particles. However, the number of white second-phase particles in the SEM
images of the as-swaged AXMZ5210 alloy shown in Figure 3a,b are extremely small. During
the RS process, the second phase particles may be crushed and partially dissolved into
the Mg matrix due to the interaction of high temperature and stress [22]. The EDS results
in Figure 3b are shown in Table 1, and the positions in the table correspond to Figure 3b.
Combined with the XRD results shown in Figure 3c, it can be determined that these white
second-phase particles are mainly composed of Al8Mn5, with a relatively small amount of
(Mg, Al)2Ca [22,34].
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Figure 3. The SEM images of AXMZ5210 alloy in (a) the central area and (b) the peripheral area of
RS, and (c) XRD pattern of AXMZ5210 alloy.

Table 1. EDS results of the second phase particles marked by arrows in Figure 3.

Positions Mg (at.%) Al (at.%) Ca (at.%) Mn (at.%) Zn (at.%) Phase

I 79.3 12.3 0.2 7.9 0.3 Al8Mn5
II 69.9 15.4 0.2 14.3 0.2 Al8Mn5
III 82.1 10.6 0.1 7.1 0.1 Al8Mn5
IV 87.7 5.6 1.1 5.5 0.1 Al8Mn5, (Mg, Al)2Ca

To further analyze the microstructure inhomogeneity of the as-swaged AXMZ5210
alloy, EBSD tests were performed on the alloys in the central and peripheral areas. As
shown in Figure 4a,d, the microstructure characteristics obtained by EBSD are consistent
with the OM results. In addition, it is seen that after RS, most of the grains are biased
towards the {1010} plane, with an obvious preferred orientation. The pole figures of
Figure 4b,e show that the as-swaged AXMZ5210 alloy has a typical basal fiber texture with
the <1010> direction parallel to ED. Figure 4c,f show the misorientation angle distribution
of the swaged alloy. It can be seen that the proportion of low-angle grain boundaries
(LAGBs, 2◦ ≤ θ ≤ 15◦) in the peripheral area (30.3%) is significantly higher than that in the
central area (27.1%). The proportion of LAGBs in the as-extruded AXMZ5210 alloy is only
11.4% [34]. Generally, the low-angle misorientations are mainly the result of dislocation
activity, which means that the higher the proportion of LAGBs, the higher the dislocation
density [17,27]. The RS usually causes dislocation multiplication, and the peripheral area
has greater plastic deformation, which ultimately results in a higher ratio of LAGBs [22].

Figure 5 quantitatively analyzes the area fraction of recrystallized grains, deformed
grains, and sub-structured grains in the original extruded alloy and the center and periph-
eral areas of the swaged alloy. The as-extruded alloy has a higher recrystallized material
because its higher processing temperature makes recrystallization easier [36,37]. Due to
the RS being performed at room temperature, the deformed grains occupy the main area
in the as-swaged alloy, while the degree of recrystallization is rather low. On the other
hand, in the as-extruded alloy, the sub-structured grains occupy the main area. After
RS, the sub-structured grains in the alloy decrease significantly, especially in the central
area of RS. The formation of sub-structures is related to dislocation interaction [38]. Our
previous study [34] showed that in the as-extruded AXMZ5210 alloy, a large number of
dislocations accumulated inside the grains due to the presence of nanoscale Al-Mn phase
in the matrix, which may be related to the existence of more sub-structured grains in the
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extruded alloy [39,40]. In the subsequent RS, the further accumulation of dislocations due
to the higher strain may force the sub-structure to transform to high-angle grain boundaries
(HAGBs), thus refining the grain size [17,40].
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3.2. Mechanical Properties

The microhardness distribution of the cross-section of the as-swaged AXMZ5210 alloy
is shown in Figure 6. It can be seen that the microhardness of the peripheral area is generally
higher than that of the central area, showing an approximate V-shaped distribution. The
highest microhardness appears in the peripheral area at a distance of ca. 7 mm from the
center area, which is 84 HV, and the lowest in the center area is 77 HV. The reason for the
higher microhardness in the peripheral area will be discussed later.
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Figure 6. Cross-sectional microhardness distribution after RS.

The stress–strain curves for the as-swaged AXMZ5210 alloy at room temperature
and a comparison of the mechanical properties with the original as-extruded alloy are
shown in Figure 7. Compared with the central area of RS, the peripheral area has higher
YS (352 MPa) and UTS (386 MPa), while still having a 9.6% elongation. The strengthening
effect of the central area is weak, and its YS (337 MPa) and UTS (361 MPa) are 15 MPa
and 25 MPa lower than the peripheral area, respectively, but it has higher elongation
(12.6%). Our previous study [34] showed that the as-extruded AXMZ5210 alloy has better
comprehensive mechanical properties compared to many as-extruded RE-free alloys (e.g.,
AZ31, Mg-Zn-Ca alloy). After RS, its YS and UTS were further improved, but the elongation
did not decrease significantly (Figure 7b). This indicates that the RE-free AXMZ5210 alloy
prepared by RS also has good strength–ductility synergy.
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The tensile fracture surfaces of the AXMZ5210 alloy in different states at room tem-
perature are shown in Figure 8. Compared with the original as-extruded alloy, there are
still small dimples in the tensile fracture after RS, but the depth becomes shallower, which
reflects that the ductility is reduced, consistent with the mechanical properties of Figure 7b.
Meanwhile, the tensile fracture morphology of the as-swaged alloy shows a cleavage step
as a whole, as shown in the yellow wireframe region in Figure 8b,c, which is between
ductile fracture and brittle fracture. On the other hand, the presence of fine particles was
also found in the tensile fracture (red arrow). According to the results of XRD and SEM,
these particles are most likely unbroken second phases and can act as a source of cracks to
reduce the ductility of the alloy.
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3.3. Strengthening Mechanism

In general, the excellent mechanical properties of SPD-treated Mg alloys are usually
related to the ultrafine-grained microstructure generated during SPD [17,31]. According
to the Hall–Petch relationship, the enhanced YS due to fine grain strengthening can be
calculated using the following equation [14,41]:

σgbs= σ0+kd−0.5 (1)

where σgbs is YS enhanced by fine grain strengthening, d is the average grain size, and σ0

(the value is 54 MPa [19]) and k (the value is 212 MPa µm1/2 [23]) are constants related to
the material. Taking the alloy in the peripheral area with a d of 1.65 µm as an example, it is
calculated that the σgbs is about 219 MPa. It can be seen that fine grain strengthening is the
main reason for the strength improvement after RS.

The high dislocation density generated in the RS process is also an important reason for
the strength improvement of the as-swaged alloy [22]. High dislocation density can induce
higher work hardening rate, which is beneficial to the strengthening of the alloy [10,33]. In
the as-swaged AXMZ5210 alloy, the decrease in grain size makes the average distance of
dislocations decrease, which in turn leads to a large number of dislocations accumulating
because grain boundaries can hinder dislocation movement [42]. Moreover, it was found
by SEM that the second-phase particles might be broken and dissolved into the Mg matrix
during the RS process (Figure 3a,b). The second phase particles themselves can hinder
the dislocation motion, and when dissolved into the matrix, it is easy to cause lattice
distortion, providing additional resistance for dislocation glide promoting dislocation
nucleation [42–44].

Mg alloys with an HCP structure usually have poor ductility, and the opening of a
<c + a> pyramidal slip or the coordinated deformation of twins is particularly important for
the improvement of the ductility of Mg alloys [33,45]. To coordinate the deformation during
the RS process, twins are activated to adapt to uniform deformation at low strain [22,33].
With increasing strain, massive dislocation arrays are formed in the twins, which are
refined into subgrains [40]. As the rotary RS process continues, these subgrain boundaries
are gradually transformed into HAGBs [22,40]. As a result, the average grain size of the
as-swaged alloy is significantly reduced.

It has been shown that <c + a> slip and twinning are sensitive to grain size [11,33].
When the grain size is less than 5µm, the activity of twins is restricted [11,29], which is
beneficial in the tensile process, because compression twins and double twins can easily
cause stress concentration [6,34], while tension twins cannot provide independent slip
systems [13]. On the other hand, fine grain is beneficial to the activation of non-basal
slip [40]. To investigate the effect of RS on the plasticity of the AXMZ5210 alloy, the Schmid
factor (SF) of different slip systems was statistically analyzed by EBSD, as shown in Figure 9.
It can be seen that the SF of both non-basal <a> and <c + a> slips of the as-swaged alloy
are higher than that of the basal <a> slip. Compared with the as-extruded AXMZ5210
alloy [34], the SF of non-basal <a> and <c + a> slips of the as-swaged alloy are higher, which
indicates that RS is beneficial to the activation of non-basal <a> and <c + a> slips [7,24].
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The activation of non-basal slip can provide sufficient independent slip systems for Mg
alloys during the tensile process, which helps the as-swaged AXMZ5210 alloy to maintain
high ductility [13]. The SF of non-basal slip in the central area is significantly higher than
that in the peripheral area, which implies better ductility, consistent with the mechanical
properties in Figure 7.
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In addition, the strength and hardness of the as-swaged AXMZ5210 alloy are higher
in the peripheral region, and the strength and hardness of the central region are lower, but
the ductility is better. This situation is usually more common in W alloys [21]. During the
RS process, the peripheral area will first deform, because the alloy rod surface is in direct
contact with the mold. It is well known that Mg alloys have good damping properties.
Therefore, the pulse pressure generated during RS may be heavily consumed by the Mg
matrix, resulting in less stress transferred to the central area and eventually greater strain
in the peripheral area. This may explain the difference in microstructure between the
central and peripheral areas shown in Figures 2–5. However, the damping capacity of the
AXMZ5210 alloy was not investigated in this work, and subsequent studies are needed to
confirm this conjecture.

4. Conclusions

The mechanical properties of the RE-free Mg-5Al-2Ca-1Mn-0.5Zn alloy were improved
by rotary swaging, and the microstructure evolution and strengthening mechanism during
rotary swaging were discussed. Major conclusions can be drawn as follows:

(1) The grain size is obviously refined, and the proportion of low-angle grain boundaries
increases significantly after rotary swaging, especially in the peripheral area. The sec-
ond phase particles are mainly composed of Al8Mn5, which are broken and partially
dissolved into the matrix during rotary swaging.

(2) The YS and UTS of the alloy are significantly improved after rotary swaging, which
can be mainly attributed to fine grain strengthening. The strengthening effect of
the peripheral area is more significant, and its YS and UTS reach 352 MPa and
386 MPa, respectively.

(3) The as-swaged Mg-5Al-2Ca-1Mn-0.5Zn alloy still maintains high plasticity (elongation
of 9.6%) with good strength–ductility synergy while improving strength, which is
related to the activation of non-basal slips during rotary swaging.
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