Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = Mediterranean storm track

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3113 KB  
Article
Intense Rainfall in Urban Areas: Characterization of High-Intensity Storms in the Metropolitan Area of Barcelona (2014–2022)
by Laura Esbrí, Tomeu Rigo and María del Carmen Llasat
Atmosphere 2026, 17(1), 41; https://doi.org/10.3390/atmos17010041 - 28 Dec 2025
Viewed by 420
Abstract
Urban coastal areas along the Mediterranean are exposed to short-duration convective rainfall, producing infrastructure disruptions and flood-related impacts. This study analyzes 45 rainfall episodes in the Metropolitan Area of Barcelona between 2014 and 2022, combining radar products, rain gauge observations, and urban-scale impact [...] Read more.
Urban coastal areas along the Mediterranean are exposed to short-duration convective rainfall, producing infrastructure disruptions and flood-related impacts. This study analyzes 45 rainfall episodes in the Metropolitan Area of Barcelona between 2014 and 2022, combining radar products, rain gauge observations, and urban-scale impact datasets. Storm radar tracking enabled the identification of key spatiotemporal features and assessment of short-term forecasting performance. Convective cells were typically short-lived, lasting less than 30 min in most cases. The main goal of the research has been the comparison between VIL density (DVIL) radar field and short-duration rainfall intensity provided by rain gauges. This is the first study comparing both data types, being a pioneer in this field. We have found a linear relationship between both data types, with weaker values for larger values. More persistent cells had higher DVIL values, observing a difference in behavior with a break point at 2 g/m3. The tracking and nowcasting system were evaluated based on its ability to anticipate convective precipitation. It achieved good scores values (POD of 0.73 and FAR of 0.33), considering the difficulties of tracking this type of convective system. Finally, false alarms associated with elevated DVIL values suggested the difficulty of capturing storm severity by surface-based precipitation measurements. Full article
(This article belongs to the Special Issue State-of-the-Art in Severe Weather Research)
Show Figures

Figure 1

21 pages, 5213 KB  
Article
The Performance of ICON (Icosahedral Non-Hydrostatic) Regional Model for Storm Daniel with an Emphasis on Precipitation Evaluation over Greece
by Euripides Avgoustoglou, Harel B. Muskatel, Pavel Khain and Yoav Levi
Atmosphere 2025, 16(9), 1043; https://doi.org/10.3390/atmos16091043 - 2 Sep 2025
Cited by 1 | Viewed by 1956
Abstract
Storm Daniel is arguably one of the most severe Mediterranean tropical-like cyclones (medicanes) ever recorded. Greece was one of the most affected areas, especially the central part of the country. The extreme precipitation that was observed along with the subsequent extensive flooding was [...] Read more.
Storm Daniel is arguably one of the most severe Mediterranean tropical-like cyclones (medicanes) ever recorded. Greece was one of the most affected areas, especially the central part of the country. The extreme precipitation that was observed along with the subsequent extensive flooding was considered a critical challenge to validate the regional version of the ICON (Icosahedral Non-Hydrostatic) numerical weather prediction (NWP) model. From a methodological standpoint, the short-range nature of the model was realized with 48 h runs over a sequence of cases that covered the storm period. The development of the medicane was highlighted via the tracking of the minimum mean sea level pressure (MSLP) in reference to the corresponding analysis of the European Center for Medium-Range Weather Forecasts (ECMWF). In a similar fashion, snapshots regarding the 500 hPa geopotential associated with the 850 hPa temperature were addressed at the 24th forecast hour of the model runs. Although the model’s performance over the four most affected synoptic stations of the Hellenic National Meteorological Service (HNMS) was mixed, the overall accumulated forecasted precipitation was in very good agreement with the corresponding total value of the observations over all the available synoptic stations. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

24 pages, 10218 KB  
Article
Rainfall Organization and Storm Tracking in Urban Barcelona, NE Spain, Using a High-Resolution Rain Gauge Network
by María del Carmen Casas-Castillo, Xavier Navarro and Raül Rodríguez-Solà
Hydrology 2025, 12(7), 178; https://doi.org/10.3390/hydrology12070178 - 3 Jul 2025
Cited by 1 | Viewed by 1749
Abstract
Extreme rainfall in urban areas can cause major economic damage, a problem expected to intensify with climate change. Despite this, high-resolution studies at the city scale remain limited. This study analyzes rainfall organization and storm dynamics over Barcelona using data from a dense [...] Read more.
Extreme rainfall in urban areas can cause major economic damage, a problem expected to intensify with climate change. Despite this, high-resolution studies at the city scale remain limited. This study analyzes rainfall organization and storm dynamics over Barcelona using data from a dense rain gauge network (1994–2019). The aim is to identify dominant spatial patterns and understand how storms evolve in relation to local urban and topographic features. Principal component analysis and simple scaling analysis revealed signs of a rainfall island effect, possibly linked to the urban heat island and modulated by orographic and coastal influences. Tailored rainfall indices highlighted a division between inland areas shaped by orography and coastal zones influenced by the sea. These spatial structures evolved with rainfall duration, shifting from localized contrasts at a 10 min resolution to more homogeneous distributions at daily scales. Storm tracking showed that 90% of speeds ranged from 5 to 60 km/h and intense rainfall events typically moved east–southeast toward the sea and north–northeast. Faster storms tended to follow preferred directions reflecting mesoscale circulations and possible modulations by local terrain. These findings underscore how urban morphology, local relief, and a coastal setting may shape rainfall at the city scale, in interaction with broader Mediterranean synoptic dynamics. Full article
Show Figures

Graphical abstract

16 pages, 2925 KB  
Article
A Comprehensive AI Approach for Monitoring and Forecasting Medicanes Development
by Javier Martinez-Amaya, Veronica Nieves and Jordi Muñoz-Mari
Climate 2024, 12(12), 220; https://doi.org/10.3390/cli12120220 - 13 Dec 2024
Viewed by 2065
Abstract
Medicanes are rare cyclones in the Mediterranean Sea, with intensifying trends partly attributed to climate change. Despite progress, challenges persist in understanding and predicting these storms due to limited historical tracking data and their infrequent occurrence, which make monitoring and forecasting difficult. In [...] Read more.
Medicanes are rare cyclones in the Mediterranean Sea, with intensifying trends partly attributed to climate change. Despite progress, challenges persist in understanding and predicting these storms due to limited historical tracking data and their infrequent occurrence, which make monitoring and forecasting difficult. In response to this issue, we present an AI-based system for tracking and forecasting Medicanes, employing machine learning techniques to identify cyclone positions and key evolving spatio-temporal structural features of the cloud system that are associated with their intensification and potential extreme development. While the forecasting model currently operates with limited training data, it can predict extreme Medicane events up to two days in advance, with precision rates ranging from 65% to 80%. These innovative data-driven methods for tracking and forecasting provide a foundation for refining AI models and enhancing our ability to respond effectively to such events. Full article
(This article belongs to the Special Issue Addressing Climate Change with Artificial Intelligence Methods)
Show Figures

Figure 1

23 pages, 12250 KB  
Article
Recent Changes in Storm Track over the Southeast Europe: A Mechanism for Changes in Extreme Cyclone Variability
by Mihaela Caian, Florinela Georgescu, Mirela Pietrisi and Oana Catrina
Atmosphere 2021, 12(10), 1362; https://doi.org/10.3390/atmos12101362 - 18 Oct 2021
Cited by 8 | Viewed by 4198
Abstract
Recent changes in cyclone tracks crossing Southeast Europe are investigated for the last few decades (1980–1999 compared with 2000–2019) using a developed objective method. The response in number, severity, and persistence of the tracks are analyzed based on the source of origin (the [...] Read more.
Recent changes in cyclone tracks crossing Southeast Europe are investigated for the last few decades (1980–1999 compared with 2000–2019) using a developed objective method. The response in number, severity, and persistence of the tracks are analyzed based on the source of origin (the Mediterranean Sea sub-domains) and the target area (Romania-centered domain). In winter, extreme cyclones became more frequent in the south and were also more persistent in the northeast of Romania. In summer, these became more intense and frequent, mainly over the south and southeast of Romania, where they also showed a significant increase in persistence. The regional extreme changes are related to polar jet displacements and further enhanced by the coupling of the sub-tropical jet in the Euro-Atlantic area, such as southwestwards shift in winter jets and a split-type configuration that shifts northeastwards and southeastwards in the summer. These provide a mechanism for regional variability of extreme cyclones through two paths, respectively, by shifting the origins of the tracks and by shifting the interaction between the anomaly jet streaks and the climatological storm tracks. Large-scale drivers of these changes are analyzed in relation to the main modes of atmospheric variability. The tracks number over the target domain is mainly driven during the cold season through a combined action of AO and Polar–European modes, and in summer by the AMO and East-Asian modes. These links and the circulation mode’s recent variability are consistent with changes found in the jet and storm tracks. Full article
Show Figures

Figure 1

20 pages, 11240 KB  
Article
Synoptic–Dynamic Patterns Affecting Iran’s Autumn Precipitation during ENSO Phase Transitions
by Faranak Bahrami, Abbas Ranjbar Saadatabadi, Nir Y. Krakauer, Tayyebeh Mesbahzadeh and Farshad Soleimani Sardoo
Climate 2021, 9(7), 106; https://doi.org/10.3390/cli9070106 - 28 Jun 2021
Cited by 7 | Viewed by 6413
Abstract
We compared the effect on autumn (October, November, December) precipitation over Iran during two types of El Niño–Southern Oscillation (ENSO) phase transitions from the perspective of anomalies in wave activity flux and sea level pressure along the Atlantic–Mediterranean storm track, as well as [...] Read more.
We compared the effect on autumn (October, November, December) precipitation over Iran during two types of El Niño–Southern Oscillation (ENSO) phase transitions from the perspective of anomalies in wave activity flux and sea level pressure along the Atlantic–Mediterranean storm track, as well as precipitation. We used Oceanic Niño Index (ONI) to identify the transition phases of ENSO (El Niño to La Niña and also La Niña to El Niño, referred to as type 1 and type 2, respectively). Climate data during the period of 1950 to 2019 used in this study is derived from NCEP-NCAR reanalysis. In order to investigate the intensity and direction of Rossby wave trains in different ENSO transitions, we used the wave activity flux parameter, and to evaluate the statistical significance of values, we calculated Student’s t-test. The impact of the Atlantic storm track on the Mediterranean storm track was shown to be greater in type 2 transitions. Further, the existence of a stronger wave source region in the Mediterranean region during type 2 transitions was established. Results also showed the weakening of the Iceland low and Azores high pressure in type 1 transitions and the reinforcement of both in type 2, with the differences being significant at up to a 99% confidence level. Pressure values over Iran were at or below normal in type 1 years and below normal in type 2. Finally, the composite analysis of precipitation anomaly revealed that during ENSO type 1 transitions, most regions of Iran experienced low precipitation, while in type 2, the precipitation was more than average, statistically significant at 75% confidence level or higher over the northern half of the country. Full article
(This article belongs to the Special Issue Climate Change Dynamics and Modeling: Future Perspectives)
Show Figures

Figure 1

12 pages, 3531 KB  
Article
Characteristics of Extratropical Cyclones That Cause Tornadoes in Italy: A Preliminary Study
by Eigo Tochimoto, Mario Marcello Miglietta, Leonardo Bagaglini, Roberto Ingrosso and Hiroshi Niino
Atmosphere 2021, 12(2), 180; https://doi.org/10.3390/atmos12020180 - 29 Jan 2021
Cited by 7 | Viewed by 4392
Abstract
Characteristics of extratropical cyclones that cause tornadoes in Italy are investigated. Tornadoes between 2007 and 2016 are analyzed, and statistical analysis of the associated cyclone structures and environments is performed using the JRA-55 reanalysis. Tornadoes are distributed sporadically around the cyclone location within [...] Read more.
Characteristics of extratropical cyclones that cause tornadoes in Italy are investigated. Tornadoes between 2007 and 2016 are analyzed, and statistical analysis of the associated cyclone structures and environments is performed using the JRA-55 reanalysis. Tornadoes are distributed sporadically around the cyclone location within a window of 10° × 10°. The difference in the cyclone tracks partially explains the seasonal variability in the distribution of tornadoes. The highest number of tornadoes occur south of the cyclone centers, mainly in the warm sector, while a few are observed along the cold front. Composite mesoscale parameters are examined to identify the environmental conditions associated with tornadoes in different seasons. Potential instability is favorable to tornado development in autumn. The highest convective available potential energy (CAPE) in this season is associated with relatively high-temperature and humidity at low-levels, mainly due to the strong evaporation over the warm Mediterranean Sea. Upper-level potential vorticity (PV) anomalies and the associated cold air reduce the static stability above the cyclone center, mainly in spring and winter. On average, the values of CAPE are lower than for US tornadoes and comparable with those occurring in Japan, while storm relative helicity (SREH) is comparable with US tornadoes and higher than Japanese tornadoes, indicating that the environmental conditions for Italian tornadoes have peculiar characteristics. Overall, the conditions emerging in this study are close to the high-shear, low-CAPE environments typical of cool-season tornadoes in the Southeastern US. Full article
Show Figures

Graphical abstract

27 pages, 47227 KB  
Article
The Management of the Beach-Cast Seagrass Wracks—A Numerical Modelling Approach
by Andrea Cucco, Giovanni Quattrocchi, Walter Brambilla, Augusto Navone, Pieraugusto Panzalis and Simone Simeone
J. Mar. Sci. Eng. 2020, 8(11), 873; https://doi.org/10.3390/jmse8110873 - 3 Nov 2020
Cited by 14 | Viewed by 3517
Abstract
Seagrass wrack are commonly found on the beach face of the sandy shore all around the world and often persists in situ during the whole year, favouring the emergence of conflicts for the use of the sandy coasts for bathing or for other [...] Read more.
Seagrass wrack are commonly found on the beach face of the sandy shore all around the world and often persists in situ during the whole year, favouring the emergence of conflicts for the use of the sandy coasts for bathing or for other recreational purposes. As a consequence, these deposits are often removed from the beach during the summer months, temporary stocked, and relocated on the shore face in the next autumn or winter season. The selection of the sites on the shoreline where the leaves should be released before the storms season is often an issue, considering the optimization needs between the transportation costs and the oceanographic features of the dumping site. In this study, a numerical approach was proposed to identify the most suitable areas for the autumnal repositioning of the seagrass wracks for two beaches of Sardinia, an island located in the Western Mediterranean Sea where Posidonia oceanica (L. Delile, 1813) is the most widespread seagrass species. The method is based on the use of hydrodynamic, wave, and particle tracking models and provides important indications useful for the management of this type of practice that can be extended to all different type of beaches along the Mediterranean coasts. Full article
(This article belongs to the Special Issue Novel Technologies and Solutions for Coastal Evolution and Management)
Show Figures

Figure 1

19 pages, 3356 KB  
Article
Soil Management Effects on Soil Water Erosion and Runoff in Central Syria—A Comparative Evaluation of General Linear Model and Random Forest Regression
by Safwan Mohammed, Ali Al-Ebraheem, Imre J. Holb, Karam Alsafadi, Mohammad Dikkeh, Quoc Bao Pham, Nguyen Thi Thuy Linh and Szilard Szabo
Water 2020, 12(9), 2529; https://doi.org/10.3390/w12092529 - 10 Sep 2020
Cited by 53 | Viewed by 7159
Abstract
The Mediterranean part of Syria is affected by soil water erosion due to poor land management. Within this context, the main aim of this research was to track soil erosion and runoff after each rainy storm between September 2013 and April 2014 (rainy [...] Read more.
The Mediterranean part of Syria is affected by soil water erosion due to poor land management. Within this context, the main aim of this research was to track soil erosion and runoff after each rainy storm between September 2013 and April 2014 (rainy season), on two slopes with different gradients (4.7%; 10.3%), under three soil cover types (SCTs): bare soil (BS), metal sieve cover (MC), and strip cropping (SC), in Central Syria. Two statistical multivariate models, the general linear model (GLM), and the random forest regression (RFR) were applied to reveal the importance of SCTs. Our results reveal that higher erosion rate, as well as runoff, were recorded in BS followed by MC, and SC. Accordingly, soil cover had a significant effect (p < 0.001) on soil erosion, and no significant difference was detected between MC and SC. Different combinations of slopes and soil cover had no effect on erosion, at least in this experiment. RFR performed better than GLM in predictions. GLM’s median of mean absolute error was 21% worse than RFR. Nonetheless, 25 repetitions of 2-fold cross-validation ensured the highest available prediction accuracy for RFR. In conclusion, we revealed that runoff, rain intensity and soil cover were the most important factors in erosion. Full article
Show Figures

Figure 1

23 pages, 12284 KB  
Article
The Role of Sea Surface Temperature Forcing in the Life-Cycle of Mediterranean Cyclones
by Christos Stathopoulos, Platon Patlakas, Christos Tsalis and George Kallos
Remote Sens. 2020, 12(5), 825; https://doi.org/10.3390/rs12050825 - 3 Mar 2020
Cited by 27 | Viewed by 5017
Abstract
Air–sea interface processes are highly associated with the evolution and intensity of marine-developed storms. Specifically, in the Mediterranean Sea, the air–ocean temperature deviations have a profound role during the several stages of Mediterranean cyclonic events. Subsequently, this enhances the need for better knowledge [...] Read more.
Air–sea interface processes are highly associated with the evolution and intensity of marine-developed storms. Specifically, in the Mediterranean Sea, the air–ocean temperature deviations have a profound role during the several stages of Mediterranean cyclonic events. Subsequently, this enhances the need for better knowledge and representation of the sea surface temperature (SST). In this work, an analysis of the impact and uncertainty of the SST from different well-known datasets on the life-cycle of Mediterranean cyclones is attempted. Daily SST from the Real Time Global SST (RTG_SST) and hourly SST fields from the Operational SST and Sea Ice Ocean Analysis (OSTIA) and the NEMO ocean circulation model are implemented in the RAMS/ICLAMS-WAM coupled modeling system. For the needs of the study, the Mediterranean cyclones Trixi, Numa, and Zorbas were selected. Numerical experiments covered all stages of their life-cycles (five to seven days). Model results have been analyzed in terms of storm tracks and intensities, cyclonic structural characteristics, and derived heat fluxes. Remote sensing data from the Integrated Multi-satellitE Retrievals (IMERG) for Global Precipitation Measurements (GPM), Blended Sea Winds, and JASON altimetry missions were employed for a qualitative and quantitative comparison of modeled results in precipitation, maximum surface wind speed, and wave height. Spatiotemporal deviations in the SST forcing rather than significant differences in the maximum/minimum SST values, seem to mainly contribute to the differences between the model results. Considerable deviations emerged in the resulting heat fluxes, while the most important differences were found in precipitation exhibiting spatial and intensity variations reaching 100 mm. The employment of widely used products is shown to result in different outcomes and this point should be taken into consideration in forecasting and early warning systems. Full article
(This article belongs to the Special Issue Weather Forecasting and Modeling Using Satellite Data)
Show Figures

Figure 1

16 pages, 1008 KB  
Article
A Climatological Study of Western Mediterranean Medicanes in Numerical Simulations with Explicit and Parameterized Convection
by Francesco Ragone, Monica Mariotti, Antonio Parodi, Jost Von Hardenberg and Claudia Pasquero
Atmosphere 2018, 9(10), 397; https://doi.org/10.3390/atmos9100397 - 11 Oct 2018
Cited by 27 | Viewed by 4703
Abstract
The semi-enclosed Mediterranean basin, surrounded by high mountains, is placed in a favorable location for cyclonic storms development. Most of these are extratropical cyclones of baroclinic and orographic origin, but occasionally, some low pressure systems may develop to assume features characteristic of tropical [...] Read more.
The semi-enclosed Mediterranean basin, surrounded by high mountains, is placed in a favorable location for cyclonic storms development. Most of these are extratropical cyclones of baroclinic and orographic origin, but occasionally, some low pressure systems may develop to assume features characteristic of tropical cyclones. Medicanes (MEDIterranean hurriCANES) are infrequent and small-sized tropical-like cyclones. They originate and develop over sea, and are associated with strong winds and heavy precipitations. Proper definitions and classifications for Medicanes are still partially lacking, and systematic climatic studies have appeared only in recent years. In this work, we provide climatologies of Medicanes in the Western Mediterranean basin based on multidecadal runs performed with the Weather Research and Forecasting regional model with different resolutions and setups. The detection of Medicanes is based on a cyclone tracking algorithm and on the methodology of Hart cyclone phase space diagrams. We compare the statistics of Medicanes in the historical period 1979–1998 between runs at a resolution of 11 km with different convective parameterizations and microphysics schemes and one run at a resolution of 4 km with explicitly resolved convection. We show how different convective parameterization schemes lead to different statistics of Medicanes, while the use of different microphysical schemes impacts the length of the cyclone trajectories. Full article
(This article belongs to the Special Issue Mediterranean Tropical-Like Cyclones (Medicanes))
Show Figures

Figure 1

Back to TopTop