Recent Changes in Storm Track over the Southeast Europe: A Mechanism for Changes in Extreme Cyclone Variability
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. Recent Changes in Frequency
3.2. Changes in Extremes Cyclones over SE Europe/Romania
3.2.1. Changes in the Intensity of Extreme Cyclones
3.2.2. Changes in the Persistence of Extreme Cyclones
3.3. Mechanism of Extreme Tracks Changes
3.4. Links between Inter-Annual and Seasonal Storm-Tracks and Teleconnection Modes Variability in Latest Decades
4. Discussions
Impact of Storm-Tracks Variability at Regional Scale
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tuel, A.; Eltahir, E.A. Why is the Mediterranean a climate change hot spot? J. Clim. 2020, 33, 5829–5843. [Google Scholar] [CrossRef]
- Verdura, J.; Linares, C.; Ballesteros, E.; Coma, R.; Uriz, M.J.; Bensoussan, N.; Cebrian, E. Biodiversity loss in a Mediterranean ecosystem due to an extreme warming event unveils the role of an engineering gorgonian species. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef]
- Alpert, P.; Neeman, B.U.; Shay-El, Y. Climatological analysis of Mediterranean cyclones using ECMWF data. Tellus 1990, 42A, 65–77. [Google Scholar] [CrossRef] [Green Version]
- Flocas, A. Frontal depressions over the Mediterranean Sea and Central Southern Europe. Méditerranée 1988, 4, 43–52. [Google Scholar] [CrossRef]
- Lionello, P.; Abrantes, F.; Gacic, M.; Planton, S.; Trigo, R.; Ulbrich, U. The climate of the Mediterranean region: Research progress and climate change impacts. Reg. Environ. Chang. 2014, 14, 1679–1684. [Google Scholar] [CrossRef]
- Volosciuk, C.; Maraun, D.; Semenov, V.; Tilinina, N.; Gulev, S.K.; Latif, M. Rising Mediterranean Sea Surface Temperatures Amplify Extreme Summer Precipitation in Central Europe. Sci. Rep. 2016, 6, 32450. [Google Scholar] [CrossRef] [PubMed]
- Fischer, E.; Schär, C. Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci. 2010, 3, 398–403. [Google Scholar] [CrossRef]
- Diffenbaugh, N.S.; Pal, J.S.; Giorgi, F.; Gao, X. Heat stress intensification in the Mediterranean climate change hotspot. Geophys. Res. Lett. 2007, 34, L11706. [Google Scholar] [CrossRef] [Green Version]
- Romem, M.; Ziv, B.; Saaroni, H. Scenarios in the development of Mediterranean cyclones. Adv. Geosci. 2007, 12, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Catrina, O.; Ştefan, S.; Crăciun, C. Objective identification of Mediterranean cyclones and their trajectories towards Romania. Meteorol. Appl. 2019, 26, 429–441. [Google Scholar] [CrossRef] [Green Version]
- Hochman, A.; Alpert, P.; Kunin, P.; Rostkier-Edelstein, D.; Harpaz, T.; Saaroni, H.; Messori, G. The dynamics of cyclones in the twentyfirst century: The Eastern Mediterranean as an example. Clim. Dyn. 2020, 54, 561–574. [Google Scholar] [CrossRef]
- Bengtsson, L.; Hodges, K.I.; Roeckner, E. Storm tracks and climate change. J. Clim. 2006, 19, 3518–3543. [Google Scholar] [CrossRef] [Green Version]
- Neu, U.; Akperov, M.G.; Bellenbaum, N.; Benestad, R.; Blender, R.; Caballero, R.; Cocozza, A.; Dacre, H.F.; Feng, Y.; Fraedrich, K.; et al. IMILAST: A community effort to intercompare extratropical cyclone detection and tracking algorithms. Bull. Am. Meteorol. Soc. 2013, 94, 529–547. [Google Scholar] [CrossRef]
- Walker, E.; Mitchell, D.; Seviour, W. The numerous approaches to tracking extratropical cyclones and the challenges they present. Weather 2020, 75, 336–341. [Google Scholar] [CrossRef]
- Nita, I.A.; Sfîcă, L.; Apostol, L.; Radu, C.; Birsan, M.V.; Szep, R.; Keresztesi, A. Changes in cyclone intensity over Romania according to 12 tracking methods. Rom. Rep. Phys. 2020, 72, 706. [Google Scholar]
- Hofstatter, M.; Chimani, B.; Lexer, A.; Bloschl, G. A new classification scheme of European cyclone tracks with relevance to precipitation. Water Resour. Res. 2016, 52, 7086–7104. [Google Scholar] [CrossRef]
- Dacre, H.F.; Gray, S.L. The spatial distribution and evolution characteristics of North Atlantic cyclones. Mon. Weather Rev. 2009, 137, 99–115. [Google Scholar] [CrossRef] [Green Version]
- Trigo, I.F.; Davies, T.D.; Bigg, G.R. Objective climatology of cyclones in the Mediterranean region. J. Clim. 1999, 12, 1685–1696. [Google Scholar] [CrossRef] [Green Version]
- Horvath, K.; Lin, Y.-L.; Ivančan-Picek, B. Classification of cyclone tracks over the Apennines and the Adriatic Sea. Mon. Weather Rev. 2008, 136, 2210–2227. [Google Scholar] [CrossRef] [Green Version]
- Wernli, H.; Schwierz, C. Surface cyclones in the ERA-40 dataset (1958–2001). Part I: Novel identification method and global climatology. JAS 2006, 63, 2486–2507. [Google Scholar] [CrossRef]
- Lionello, P.; Trigo, I.F.; Gil, V.; Liberato, M.L.R.; Nissen, K.M.; Pinto, J.G.; Raible, C.C.; Reale, M.; Tanzarella, A.; Trigo, R.M.; et al. Objective climatology of cyclones in the Mediterranean region: A consensus viewamong methods with different system identification and tracking criteria. Tellus A Dyn. Meteorol. Oceanogr. 2016, 68, 29391. [Google Scholar] [CrossRef] [Green Version]
- Flocas, H.A.; Simmonds, I.; Kouroutzoglou, J.; Keay, K.; Hatzaki, M.; Bricolas, V.; Asimakopoulos, D. On cyclonic tracks over the eastern Mediterranean. J. Clim. 2010, 23, 5243–5257. [Google Scholar] [CrossRef]
- Lebedeva, M.G.; Krymskaya, O.V.; Lupo, A.R.; Chendev, Y.G.; Petin, A.N.; Solovyov, A.B. Trends in Summer Season Climate for Eastern Europe and Southern Russia in the Early 21st Century. Adv. Meteorol. 2016, 2016, 5035086. [Google Scholar] [CrossRef] [Green Version]
- Anders, I.; Stagl, J.; Auer, I.; Pavlik, D. Climate Change in Central and Eastern Europe. In Managing Protected Areas in Central and Eastern Europe Under Climate Change. Advances in Global Change Research; Rannow, S., Neubert, M., Eds.; Springer: Dordrecht, The Netherlands, 2014; Volume 58. [Google Scholar] [CrossRef] [Green Version]
- Spinoni, J.; Naumann, G.; Vogt, J.V. Pan-European seasonal trends and recent changes of drought frequency and severity. Glob. Planet. Chang. 2017, 148, 113–130. [Google Scholar] [CrossRef]
- Hatzaki, M.; Flocas, H.A.; Giannakopoulos, C.; Maheras, P. The Impact of the Eastern Mediterranean Teleconnection Pattern on the Mediterranean Climate. J. Clim. 2009, 22, 977–992. [Google Scholar] [CrossRef]
- Ullmann, A.; Fontaine, B.; Roucou, P. Euro-Atlantic weather regimes and Mediterranean rainfall patterns: Present-day variability and expected changes under CMIP5 projections. Int. J. Climatol. 2014, 34, 2634–2650. [Google Scholar] [CrossRef]
- Zampieri, M.; Ceglar, A.; Dentener, F.; Toreti, A. Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales. Environ. Res. Lett. 2017, 12, 064008. [Google Scholar] [CrossRef]
- Dunstone, N.; Smith, D.; Scaife, A.; Hermanson, L.; Eade, R.; Robinson, N.; Andrews, M.; Knight, J. Skilful predictions of the winter North Atlantic Oscillation one year ahead. Nat. Geosci. 2016, 9, 809–814. [Google Scholar] [CrossRef]
- Ulbrich, U.; Lionello, P.; Belusic, D.; Jacobeit, J.; Knippertz, P.; Kuglitsch, F.G.; Leckebusch, G.C.; Luterbacher, J.; Maugeri, M.; Maheras, P.; et al. Climate of the Mediterranean: Synoptic patterns, temperature, precipitation, winds and their extremes. In Climate of the Mediterranean Region—From the Past to the Future; Lionello, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 301–346. [Google Scholar] [CrossRef]
- Woollings, T.; Blackburn, M. The North Atlantic Jet Stream under Climate Change and Its Relation to the NAO and EA Patterns. J. Clim. 2012, 25, 886–902. [Google Scholar] [CrossRef] [Green Version]
- Shaw, T.; Baldwin, M.; Barnes, E.; Caballero, R.; Garfinkel, C.I.; Hwang, Y.-T.; Li, C.; O’Gorman, P.A.; Rivière, G.; Simpson, I.R.; et al. Storm track processes and the opposing influences of climate change. Nat. Geosci. 2016, 9, 656–664. [Google Scholar] [CrossRef]
- Gaetani, M.; Baldi, M.; Dalu, G.A.; Maracchi, G. Jetstream and rainfall distribution in the Mediterranean region. Nat. Hazards Earth Syst. Sci. 2011, 11, 2469–2481. [Google Scholar] [CrossRef]
- Krichak, S.O.; Breitgand, J.S.; Gualdi, S.; Feldstein, S.B. Teleconnection–extreme precipitation relationships over the Mediterranean region. Theor. Appl. Climatol. 2014, 117, 679–692. [Google Scholar] [CrossRef]
- Dowdy, A.; Catto, J.L. Extreme weather caused by concurrent cyclone, front and thunderstorm occurrences. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Pfahl, S.; Wernli, H. Quantifying the Relevance of Cyclones for Precipitation Extremes. J. Clim. 2012, 25, 6770–6780. [Google Scholar] [CrossRef]
- Trigo, I.F.; Bigg, G.R.; Davies, T.D. Climatology of cyclogenesis mechanisms in the Mediterranean. Mon. Weather Rev. 2002, 130, 549–569. [Google Scholar] [CrossRef]
- Giuntoli, I.; Fabiano, F.; Corti, S. Seasonal predictability of Mediterranean weather regimes in the Copernicus C3S systems. Clim. Dyn. 2021, 1–17. [Google Scholar] [CrossRef]
- Swingedouw, D.; Colin, C.; Eynaud, F.; Ayache, M.; Zaragosi, S. Impact of freshwater release in the Mediterranean Sea on the North Atlantic climate. Clim. Dyn. 2019, 53, 3893–3915. [Google Scholar] [CrossRef] [Green Version]
- Brönnimann, S.; Xoplaki, E.; Casty, C.; Pauling, A.; Luterbacher, J. ENSO influence on Europe during the last centuries. Clim. Dyn. 2007, 28, 181–197. [Google Scholar] [CrossRef] [Green Version]
- Greatbatch, R.J.; Lu, J.; Peterson, K.A. Nonstationary impact of ENSO on Euro-Atlantic winter climate. Geophys. Res. Lett. 2004, 31, L02208. [Google Scholar] [CrossRef]
- Pinto, J.G.; Raible, C.C. Past and recent changes in the North Atlantic oscillation. Wiley Interdiscip. Rev. Clim. Chang. 2012, 3, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Trouet, V.; Panayotov, M.P.; Ivanova, A.; Frank, D. A pan-European summer teleconnection mode recorded by a new temperature reconstruction from the northeastern Mediterranean (ad 1768–2008). Holocene 2012, 22, 887–898. [Google Scholar] [CrossRef]
- Sixth Assessment Report—IPCC. Available online: https://www.ipcc.ch/assessment-report/ar6 (accessed on 5 October 2021).
- Collins, M.; Knutti, R.; Arblaster, J.; Dufresne, J.-L.; Fichefet, T.; Friedlingstein, P.; Gao, X.; Gutowski, W.J., Jr.; Johns, T.; Krinner, G.; et al. Chapter 12—Long-term Climate Change: Projections, Commitments and Irreversibility. In Climate Change 2013: The Physical Science Basis Contribution. IPCC Working Group I Contribution to AR5; IPCC, Ed.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Flaounas, E.; Kelemen, F.D.; Wernli, H.; Gaertner, M.A.; Reale, M.; Sanchez-Gomez, E.; Lionello, P.; Calmanti, S.; Podrascanin, Z.; Somot, S.; et al. Assessment of an ensemble of ocean–atmosphere coupled and uncoupled regional climate models to reproduce the climatology of Mediterranean cyclones. Clim. Dyn. 2018, 51, 1023–1040. [Google Scholar] [CrossRef] [Green Version]
- Caian, M.; Andrei, M.D. Late-Spring severe blizzard events over eastern Romania: A conceptual model of development. Atmosphere 2020, 10, 770. [Google Scholar] [CrossRef] [Green Version]
- Caian, M.; Jönsson, A.; Kjellström, E.; Wyser, K.; Schöld, S. Mid-latitude cyclones related to extremely high sea level events at the Swedish coast in recent and future climates. (to be submitted to Int. Clim.).
- Stockadale, T.; Alonso-Balmaseda, M.; Johnson, S.; Ferranti, L.; Molteni, F.; Magnusson, L.; Tietsche, S.; Vitart, F.; Decremer, D.; Weisheimer, A.; et al. ECMWF Technical Memorandum No 835 “SEAS5 and the Future Evolution of the Long-Range Forecast SystemYS5 Forecast System”. 2018. Available online: https://www.ecmwf.int/en/elibrary/18750-seas5-and-future-evolution-long-range-forecast-system (accessed on 8 August 2021).
- Annual Report of Member States ECMWF Products. 2020. Available online: https://www.ecmwf.int/en/elibrary/20169-application-and-verification-ecmwf-products-2021-romania (accessed on 5 October 2021).
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Sinclair, M.R.; Watterson, I.G. Objective assessment of extratropical weather systems in simulated climates. J. Clim. 1999, 12, 3467–3485. [Google Scholar] [CrossRef] [Green Version]
- Hoskins, B.J.; Hodges, K.I. New perspectives on the northern hemisphere winter storm tracks. JAS 2002, 59, 1041–1061. [Google Scholar] [CrossRef]
- Flaounas, E.; Davolio, S.; Raveh-Rubin, S.; Pantillon, F.; Miglietta, M.M.; Gaertner, Μ.A.; Hatzaki, M.; Homar, V.; Khodayar, S.; Korres, G.; et al. Mediterranean cyclones: Current knowledge and open questions on dynamics, prediction, climatology and impacts. Weather Clim. Dyn. 2021. reprint. [Google Scholar] [CrossRef]
- Emanuel, K. Genesis and maintenance of Mediterranean hurricanes. Adv. Geosci. 2005, 2, 217–220. [Google Scholar] [CrossRef] [Green Version]
- Miglietta, M.; Moscatello, M.; Conte, A.; Mannarini, D.; Lacorata, G.; Rotunno, R. Numerical analysis of a Mediterranean ‘hurricane’ over south-eastern Italy: Sensitivity experiments to sea surface temperature. Atmos. Res. 2011, 101, 412–426. [Google Scholar] [CrossRef]
- Trigo, I.F. Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: A comparison between ERA-40 and NCEP/NCAR reanalyses. Clim. Dyn. 2006, 26, 127–143. [Google Scholar] [CrossRef]
- Maheras, P.; Flocas, H.A.; Patrikas, I.; Anagnostopoulou, C. A 40 year objective climatology of surface cyclones in the Mediterranean region: Spatial and temporal distribution. Int. J. Climatol. 2001, 21, 109–130. [Google Scholar] [CrossRef]
- Bordei-Ion, E. Rolul Lanţului Alpino-Carpatic în Evoluţia Ciclonilor Mediteraneeni; Edit. Academiei Republicii Socialiste România: Bucureşti, Romania, 1983. [Google Scholar]
- Grimani, D.; Beşleagă, N. Climatic aspects and synoptic considerations linked with Mediterranean cyclones developing over South-European mainland. Meteoroloy and Hydrology; Bucuresti, Romania No 2. , 1976. Available online: http://pesd.ro/articole/nr.2/14.%20Apostol_PESD_2008.pdf (accessed on 5 October 2021).
- Şorodoc, C. Formarea şi evoluţia ciclonilor mediteraneeni şi influenţa lor asupra timpului în R.P.Română. In Culeg. de lucr. ale I.M./1960; Institutul Meteorologic: Bucuresti, Romania, 1962; pp. 5–42. [Google Scholar]
- Hoskins, B.J.; Hodges, K.I. The annual cycle of Northern Hemisphere storm tracks. Part I: Seasons. J. Clim. 2019, 32, 1743–1760. [Google Scholar] [CrossRef] [Green Version]
- Kouroutzoglou, J.; Flocas, H.A.; Hatzaki, M.; Keay, K.; Simmonds, I. A high-resolution climatological study on the comparison between surface explosive and ordinary cyclones in the Mediterranean. Reg. Environ. Chang. 2014, 14, 1833–1846. [Google Scholar] [CrossRef]
- Dayan, U.; Nissen, K.; Ulbrich, U. Atmospheric conditions inducing extreme precipitation over the eastern and western Mediterranean. Nat. Hazards Earth Syst. Sci. 2015, 15, 2525–2544. [Google Scholar] [CrossRef] [Green Version]
- Krichak, S.O.; Feldstein, S.B.; Alpert, P.; Gualdi, S.; Scoccimarro, E.; Yano, J.I. Discussing the role of tropical and subtropical moisture sources in cold season extreme precipitation events in the Mediterranean region from a climate change perspective. Nat. Hazards Earth Syst. Sci. 2016, 16, 269–285. [Google Scholar] [CrossRef] [Green Version]
- Kaznacheeva, V.D.; Shuvalov, S.V. Climatic characteristics of Mediterranean cyclones. Russ. Meteorol. Hydrol. 2012, 37, 315–323. [Google Scholar] [CrossRef]
- Barnston, A.G.; Livezey, R.E. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Weather Rev. 1987, 115, 1083–1126. [Google Scholar] [CrossRef]
- Almazroui, M.; Awad, A.M.; Islam, M.N.; Al-Khalaf, A.K. A climatological study: Wet season cyclone tracks in the East Mediterranean region. Theor. Appl. Climatol. 2015, 120, 351–365. [Google Scholar] [CrossRef]
- Mailier, P.J.; Stephenson, D.B.; Ferro, C.A.; Hodges, K.I. Serial clustering of extratropical cyclones. Mon. Weather Rev. 2006, 134, 2224–2240. [Google Scholar] [CrossRef]
- McDonald, R.E. Understanding the impact of climate change on Northern Hemisphere extra-tropical cyclones. Clim. Dyn. 2011, 37, 1399–1425. [Google Scholar] [CrossRef]
- Strong, C.; Davis, R.E. Winter jet stream trends over the Northern Hemisphere. Q. J. R. Meteorol. Soc. 2007, 133, 2109–2115. [Google Scholar] [CrossRef]
- Lee, S.H.; Williams, P.D.; Frame, T.H.A. Increased shear in the North Atlantic upper-level jet stream over the past four decades. Nature 2019, 572, 639–642. [Google Scholar] [CrossRef] [PubMed]
- Stendel, M.; Francis, J.; White, R.; Williams, P.D.; Woollings, T. The jet stream and climate change. In Climate Change; Elsevier: Amsterdam, The Netherlands, 2021; pp. 327–357. [Google Scholar] [CrossRef]
- Meleshko, V.P.; Johannessen, O.M.; Baidin, A.V.; Pavlova, T.V.; Govorkova, V.A. Arctic amplification: Does it impact the polar jet stream? Tellus A Dyn. Meteorol. Oceanogr. 2016, 68, 32330. [Google Scholar] [CrossRef] [Green Version]
- Binder, H.; Boettcher, M.; Joos, H.; Wernli, H. The role of warm conveyor belts for the intensification of extratropical cyclones in Northern Hemisphere winter. JAS 2016, 73, 3997–4020. [Google Scholar] [CrossRef]
“Med” | (7W-36E) × (30N-45.5N) |
“2xMed” = (Med1 U Med2) | (7W-19E) × (30N-45.5N); (19E-36E) × (30N-41N) |
“EU” | (−15E-45E) × (25N-55N) |
D4 = (19E-22.5E) × (45.5N-48.75N) | D5 = (22.5E-26.5E) × (45.5N-48.75N) | D6 = (26.5E-36E) × (45.5N-48.75N) |
D1 = (19E-22.5E) × (41N-45.5N) | D2 = (22.5E-26.5E) × (41N-45.5N) | D3 = (26.5E-36E) × (41N-45.5N) |
D0 = {U(Di), i = 1,6} |
Class | Minimal Presssure Summer (AMJJAS) | Minimal Presssure Winter (ONDJFM) |
---|---|---|
Cyclone Severe “S” | 998 hPa < mslp ≤ 1005 hpa | 985 hPa < mslp ≤ 995 hPa |
Cyclone Severe-to-Extreme “ES” | 985 hPa < mslp ≤ 998 hPa | 975 hPa < mslp ≤ 985 hPa |
Cyclone Highly Extreme “EE” | mslp ≤ 985 hPa | mslp ≤ 975 hpa |
Cyclone Extreme “E” =ES U EE | mslp ≤ 998 hPa | mslp ≤ 985 hPa |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caian, M.; Georgescu, F.; Pietrisi, M.; Catrina, O. Recent Changes in Storm Track over the Southeast Europe: A Mechanism for Changes in Extreme Cyclone Variability. Atmosphere 2021, 12, 1362. https://doi.org/10.3390/atmos12101362
Caian M, Georgescu F, Pietrisi M, Catrina O. Recent Changes in Storm Track over the Southeast Europe: A Mechanism for Changes in Extreme Cyclone Variability. Atmosphere. 2021; 12(10):1362. https://doi.org/10.3390/atmos12101362
Chicago/Turabian StyleCaian, Mihaela, Florinela Georgescu, Mirela Pietrisi, and Oana Catrina. 2021. "Recent Changes in Storm Track over the Southeast Europe: A Mechanism for Changes in Extreme Cyclone Variability" Atmosphere 12, no. 10: 1362. https://doi.org/10.3390/atmos12101362
APA StyleCaian, M., Georgescu, F., Pietrisi, M., & Catrina, O. (2021). Recent Changes in Storm Track over the Southeast Europe: A Mechanism for Changes in Extreme Cyclone Variability. Atmosphere, 12(10), 1362. https://doi.org/10.3390/atmos12101362