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Abstract: The Mediterranean part of Syria is affected by soil water erosion due to poor land
management. Within this context, the main aim of this research was to track soil erosion and runoff

after each rainy storm between September 2013 and April 2014 (rainy season), on two slopes with
different gradients (4.7%; 10.3%), under three soil cover types (SCTs): bare soil (BS), metal sieve cover
(MC), and strip cropping (SC), in Central Syria. Two statistical multivariate models, the general linear
model (GLM), and the random forest regression (RFR) were applied to reveal the importance of SCTs.
Our results reveal that higher erosion rate, as well as runoff, were recorded in BS followed by MC,
and SC. Accordingly, soil cover had a significant effect (p < 0.001) on soil erosion, and no significant
difference was detected between MC and SC. Different combinations of slopes and soil cover had
no effect on erosion, at least in this experiment. RFR performed better than GLM in predictions.
GLM’s median of mean absolute error was 21% worse than RFR. Nonetheless, 25 repetitions of 2-fold
cross-validation ensured the highest available prediction accuracy for RFR. In conclusion, we revealed
that runoff, rain intensity and soil cover were the most important factors in erosion.

Keywords: soil erosion; plot experiment; soil conservation practice; Mediterranean region;
k-fold cross-validation
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1. Introduction

In the last few decades, land degradation has posed major concerns all over the world [1,2].
Over 60% of the world’s land is subjected to different types of land degradation, and more than
3.2 billion people suffer from it [3–5]. The main issues are desertification and salinization [6,7],
fertility reduction [8,9] and soil erosion [10], soil acidification [11,12], and pollution [13]. In addition,
due to changing environments, stenocious species disappear and biodiversity decreases [14–16].
Thus, maintenance of soil physicochemical properties is a key factor for a healthy soil, which directly
or indirectly leads to achievement of the Sustainable Development Goals (UN-SDGs), namely Goals 2,
3, 6, 7, 12–15 [17–19]

Soil erosion is a serious degradation hazard that threaten agricultural production and sustainability
of natural ecosystems all over the world [20]. More than 12 million ha/year of fertile soil were excluded
from agricultural production due to this degradation form [21]. Furthermore, due to the runoff and
sediment transportation, soil loss is accompanied by accumulation eutrophication and water pollution,
nutrition leaching and crop yield depression [22]. Accordingly, soil erosion is a great challenge
for sustainability in agroecosystems worldwide, such as Europe [22–25], Africa [26,27], Asia [28],
and Australia [29].

Soil erosion by water can be induced by rainfall, slope, and may also be caused by melting snow,
and irrigation. Rainfall erosivity depends on the duration, intensity, frequency of rainy storm [30].
Also, the slopes have an effect on soil erosion; in particular, the most important feature is the steepness,
but the length, shape and aspect are also affecting the amount and velocity of runoff; nevertheless,
erosion can occur on gentle slopes, usually as areal sheet erosion [31–34]. Furthermore, there are
influencing factors having a role in regulating the amount of runoff such as soil properties (i.e., texture,
organic matter content, aggregates stability, soil compaction and sealing) [35,36]; and agricultural
activities (tillage practices) [35–37], as well as land cover/management [38,39].

Different approaches that are available determine the rate of erosion from experimental plots
(EP), based on field or laboratory measurements, to erosion models using initiating and influencing
factors as model parameters. The EP methods (i.e., levelling, volumetric, deluometric, deflametric,
climatological, pluviological, and monolithic methods) were suggested by Zachar [40] as an ideal
solution to directly measure soil erosion in a controlled environment (i.e., slope characteristics, soil
conditions, and land cover). The most important issue of erosion studies is whether the findings can
be extrapolated to other areas, due to the limited size of the EPs.

Over time, dozens of equations and mathematical models were developed for different purposes
such as assessing soil erosion, quantifying soil erosion, drawing soil erosion hazard maps, and
evaluating the effectiveness of erosion control measures. Since the first equation for predicting soil
erosion was introduced by Zingg [41], considerable improvements had been achieved in modeling
soil erosion. Scientifically, soil erosion models can be divided into three groups: empirical models
(i.e., Universal Soil Loss Equation (RUSLE) [42]); physical models (i.e., Water Erosion Prediction
Project model (WEPP) [43]); and hybrid/conceptual models (i.e., the Large-Scale Catchment Model
(LASCAM) [44]). Regardless of the model type, the main goal was to simplify soil erosion processed to
an acceptable level of accuracy in order to represent real-world scenarios.

Model validation is a serious part of the erosion analysis which has an extensive literature [45–47],
even when the results are based on field experiments, the reliability of the conclusions should be
investigated [48]. Statistical analysis can reveal the general relationships, but the main question is:
how do the data represent the area and the phenomenon itself? Regression analysis provides a reliable
measure with goodness-of-fit indices (e.g., R2 and residual errors), but these are calculated from the
dataset itself, and not from independent data. However, splitting the dataset into two parts may be
misleading: a random selection can provide different datasets from the aspect of representativity, i.e., the
train and test data can be selected to be appropriately different and similar, providing a randomly
accurate or inaccurate outcome. A reliable method can split the datasets into several subsets, using one
part to train the statistical models, and the other for testing. Moreover, we can repeat this procedure;
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thus, based on several random selections and repetitions can provide a basis to judge the models with
higher reliability: medians, quartiles, means, standard deviations (SD) can be calculated from even
hundreds of models runs. Accordingly, the accuracy, and the representativeness of the input data will
be reflected in the range of model indices.

Syria is one of the Mediterranean countries being affected by both water erosion, and wind
erosion, as in other countries in the Middle East and North Africa (MENA) region. Generally, wind
erosion mainly dominates in the eastern and central part of Syria [49], while the western and northern
parts as well as mountains are more subjected to soil erosion by water [50–52]. In the central part
of Syria, especially in Mysiafe region (Hamah Governorate (Syria)), where successive and heavy
rainstorms occur frequently, soil erosion had become a recurrent threat for sustainability of land
resources. Besides, agricultural areas in this region are remarkably affected by soil erosion, which
hinders the ecosystem and can cause catastrophic damage to agricultural production.

Although several erosion related studies have been prepared using experimental plots (i.e., Kbibo
and Nasafi [53], Kbibo et al. [54]), data reliability had not been evaluated. Within this context,
the main aim of this study was to investigate the impact of using different soil conservation
techniques on water soil erosion and runoff. We quantified the role of the slope steepness and
had the following hypotheses: (i) involving more driving factors into the modelling results in more
accurate models; (ii) a non-parametric model can perform better due to lesser limiting prerequisites;
and (iii) cross-validation with optimized models provides better information about the model accuracy.

2. Materials and Methods

2.1. Study Area

The study area is located in Al-Bustan village (36.329◦ E, 35.016◦ N) in Hamah Governorate (Syria)
(Figure 1), NE Syria, and it is about 720 m above sea level. Generally, soils in this area are described
as clayey soils (sand 9.8%; silt 21.9%; clay 68.3%), slight alkaline (pH = 8.1), non-saline (electrical
conductivity (EC) = 0.15 dS/m), have moderate organic matter content (OM% = 1.9%), and high in
calcium carbonate content (41.3%). Physical characteristics, such as bulk density (1.3 g/cm3), practical
density (2.62 g/cm3), and porosity (49.61%) indicated a compacting soil condition. The study area
is dominated by dolomitic rocks alternating with limestone, dating back to the middle and upper
Jurassic, and has a maximum thickness of about 700 m. The climate of this region is characterized by
hot summers and cold and rainy winters, with an average precipitation of 1890 mm. Olives cultivations
dominate the land use, with smaller patches of Pinus forests as natural vegetation.

Figure 1. Location of the study area (Mysiafe region, Central Syria).
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2.2. Experimental Design and Sampling

Two locations with different slopes angles (4.7% and 10.3% at the first and second location,
respectively) were selected to run the experiment. For each slope, nine experimental plots (5 m × 1 m;
Figure 2) were set up within each slope and were divided as follows: (i) three plots as a control without
cultivation (bare soil, BS) to be directly exposed to rain drops (Figure 2a); (ii) three plots were covered
with metal sieve (MC) at a height of 20 cm in order to reduce the direct impact of rain drops on the
soil aggregates (MC, Figure 2b); and (iii) three plots were planted with annual crop in alternating
strips (SC) perpendicular to the slope and far from each other 30 cm, in order to mitigate the effect
of rain drops, and reduce the impact of surface runoff (SC, Figure 2c). The total experimental plots
were 18 plots (2 slopes × 3 land cover × 3 replications). The plots designed were similar to Wischmeier
type [55], but in smaller size.

Figure 2. (A) Field experimental design in two different slope inclination (4.7%, 10.3%), (a) nine plots
of bare soil (BS), (b) nine plots of metal sieve cover (MC), and (c) nine plots of strip cropping (SC).
(B) sketch of experimental plot (500 cm × 100 cm × 50 cm).

During the monitoring period, which started from September 2013 and ended in March 2014,
10 rainy storms were recorded; before each rain events soil moisture content was measured. Rainfall
amount in 30 min (i30) was collected from the rain gauge beside each plot as well as runoff and soil
erosion. Sediment trap (tank, 200 L) contents (i.e., soil and water) were mixed for five minutes, then
three samples each one 2-L (L) were collected; these samples were mixed together, then a representative
sample of 3 L were collected. After that the tank was discharged, and samples were moved to the
laboratory at Al-Bath University. In the laboratory, samples were placed in containers for sedimentation
then soil was separated from the water and dried in an oven at 105 ◦C for 24 h. Later on, soil samples
were weighed on a balance to calculate the amount of eroded soil from each event.

2.3. Statistical Analysis

Statistical evaluation was begun with checking the assumption of normal distribution of
the variables. We applied the Shapiro–Wilk test and found that variables were not of normal distribution.
Accordingly, we applied robust methods with bootstrapping and trimming to overcome the
violated assumptions.
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Robust 2-way factorial analysis of variance (ANOVA) was applied for the analysis of factor
variables, soil cover and slope type. Beside the hypothesis testing, interaction was also studied.
Modified M-estimator and 5000 bootstrap samples were applied. Post hoc testing was performed with
the Games–Howell test, which is insensitive for the inhomogeneity of variances [56].

To reveal the importance of soil management and the uncertainties of the outcomes, we
applied two statistical models: the general linear model (GLM) and random forest regression (RFR).
For both models, the response variable was the erosion (g/m2), while the predictors were the runoff

(L/m2), soil moisture (%), rain intensity (mm/30 min), slope steepness (%), and the management.
Categorical variables were involved as dummy variables.

The GLM has several assumptions: the dependent variable is normally distributed, the predictors
combine additively on the response, residuals of the model have to follow the normal distribution,
the model has to have homoscedasticity (i.e., residuals have been constant in the range of prediction),
data should be independent and predictor variables’ correlation should be smaller than 0.8 (i.e., to
avoid multicollinearity) [56,57]. The GLM final outcome is merely dependent on such limitations.
The Shapiro–Wilk test confirmed the normality of the residuals.

RFR is a non-parametric tree ensemble procedure with several applications to data analysis due
to its prediction performance [58]. The random forest technique uses bagging and decision trees.
We applied 500 decision trees, and the bagging ensured 500 model realizations with random selection
of the data with replacement. The involved variables were the same as in case of GLM, but RFR does
not apply all of them at the same time: for one decision tree, the algorithm uses the square root of
the total number of variables. In our case, there were 6 variables used in one model, considering the
categorical variables separate as single dummy ones.

We also determined the variable importance. In the case of GLM, we calculated the effect size
(partial η2p). η2p is a standardized measure of the magnitude of the contribution of a variable
in the explained variance [56]. RFR, with omitting variables during the calculations, exploits the
advantage of lesser variables. Omitted variables cause change in the explained variance, and as there
are several hundred models (in our case 500), we can determine the consequence of including or
omitting the variables. The final outcome is a rank expressed as mean decrease accuracy (IncMSE%,
a measure of sum of squares as a prediction error; the larger the value the larger the importance of
a given variable) and mean decrease Gini (IncNodeGini, the impurity of the splits of the decision
trees) [59]. RFR provides a measure of variable importance but a current limitation is that no systematic
method exists to estimate the shared variances of the variables [60]. As Strobl et al. [61] pointed out the
unreliability of default RF models’ importance values, we applied the importance permutation [62].

As a verification of the models, we applied k-fold repeated cross validation (RCV) with 2 splits
and 25 repetitions; i.e., altogether 50 models were run with splitting the dataset to a train and a set
group (which meant two models: at first the first group was designated as train and second as the test
set; secondly the second group was used as the train set and the first as the test), then it was repeated
25 times. The accuracies were plotted in a box and whiskers plot and this made it possible to compare
the models’ efficiency using the R2, mean absolute error (MAE) and root mean square error (RMSE)
values. In this case, R2 was not the traditional one referring to the response and predictor variables, but,
as a pseudo-R2, it was the square of the correlation between the observed and modelled values [63].
This approach made it possible to fine tune the RFR model: we used the RMSE’s smallest value to
select the optimal model with the number of variables at the nodes of decision trees. We evaluated the
RFR and GLM model predictions with the Bland and Altman [64] plot (visualizing the differences of
observed and modelled data against their averages) and Wilcoxon paired test. Statistical analyses were
conducted in R 3.6.2 [65] by using the packages shown in Table 1.



Water 2020, 12, 2529 6 of 19

Table 1. Statistical packages used for R (V. 3.6.2) analyses.

Purpose Package Reference

Effect sizes effect sizes [66]
RFR rpart [67]

robust ANOVA WRS2 [68]
k-fold cross validation model caret packages [69]

Accuracy metrics of RFR randomForest, and randomForestExplainer [62,70]
Visualizations ggplot2, gridExtra [71,72]

3. Results

3.1. Relationship of Soil Erosion with the Influencing Factors

Soil erosion rates varied by the soil cover with significant effect (df = 2, F = 8.503, p < 0.001).
In particular, erosion values at BS plots were significantly higher than at MC and SC plots as reflected
by the p-values (Table 2). Furthermore, non-significant difference has been detected between erosion
measured at MC and SC plots. Moreover, BS error values had the largest variance whereas MC and
SC plots mean erosion values and standard errors were low (Figure 3). Considering the inclination,
the difference between soil erosion in slopes characterized by 4.7% and 10.3% of steepness was not
significant (mean difference = 21, df = 1, F = 0.197, p = 0.659).

Table 2. Effect of soil cover on soil erosion rate (g/m2) based on the Games–Howell post hoc test
(BS: bare soil, MC: metal sieve cover, and SC: strip cropping; bold: p < 0.05).

Soil Cover Games–Howell
Post Hoc Test BS MC SC

BS
Mean difference — 208 206.29

p-value — 0.016 0.017

MC
Mean difference — −1.61

p-value — 0.996

Figure 3. Mean of erosion rate in slopes characterized by different soil cover and slope steepness (mean
± standard error). Bare soil (BS), metal sieve cover (MC), and strip cropping (SC).

Our results showed that, when runoff rates were lower than 5 L/m2, there was no distinct effect of
soil cover (Figure 4). On the other hand, when runoff rate exceeded 5 L/m2, the influence of soil cover
type is noteworthy. For instance, in BS plots an average increase by 0.2 L/m2 of runoff accelerated
erosion by 1.97 g/m2, and by 0.44 and 0.40 g/m2 for MC and SC, respectively. Thus, if there was any
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soil cover, the erosion did not increase relevantly, compared to BS plots. The relationship was strong
between the erosion and the runoff in each soil cover type (Figure 5). Notably, soil moisture did not
show any significant correlation with the erosion (r = 0.03, p = 0.507); while rainfall intensity was in
a strong relation with the runoff (r = 0.95, p < 0.001). Although the regressions performed with the
separated data explained at least 74% of variance, the aim was to find a solution involving all data
without creating subsets, but in this case the R2 was only 0.54 (p < 0.001). In spite of the significant
model, the residuals were large, and the standard error of the estimate was 26.5 L/m2.

Figure 4. A scatter plot indicating the relationship between erosion (g/m2) rate and runoff (L/m2).

Figure 5. Relationship between erosion rate (g/m2) and runoff (L/m2) by soil cover types (BS: bare soil,
MC: metal sieve cover, and SC: strip cropping).
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3.2. Multivariate Statistical Modelling

The single GLM model provided a result with an adjusted R2 of 0.66 (Table 3). Partial η2

indicated the importance of runoff (0.599) and the soil cover (0.132). All the other variables had
insignificant (p > 0.05) effect, and minimal effect size (equal and smaller than 0.016, having less
contribution in the model than 2%). Omitting all insignificant variables, the new model had an R2

of 0.678 (Table 4). This model revealed that runoff rate had double the importance than soil cover.
However, we excluded the rain intensity from the model due to the high level of correlation (r = 0.95;
p < 0.001).

Table 3. Summary results of the general linear model (GLM) involving all measured influencing factors.

GLM SS df F p η2p

Model 0.000 7 17.3312 <0.001 0.700
Soil cover 109,520 2 3.9456 0.025 0.132
Slope type 11,565 1 0.8333 0.366 0.016

Soil moisture 863 1 0.0622 0.804 0.001
Runoff 0.000 1 77.5176 <0.001 0.599

Soil cover × slope type 11,032 2 0.3974 0.674 0.015
Residuals 721,704 52

Total 0.000 59

Table 4. Summary results of the general linear model (GLM) of the significant variables.

GLM SS df F p η2p

Model 0.000 3 42.4 < 0.001 0.694
Soil cover 319,569 2 12.2 <0.001 0.303

Runoff 0.000 1 83.7 < 0.001 0.599
Residuals 73,5015 56

Total 0.000 59

The single RFR model explained 75.9% of variance, and the variable importance indicated
the runoff rate and the soil cover as the most important variables. Considering the %IncMSE,
the importance values indicated the same as the second GLM model involving only the runoff and
soil cover (Table 4): runoff had larger importance value than the soil cover. As RF models are not
sensitive to multicollinearity, in this model we included the rain intensity, too. However, despite the
strong correlation of the rain intensity with the runoff, its importance was the two-third of the runoff.
Soil cover types had a relevant effect, according to the IncMSE%. Nonetheless, soil moisture (sm) and
slope angle had negligible effect (Figure 6).

In the next step we applied the RCV with 50 models: the results showed that the models had
large variance if we use random subsets from the whole dataset. R2 values’ medians of the GLM and
RFR models were almost similar (for GLM it was 0.66, and for RFR 0.70), and the GLM’s minimum R2

was 0.53, while it was lower in case of RFR, 0.4 (Figure 7). This would suggest using the GLM, but
considering the range of predicted values, it was obvious that RFR performed better than GLM. In fact,
the lower quartile was the same (0.62) for both models, but the upper quartile and the maximum was
different (0.70 and 0.75 for the GLM, and 0.85 and 0.90 for the RFR). Moreover, both the MAE and the
RMSE indicated lower residuals for the RFR model: RFR’s median was 15% lower for RMSE and 32%
for MAE than of GLM. Furthermore, in the case of RFR, largest RMSE was lower than the median of
the GLM. The better performance of RFR was confirmed by the predicted values, too. Bland–Altman
diagrams pointed to the main characteristics of the predictions, i.e., RFR’s prediction error’s standard
deviation was 37.2 (indicated with 2 × SD in Figure 8), while in case of GLM it was 108.2 (Figure 9).
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Figure 6. Evaluation metrics of random forest regression (RFR ((sm: soil moisture, slope: slope type,
cover: soil cover, i30: rainfall amount in 30 min).

Figure 7. Range of the 50 models applied with the 2-fold cross-validation repeated 25 times (•: median;
box: interquartile range; dashed line: 1.5 times interquartile range; ◦: outlier; MAE: mean absolute
error, and RMSE: root mean square error; GLM: general linear model, RFR: random forest regression).
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Figure 8. Bland–Altman diagram of the random forest regression (RFR) model predicted with repeated
cross validation (RCV) approach based on 50 models (...: zero difference; –: mean, - - -: 2 × standard
deviation, labelled cases: difference was larger than 2 × standard deviation (SD)).

Figure 9. Bland–Altman diagram of the general linear model (GLM) prediction with cross validation
(RCV) approach based on 50 repetitions (...: zero difference; –: mean, - - -: 2 × standard deviation,
labelled cases: difference was larger than 2 × SD of the RFR model, i.e., 14).
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4. Discussion

4.1. Influence of Soil Cover and Management on Soil Erosion and Runoff

Soil erosion is one of the major threats to sustainable agricultural systems in the Mediterranean
part of Syria (i.e., coastal region and mountains). In this research, soil erosion and runoff were recorded
after each rainy storm in two slopes with different steepness (4.7%, and 10.3%) under three different
treatments (BS; MC, SC). Despite the existing large variation of natural rainfall intensity, our results
indicated that higher erosion rate as well as runoff were recorded in BS followed by MC, then SC.

In the study area, erosion and runoff varied by the soil cover. BS plots were the most affected by
soil erosion phenomena; which could be explained by the fact that in the rainy seasons between October
and February the soil remains bare. Unprotected soil is directly impacted by raindrop forces which
deteriorated aggregate stability, leaving soil pores quickly blocked by fine particles (silt, clay), causing
soil sealing and crusting, lessening soil infiltration and raising the susceptibility to soil erosion [73–77].
By contrast, land cover in both MS and SC minimize the direct impact of rainy storms, subsequently,
less soil erosion and runoff were noticed. These results coincided with other studies conducted in
different parts of the Mediterranean basin [78–83]. However, no statistical difference has been detected
between MC and SC plots in terms of soil erosion.

Precipitation characteristics (i.e., duration, length, intensity) directly impact runoff and
subsequently soil erosion [82]; where a positive correlation between activated runoff and soil erosion,
especially in the semi-arid region [74]. Our results revealed a positive significant correlation between
soil erosion and runoff under different land cover (Figure 4), where highly observed rainfall intensity
produced higher runoff whether in BS or other plots. Increasing rainfall erosivity accelerates soil
sealing and crusting, minimizing infiltration capacity, and enhancing runoff generation and mechanics
of soil erosion [84–86] recorded a high correlation between soil erosion and runoff (R2 = 0.90) in the
western Mediterranean basin (eastern Spain). Moreover, Hortonian runoff was observed in the studied
plots especially in BS plots, when rainfall intensity was high (31 mm/30 min) and greater than soil
infiltration capacity leading to high runoff and erosion rate. We can highlight that the first two rainy
storms of the year (i.e., 3 October 2013; 11 November 2013) induced the second highest observed surface
runoff and soil erosion rate in both slopes. Furthermore, these storm events occurred after long dry
periods from May to September with high intensity (>16 mm/30 min) resulting in high erosion rates.
Notably, more than 40% of total soil erosion were recorded in the first three events (i.e., 10 March 2013;
11 November 2013; 12 November 2013). Several authors stressed the drastic impact of early rainstorms
after drought periods in the Mediterranean region on land degradation [87–89], while others conclude
that few rainy storms were responsible for the larger proportion of soil erosion [90,91].

Many other factors such as low soil organic matter, high content of fine particles (i.e., clay, silt),
and high bulk density (1.3 g/cm3) provided favorable conditions for runoff initiation and erosion
acceleration, which could be observed not only in Syria but in all the Mediterranean region [92–94].
Similarly, Cerdà et al. [75] pointed out that high soil bulk density is a key factor for the fast ponding
and runoff initiation in the dry Mediterranean soils.

4.2. Impact of Different Soil Management Techniques on Soil Erosion and Runoff

In addition to high-intensity in short-duration rainfalls, shallow soil, slope gradient and
mismanagement of cultivated lands are common and crucial factors of erosion in the whole
Mediterranean region; thus, conservation management practices are important tools and planning.
Under the Mediterranean part of Syria, SC could be an effective tool for minimizing both overland flow
(i.e., runoff) and soil loss. Unlike other soil conservation techniques, SC technology is inexpensive and
effective in minimizing the erosion rate. However, herbaceous plant cover may compete with the main
crop due to water and nutrient uptake, which may cause a negative impact on crop production [95,96]
keeping farmers away from using it. As the MS technique can hardly be applied in large areas, we
used it in this research to provide an overview of the impact of soil mulching on soil water erosion;
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assuming MS will have the same behavior of mulching materials. Our results highlighted that soil
mulching significantly reduced total soil erosion by 76.6% and 80% in the gentle slope (4.7%) and
steeper slope (10.3%), respectively. Thus, soil mulching by straw (barley; wheat) or other organic
wastes from the agricultural production could be a proper solution for combating soil erosion [97].
A growing body of literature has demonstrated the importance of proper soil management/mulching
for minimizing soil erosion by water [98–105]. Rahma et al. [106] illustrated that soil mulching is
an effective way of conserving water and soil in the Loess Plateau (China) because of reduction of
surface runoff as well as protecting soil aggregates from the direct impact of raindrops. Similarly,
Keesstra et al. [93] demonstrated that runoff can be reduced from 65.6% to 50.7% by using straw
mulching in citrus orchards. However, Lucas-Borja et al. [107] found that soil mulching had no effect
on runoff, while it reduced soil erosion in forest fires-affected landscapes (Spain). Nevertheless, MC,
SC techniques could serve as soil conservation practice providing a promising tool to be used under
Syrian agroecosystem.

4.3. Performance of General Linear Model (GLM) and Random Forest Regression (RFR) in the Study Area

Application of our proposed GLM and RFR models indicates that RFR is more accurate and
reliable in predicting soil erosion under 50 runs. Remarkably, when runoff exceeded 5 L/m2, erosion
rate was highly influenced by the soil cover types; for example an increase by 0.2 L/m2 of runoff

(above 5 L/m2) resulting in an increase by 1.97 g/plot of soil erosion in bar soil plots (BS), 0.44 g/m2 and
0.40 g/m2 erosion in the case of MC and SC, respectively.

Linear regression analysis is the most popular technique to quantify the results, but our analysis
calls attention to the uncertainty of using only one model: the R2 of the single GLM model (Table 3)
was 0.7, but the 50 repetition of the RCV showed that it varies between 0.53 and 0.75, depending on the
input data. Important to note that the two R2 is not the same: in Tables 3 and 4 it is an adjusted R2

which was corrected with number of predictors, and in RCV we report the square of the correlation of
the modelled and observed values (pseudo R2); i.e., the latest is more reliable measure as the models
are applied on independent data. Nevertheless, both R2 are appropriate to show the model fit.

RFR never provides the same outcome (unless the randomizations are fixed e.g., in R software)
as the algorithm works with hundreds of bootstrapped samples and each randomization results in a
new model. We revealed that R2 alone is not meaningful enough because RFR’s R2-values were worse
than GLM’s but both MAE and RMSE indicated lower errors: minimum was better with 38% for RFR
than GLM for both error metrics. Model performance was better with the fine-tuned RFR model, which
is visually presented in the Bland-Altman plots (Figures 8 and 9). In case of GLM (Figure 9), we labelled
the cases when exceeded the RFR model’s 2 × SD range, which indicated that RFR’s predicted values
were more accurate (in that case prediction error was larger than 2 × SD only in 3 cases). However, the
observed and modelled values were not statistically different between the RFR and GLM predicted
values according to the Wilcoxon paired test (W = 954, z-score = 0.287, pMC = 0.77). This is the case
when hypothesis testing is biased by the large variance of one group of the factor: GLM’s variance was
too large and completely overlapped with the small variance of RFR’s interquartile range; in case of
RFR 50% of the differences related to the reference had fallen between −8.43 and 5.35, while the same
range was between −74.61 and 57.45 for GLM (Figure 10).
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Figure 10. Differences of observed and modelled erosion by random forest regression (RFR) and general
linear model (GLM).

4.4. Importance of Different Variables in Soil Erosion

Importance of the involved predictors of erosion were similar in both models: runoff was the
most important and the rain intensity (i30) was the next variable. Although i30 was in high correlation
(r = 0.95, p < 0.001) with the runoff, the importance of runoff was higher in the RFR model (due to
avoid multicollinearity we omitted i30 from the GLM). Soil cover was also important, but, in this
research, soil moisture and the slope type (i.e., 4.7% or 10.3%) was not relevant. The relevance of soil
moisture and slope angle were reported in several studies [108–110], but slopes were usually steeper
(larger than 10◦) and the difference was also ~10◦ among the different slope types. Moreover, smaller
importance can be attributed to the local characteristics: other influencing factors, such as i30 and
runoff in the combination of three types of soil cover proved to be more important than the slopes.
We repeated the RFR model without the runoff variable to filter out its large effect, but the rank and the
magnitude remained the same for the other variables, and the relevance of slope and soil moisture did
not increase.

This work highlighted the importance of both the plot experiments and the statistical evaluation.
Plots are the primary sources of collecting erosion information and the statistics are the tools when we
are able to extract the biasing factors. Application of cross-validation in erosion literature is limited. de
Graffenried and Shepherd [111] applied Classification and Regression Tree (CART) modelling with
10-fold cross-validation to test visible infrared spectroscopy in the assessment erosion risk, but usually
we find more examples when this technique had been applied in gully erosion mapping [112,113].
Rotigliano et al. [114] also applied a repeated random method to assess the reliability of their
classification results in debris flow sensitivity. However, all of these examples dealt with classification
and not with regression issues. Our results pointed on the importance of assessing the reliability of
experimental results, because the statistical tests and models can have several realizations depending on
the input (i.e., training) dataset. If we explore the possible outcomes, at least regarding the experiments,
we can provide better models with their uncertainty, too.
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5. Conclusions

We conducted a plot experiment on a Mediterranean area using three soil cover types on two
different slopes. We aimed to reveal the most important predictors of the soil erosion with the most
reliable statistical models. We revealed that runoff, rain intensity and the soil cover were the most
important factors of erosion, but simple bivariate regression models were not efficient when all soil
cover types were involved. GLM and RFR multivariate models were more efficient and helped to
determine the importance of influencing factors. Cross-validated models showed the uncertainty of
the outcomes. Hyperparameter tuning of the RFR model ensured finding the least RMSE; accordingly,
pseudo R2-values indicated that GLM performed better but based on RMSE and MAE the erosion rate
prediction was more successful with the RFR, and errors were about two-thirds those of GLM’s results.
Ranking of the variable importance was similar with both models, but the rank itself contradicted the
current experiences: slope steepness and soil moisture had only limited effect on the erosion, which can
be explained by local characteristics of the plots. This result also call attention to model evaluations,
each study site is different, and when soil conservation experts plan the possible steps of mitigating the
erosion, the local processes also should be considered.
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et al. Habitat islands outside nature reserves—Threatened biodiversity hotspots of grassland specialist plant
and arthropod species. Biol. Conserv. 2020, 241, 108254. [CrossRef]

17. Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerdà, A.; Montanarella, L.; Quinton, J.N.;
Pachepsky, Y.; Van Der Putten, W.H.; et al. The significance of soils and soil science towards realization of
the United Nations Sustainable Development Goals. Soil 2016, 2, 111–128. [CrossRef]

18. Keesstra, S.D.; Mol, G.; De Leeuw, J.; Okx, J.; Molenaar, A.C.; De Cleen, M.; Visser, S. Soil-Related Sustainable
Development Goals: Four Concepts to Make Land Degradation Neutrality and Restoration Work. Land 2018,
7, 133. [CrossRef]

19. Visser, S.; Keesstra, S.D.; Maas, G.; De Cleen, M.; Molenaar, A.C. Soil as a Basis to Create Enabling Conditions
for Transitions Towards Sustainable Land Management as a Key to Achieve the SDGs by 2030. Sustainability
2019, 11, 6792. [CrossRef]

20. Chalise, D.; Kumar, L.; Spalevic, V.; Skataric, G. Estimation of Sediment Yield and Maximum Outflow Using
the IntErO Model in the Sarada River Basin of Nepal. Water 2019, 11, 952. [CrossRef]

21. Blake, W.H.; Rabinovich, A.; Wynants, M.; Kelly, C.; Nasseri, M.; Ngondya, I.; Patrick, A.; Mtei, K.M.;
Munishi, L.; Boeckx, P.; et al. Soil erosion in East Africa: An interdisciplinary approach to realising pastoral
land management change. Environ. Res. Lett. 2018, 13, 124014. [CrossRef]

22. Cerdan, O.; Govers, G.; Le Bissonnais, Y.; Van Oost, K.; Poesen, J.; Saby, N.; Gobin, A.; Vacca, A.; Quinton, J.N.;
Auerswald, K.; et al. Rates and spatial variations of soil erosion in Europe: A study based on erosion
plot data. Geomorphology 2010, 122, 167–177. [CrossRef]

23. Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, E.; Meusburger, K.; Montanarella, L.; Alewell, C. The
new assessment of soil loss by water erosion in Europe. Environ. Sci. Policy 2015, 54, 438–447. [CrossRef]

24. Madarasz, B.; Jakab, G.; Tóth, A. Facing to real sustainability—Conservation agriculturalpractices around
the world. Environ. Sci. Pollut. Res. 2017, 25, 975–976. [CrossRef] [PubMed]

25. Rodrigo-Comino, J.; Neumann, M.; Remke, A.A.; Ries, J.B. Assessing environmental changes in abandoned
German vineyards. Understanding key issues for restoration management plans. Hung. Geogr. Bull. 2018,
67, 319–332. [CrossRef]

26. Le Roux, J.J.; Newby, T.S.; Sumner, P.D. Monitoring soil erosion in South Africa at a regional scale: Review
and recommendations. S. Afr. J. Sci. 2007, 103, 329–335.

27. Seutloali, K.E.; Dube, T.; Mutanga, O. Assessing and mapping the severity of soil erosion using the 30-m
Landsat multispectral satellite data in the former South African homelands of Transkei. Phys. Chem. Earth
Parts A/B/C 2017, 100, 296–304. [CrossRef]

28. Sidle, R.C.; Ziegler, A.D.; Negishi, J.N.; Nik, A.R.; Siew, R.; Turkelboom, F. Erosion processes in steep
terrain—Truths, myths, and uncertainties related to forest management in Southeast Asia. For. Ecol. Manag.
2006, 224, 199–225. [CrossRef]

29. Teng, H.; Viscarra-Rossel, R.; Shi, Z.; Behrens, T.; Chappell, A.; Bui, E.N. Assimilating satellite imagery and
visible–near infrared spectroscopy to model and map soil loss by water erosion in Australia. Environ. Model. Softw.
2016, 77, 156–167. [CrossRef]

30. Nearing, M.A.; Xie, Y.; Liu, B.; Ye, Y. Natural and anthropogenic rates of soil erosion. Int. Soil Water
Conserv. Res. 2017, 5, 77–84. [CrossRef]

31. Jakab, G.; Nemeth, T.; Csepinszky, B.; Madarász, B.; Szalai, Z.; Kertész, Á. The influence of short-term soil
sealing and crusting on hydrology and erosion at balaton uplands, Hungary. Carpathian J. Earth Environ. Sci.
2013, 8, 147–155.

http://dx.doi.org/10.1111/sum.12270
http://dx.doi.org/10.1016/j.apgeochem.2011.09.001
http://dx.doi.org/10.1016/j.jenvman.2019.05.126
http://www.ncbi.nlm.nih.gov/pubmed/31176176
http://dx.doi.org/10.1016/j.ecolind.2018.06.018
http://dx.doi.org/10.1016/j.cub.2019.08.007
http://www.ncbi.nlm.nih.gov/pubmed/31593662
http://dx.doi.org/10.1016/j.biocon.2019.108254
http://dx.doi.org/10.5194/soil-2-111-2016
http://dx.doi.org/10.3390/land7040133
http://dx.doi.org/10.3390/su11236792
http://dx.doi.org/10.3390/w11050952
http://dx.doi.org/10.1088/1748-9326/aaea8b
http://dx.doi.org/10.1016/j.geomorph.2010.06.011
http://dx.doi.org/10.1016/j.envsci.2015.08.012
http://dx.doi.org/10.1007/s11356-017-1040-9
http://www.ncbi.nlm.nih.gov/pubmed/29270900
http://dx.doi.org/10.15201/hungeobull.67.4.2
http://dx.doi.org/10.1016/j.pce.2016.10.001
http://dx.doi.org/10.1016/j.foreco.2005.12.019
http://dx.doi.org/10.1016/j.envsoft.2015.11.024
http://dx.doi.org/10.1016/j.iswcr.2017.04.001


Water 2020, 12, 2529 16 of 19

32. Centeri, C.; Jakab, G.I.; Barta, K.; Farsang, A.; Szabó, S.; Szalai, Z.; Bíró, Z. Dependence of soil erodibility
factor on the measurements of soil particle size distribution. In Talajpusztulás Térben és Időben; MTA CSKF FI:
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