State-of-the-Art in Severe Weather Research

A special issue of Atmosphere (ISSN 2073-4433). This special issue belongs to the section "Meteorology".

Deadline for manuscript submissions: 28 February 2026 | Viewed by 433

Special Issue Editor

Servei Meteorologic de Catalunya, 08029 Barcelona, Spain
Interests: severe weather; remote sensing; nowcasting; hail; heavy rain; supercells; squall lines
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Severe and large-scale hailstorms produce significant damage in many regions globally. In recent years, the occurrence trends of very large hail have tended to rise in most parts of the world with global warming, and only some areas have shown different behaviors. On the other hand, small hail events seem to have reduced in number. As well as global warming, several other direct and indirect factors could influence hail occurrence and distribution. However, the irregularity of such cases and the complexity of the processes inside thunderstorms make it difficult to definitively conclude about the future trends of hail. This Special Issue will publish research that enhances our understanding of the hail cycle's different steps, including studies analyzing topics from the identification of favorable large-scale and meso-scale environments to micro-physics inside hailstorms. The issue will thus provide insights into this specific field of atmospheric sciences.

Dr. Tomeu Rigo
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Atmosphere is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • hail
  • hailstorm
  • radar
  • lightning
  • satellite
  • numerical weather prediction
  • internal structure

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 30882 KB  
Article
Analysis of the Ducted Gravity Waves Generated by Elevated Convection over Complex Terrain in China
by Manman Ma and Luyao Qin
Atmosphere 2025, 16(10), 1118; https://doi.org/10.3390/atmos16101118 - 24 Sep 2025
Viewed by 262
Abstract
Gravity waves play a crucial role in the evolution of convective systems. The unique thermal structure of elevated convection occurring above a stable boundary layer facilitates the generation and propagation of gravity waves. This study focuses on an elevated convection event over Central [...] Read more.
Gravity waves play a crucial role in the evolution of convective systems. The unique thermal structure of elevated convection occurring above a stable boundary layer facilitates the generation and propagation of gravity waves. This study focuses on an elevated convection event over Central China on the night of 2–3 February 2024. The WRF model, combined with terrain sensitivity experiments, is employed to analyze the characteristics of gravity waves and the effects of terrain variability. The event consists of two elevated convection clusters; the first triggers gravity waves on its southwestern side, which subsequently initiates the second convection cluster. The gravity waves exhibit a horizontal wavelength of 25 km and a period of 17.5 min, propagating eastward. Below an altitude of 3 km, a stable wave duct layer is present, overlain by an unstable overreflective zone. This stratification creates an ideal channel for ducted gravity wave propagation, which is essential for maintaining the waves. Sensitivity experiments confirm that convective forcing alone is sufficient to generate the observed gravity waves. Although the terrain lies within the stable boundary layer, its ruggedness modulates the distribution of waves and indirectly influences the organization of elevated convection. Full article
(This article belongs to the Special Issue State-of-the-Art in Severe Weather Research)
Show Figures

Figure 1

Back to TopTop