Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,313)

Search Parameters:
Keywords = Mediterranean Basin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2276 KB  
Article
Eutrophication Risk Assessment vs. Trophic Status: Concordances and Discrepancies in the Trophic Characterization of Ebro Basin Reservoirs
by Juan Víctor Molner, Elena Arnau-López, Noelia Campillo-Tamarit, Rebeca Pérez-González, Manuel Muñoz-Colmenares, María José Rodríguez and Juan M. Soria
Environments 2026, 13(1), 39; https://doi.org/10.3390/environments13010039 - 8 Jan 2026
Abstract
The vulnerability of reservoirs in Mediterranean regions to eutrophication is attributable to two key factors: strong seasonal hydrological variability and intensive agricultural activity. The present study evaluated the trophic state of 47 reservoirs in the Ebro Basin in Spain using two complementary approaches: [...] Read more.
The vulnerability of reservoirs in Mediterranean regions to eutrophication is attributable to two key factors: strong seasonal hydrological variability and intensive agricultural activity. The present study evaluated the trophic state of 47 reservoirs in the Ebro Basin in Spain using two complementary approaches: the Organisation for Economic Co-operation and Development (OECD) classification system and the criteria set out in Royal Decree (RD) 47/2022. Chlorophyll-a, total phosphorus and transparency data were monitored from 2023 to 2024. While most of reservoirs were classified as oligotrophic to mesotrophic under the OECD thresholds, the RD 47/2022 identified 87% as being at risk of eutrophication. A significant variation in transparency was observed among the different reservoir types (p < 0.05), with high-altitude systems showing higher levels of water transparency. However, chlorophyll-a and total phosphorus had a significant spatial variability, exhibiting only modest correlations. Chlorophyll-a was weakly but significantly correlated to transparency (r = −0.21), while total phosphorus was not significantly associated with either variable, suggesting a decoupling between nutrient availability and phytoplankton biomass. The observed discrepancy between the two classification frameworks is indicative of divergent conceptual approaches (ecological condition versus management risk). It underscores the requirement for integrated monitoring that incorporates chemical, biological and catchment-scale indicators. These findings offer new insight into the trophic dynamics of Mediterranean reservoirs and highlights the importance of adapting regulatory assessment methods to region-specific climatic and hydrological contexts. Full article
(This article belongs to the Special Issue Monitoring of Contaminated Water and Soil, 2nd Edition)
Show Figures

Figure 1

28 pages, 8219 KB  
Article
Rainfall–Groundwater Correlations Using Statistical and Spectral Analyses: A Case Study on the Coastal Plain of Al-Hsain Basin, Syria
by Mahmoud Ahmad, Katalin Bene and Richard Ray
Hydrology 2026, 13(1), 25; https://doi.org/10.3390/hydrology13010025 - 8 Jan 2026
Abstract
Climate change and irregular precipitation patterns have increasingly threatened groundwater sustainability in semi-arid regions like the Eastern Mediterranean. Specifically, in coastal Syria, the lack of quantitative understanding regarding aquifer recharge mechanisms hinders effective water resource management. To address this, this study investigates the [...] Read more.
Climate change and irregular precipitation patterns have increasingly threatened groundwater sustainability in semi-arid regions like the Eastern Mediterranean. Specifically, in coastal Syria, the lack of quantitative understanding regarding aquifer recharge mechanisms hinders effective water resource management. To address this, this study investigates the dynamic relationship between rainfall and groundwater levels in the Al-Hsain Basin coastal plain using 48 months of monitoring data (2020–2024) from 35 wells. We employed a unified analytical framework combining statistical methods (correlation, regression) with advanced time–frequency techniques (Wavelet Coherence) to capture recharge behavior across diverse Quaternary, Neogene, and Cretaceous strata. The results indicate strong climatic control on groundwater dynamics, particularly in shallow Quaternary wells, which exhibit rapid recharge responses (lag < 1 month). In contrast, deeper aquifers showed delayed and buffered responses. A dual-variable model incorporating temperature significantly improved prediction accuracy (R2 = 0.97), highlighting the role of evapotranspiration. These findings provide a transferable diagnostic framework for identifying recharge zones and supporting adaptive groundwater governance in data-scarce semi-arid environments. Full article
Show Figures

Figure 1

16 pages, 1252 KB  
Article
Field Susceptibility of Almond (Prunus dulcis) Cultivars to Red Leaf Blotch Caused by Polystigma amygdalinum in Apulia (Italy) and Influence of Environmental Conditions
by Pompea Gabriella Lucchese, Emanuele Chiaromonte, Donato Gerin, Angelo Agnusdei, Francesco Dalena, Davide Cornacchia, Davide Digiaro, Giuseppe Incampo, Davide Salamone, Pasquale Venerito, Francesco Faretra, Franco Nigro and Stefania Pollastro
Plants 2026, 15(2), 188; https://doi.org/10.3390/plants15020188 - 7 Jan 2026
Abstract
Polystigma amygdalinum the causal agent of Red Leaf Blotch (RLB), is responsible for one of the most important foliar diseases affecting almond [Prunus dulcis (Miller) D.A. Webb] in the Mediterranean Basin and the Middle East. The study is aimed at improving knowledge [...] Read more.
Polystigma amygdalinum the causal agent of Red Leaf Blotch (RLB), is responsible for one of the most important foliar diseases affecting almond [Prunus dulcis (Miller) D.A. Webb] in the Mediterranean Basin and the Middle East. The study is aimed at improving knowledge on RLB epidemiology and the role of environmental conditions in disease development. Field monitoring was conducted from 2022 to 2025 in three almond orchards located in Apulia (southern Italy) and characterized by different microclimatic conditions. A total of 39 cultivars, including Apulian local germplasm and international cultivars (‘Belona’, ‘Genco’, ‘Guara’, ‘Ferragnès’, ‘Filippo Ceo’, ‘Lauranne® Avijor’, ‘Soleta’, and ‘Supernova’), were evaluated. Symptoms occurred from late spring to summer, resulting particularly severe on ‘Guara’ and ‘Lauranne® Avijor’, whereas ‘Belona’, ‘Ferragnès’, ‘Genco’, and ‘Supernova’ exhibited the highest tolerance. To our knowledge, this is also the first report of RLB tolerance by ‘Filippo Ceo’, ‘Ficarazza’, ‘Centopezze’, and ‘Rachele piccola’ representing potential genetic resources for breeding programs. Moreover, these findings reinforced previous observations proving that RLB was less severe on medium-late and late cultivars. Disease incidence varied significantly among sites and years and was strongly associated with increased rainfall, higher relative humidity, and mild temperatures recorded in November, influencing disease occurrence in the following growing season. P. amygdalinum was consistently detected by qPCR in all RLB-affected tissues and, in some cases, from mixed early RLB + Pseudomonas-like symptoms. From some leaves with early RLB symptoms, P. amygdalinum was also successfully isolated in pure culture. Overall, our results provide clear evidence that P. amygdalinum is the sole fungal pathogen consistently associated with typical RLB symptoms in Apulia (southern Italy) and highlight important cultivar-dependent differences. Its frequent molecular detection in leaves showing atypical or mixed symptoms suggests unresolved epidemiological aspects requiring further investigation. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

26 pages, 3274 KB  
Article
Nomenclatural Remarks and Typifications in the Genus Olea L. (Oleaceae)
by P. Pablo Ferrer-Gallego, Jacek Wajer and Raúl Ferrer-Gallego
Plants 2026, 15(2), 185; https://doi.org/10.3390/plants15020185 - 7 Jan 2026
Abstract
The typification of five names in the genus Olea (Oleaceae), viz. O. europaea subsp. cerasiformis, O. europaea var. maderensis, O. cuspidata, O. laperrinei, and O. sylvestris is discussed. These taxa are currently classified within O. europaea at the infraspecific [...] Read more.
The typification of five names in the genus Olea (Oleaceae), viz. O. europaea subsp. cerasiformis, O. europaea var. maderensis, O. cuspidata, O. laperrinei, and O. sylvestris is discussed. These taxa are currently classified within O. europaea at the infraspecific rank. The designation of the types is based on the consultation of original material conserved in several herbaria and the literature cited in the respective protologues. The name O. europaea subsp. cerasiformis is lectotypified from a specimen preserved at FI. The name O. europaea var. maderensis (also named O. europaea subsp. maderensis or O. maderensis, and currently treated as a synonym of O. europaea subsp. cerasiformis) is lectotypified from a specimen collected by Lowe in Madeira and preserved at BM. The name O. cuspidata (currently O. europaea subsp. cuspidata) is lectotypifed from a specimen collected in India and preserved at K. The name O. laperrinei (currently O. europaea subsp. laperrinei) is lectotypifed from a specimen preserved at MPU and collected in the Sahara Desert (Ahaggar Mountains, Algeria). Finally, the name O. sylvestris (currently O. europaea var. sylvestris), wild olive, also named oleaster or acebuche (Spanish language), a wild relative of the olive tree, is lectotypified on a Miller specimen preserved at BM. Full article
(This article belongs to the Special Issue Taxonomy and Nomenclature of Euro + Mediterranean Vascular Plants)
Show Figures

Figure 1

43 pages, 2634 KB  
Review
Methodologies for Data-Poor Fisheries Assessment in the Mediterranean Basin: Status, Challenges, and Future Directions
by Dimitris Klaoudatos and Alexandros Theocharis
Fishes 2026, 11(1), 22; https://doi.org/10.3390/fishes11010022 - 31 Dec 2025
Viewed by 238
Abstract
Fisheries management in the Mediterranean Sea faces persistent challenges due to the prevalence of data-poor and data-limited stocks, small-scale multi-species fisheries, and limited long-term monitoring programs. Effective assessment methodologies are critical to ensuring sustainable exploitation, yet traditional data-rich stock assessment models remain infeasible [...] Read more.
Fisheries management in the Mediterranean Sea faces persistent challenges due to the prevalence of data-poor and data-limited stocks, small-scale multi-species fisheries, and limited long-term monitoring programs. Effective assessment methodologies are critical to ensuring sustainable exploitation, yet traditional data-rich stock assessment models remain infeasible for many Mediterranean fisheries. This review provides a comprehensive synthesis of current methodologies developed and applied to assess data-poor fisheries in the Mediterranean context. We examine catch-only approaches, length-based methods, empirical indicators, and multi-indicator frameworks increasingly adopted by the General Fisheries Commission for the Mediterranean (GFCM) and the EU’s Data Collection Framework (DCF). Special attention is given to case studies from the western, central, and eastern Mediterranean that demonstrate the opportunities and limitations of these approaches. We further explore emerging tools, including integrated modeling frameworks, simulation-based harvest control rules, and participatory approaches involving fishers’ local knowledge, to highlight innovations suited to mixed, small-scale Mediterranean fisheries. The review concludes by identifying key gaps in data collection, assessment capacity, and institutional coordination, and proposes a roadmap for improving data-poor fisheries management under Mediterranean-specific ecological, socio-economic, and governance constraints. By consolidating methodological advances and practical lessons, this review aims to provide a reference framework for researchers, managers, and policymakers seeking to design robust, adaptive strategies for sustainable fisheries management in data-limited Mediterranean contexts. Full article
(This article belongs to the Special Issue Fisheries Monitoring and Management)
Show Figures

Figure 1

17 pages, 44594 KB  
Article
Pansharpened WorldView-3 Imagery and Machine Learning for Detecting Mal secco Disease in a Citrus Orchard
by Adriano Palma, Antonio Tiberini, Marco Caruso, Silvia Di Silvestro and Marco Bascietto
Remote Sens. 2026, 18(1), 110; https://doi.org/10.3390/rs18010110 - 28 Dec 2025
Viewed by 243
Abstract
Mal secco disease (MSD), caused by Plenodomus tracheiphilus, poses a serious threat to Citrus limon production across the Mediterranean Basin. This study investigates the potential of high-resolution WorldView-3 imagery for detecting early-stage MSD symptoms in lemon orchards through the integration of three [...] Read more.
Mal secco disease (MSD), caused by Plenodomus tracheiphilus, poses a serious threat to Citrus limon production across the Mediterranean Basin. This study investigates the potential of high-resolution WorldView-3 imagery for detecting early-stage MSD symptoms in lemon orchards through the integration of three pansharpening algorithms(Gram–Schmidt, NNDiffuse, and Brovey) with two machine learning classifiers (Random Forest and Support Vector Machine). The Brovey-based fusion combined with Random Forest yielded the best results, achieving 80% overall accuracy, 90% precision, and 84% recall, with high spatial reliability confirmed by 10-fold cross-validation. Spectral analysis revealed that Brovey introduced the largest radiometric deviation, particularly in the NIR band, which nonetheless enhanced class separability between healthy and symptomatic crowns. These findings demonstrate that moderate spectral distortion can be tolerated, or even beneficial, for vegetation disease detection. The proposed workflow—efficient, transferable, and based solely on visible and NIR bands—offers a practical foundation for satellite-driven disease monitoring and precision management in Mediterranean citrus systems. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

55 pages, 19021 KB  
Article
IDF Curve Modification Under Climate Change: A Case Study in the Lombardy Region Using EURO-CORDEX Ensemble
by Andrea Abbate, Monica Papini and Laura Longoni
Atmosphere 2026, 17(1), 14; https://doi.org/10.3390/atmos17010014 - 23 Dec 2025
Viewed by 343
Abstract
Intensity–Frequency–Duration Curves (IDF curves) are a tool applied in hydraulic and hydrology engineering to design infrastructure for rainfall management. They express how precipitation, with a defined duration (D) and intensity (I), is frequent in a certain area. They are built from past recorded [...] Read more.
Intensity–Frequency–Duration Curves (IDF curves) are a tool applied in hydraulic and hydrology engineering to design infrastructure for rainfall management. They express how precipitation, with a defined duration (D) and intensity (I), is frequent in a certain area. They are built from past recorded rainfall series, applying the extreme value statistics, and they are considered invariant in time. However, the current climate change projections are showing a detectable positive trend in temperatures, which, according to Clausius–Clapeyron, is expected to intensify extreme precipitation (higher temperatures bring more water vapour available for precipitation). According to the IPCC (Intergovernmental Panel on Climate Change) reports, rainfall events are projected to intensify their magnitude and frequency, becoming more extreme, especially across “climatic hot-spot” areas such as the Mediterranean basin. Therefore, a sensible modification of IDF curves is expected, posing some challenges for future hydraulic infrastructure design (i.e., sewage networks), which may experience damage and failure due to extreme intensification. In this paper, a methodology for reconstructing IDF curves by analysing the EURO-CORDEX climate model outputs is presented. The methodology consists of the analysis of climatic rainfall series (that cover a future period up to 2100) using GEV (Generalised Extreme Value) techniques. The future anomalies of rainfall height (H) and their return period (RP) have been evaluated and then compared to the currently adopted IDF curves. The study is applied in Lombardy (Italy), a region characterised by strong orographic precipitation gradients due to the influence of Alpine complex orography. The future anomalies of H evaluated in the study show an increase of 20–30 mm (2071–2100 ensemble median, RCP 8.5) in rainfall depth. Conversely, a significant reduction in the return period by 40–60% (i.e., the current 100-year event becomes a ≈40–60-year event by 2071–2100 under RCP 8.5) is reported, leading to an intensification of extreme events. The former have been considered to correct the currently adopted IDF curves, taking into account climate change drivers. A series of applications in the field of hydraulic infrastructure (a stormwater retention tank and a sewage pipe) have demonstrated how the influence of IDF curve modification may change their design. The latter have shown how future RP modification (i.e., reduction) of the design rainfall may lead to systematic under-design and increased flood risk if not addressed properly. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

8 pages, 3130 KB  
Proceeding Paper
Propagation of Climate Model Variability to Coastal Groundwater Simulations Under Climate Change
by Aikaterini Lyra, Athanasios Loukas, Pantelis Sidiropoulos and Nikitas Mylopoulos
Environ. Earth Sci. Proc. 2024, 31(1), 24; https://doi.org/10.3390/eesp2025032024 - 19 Dec 2025
Viewed by 142
Abstract
This study investigates the propagation of climate model variability to coastal groundwater systems under the high-emission RCP8.5 scenario, focusing on the Almyros Basin in Greece. Using Med-CORDEX bias-corrected climate projections, an Integrated Modelling System (IMS) combines UTHBAL (surface hydrology) and MODFLOW (groundwater hydrology) [...] Read more.
This study investigates the propagation of climate model variability to coastal groundwater systems under the high-emission RCP8.5 scenario, focusing on the Almyros Basin in Greece. Using Med-CORDEX bias-corrected climate projections, an Integrated Modelling System (IMS) combines UTHBAL (surface hydrology) and MODFLOW (groundwater hydrology) to simulate future conditions, including precipitation, temperature, evapotranspiration, groundwater recharge, water balance, and seawater intrusion (as a quantity). The analysis quantifies both central tendencies and inter-model spread, revealing substantial declines in groundwater recharge and intensified seawater intrusion, while highlighting the uncertainty introduced by climate model projections. These findings provide critical insights for adaptive water resource management and planning in Mediterranean coastal aquifers under climate change. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Forests)
Show Figures

Figure 1

18 pages, 1480 KB  
Article
Characterizing the Health Status of European Hake (Merluccius merluccius) in Areas with Different Anthropic Impacts (NW Mediterranean Sea)
by Irene Brandts, Sergi Omedes, Carmen Gilardoni, Marc Balcells, Montserrat Solé and Eve Galimany
Animals 2026, 16(1), 14; https://doi.org/10.3390/ani16010014 - 19 Dec 2025
Viewed by 309
Abstract
The high incidence of anthropogenic impacts in the Mediterranean basin raises concerns on the health and quality of commercial fish species. This study aims to evaluate the health status of the European hake, Merluccius merluccius, from three areas of the Catalan coast [...] Read more.
The high incidence of anthropogenic impacts in the Mediterranean basin raises concerns on the health and quality of commercial fish species. This study aims to evaluate the health status of the European hake, Merluccius merluccius, from three areas of the Catalan coast (NW Mediterranean Sea) with different anthropogenic impacts (i.e., chemical pollution, litter, …) and assess if hake could serve as a sentinel species. We measured biomarkers of chemical exposure including B-esterases, antioxidant enzymes (GST, GR, GPx, CAT), biotransformation markers (EROD), lipid peroxidation, and macro-parasite assemblages. Hake showed, generally, a good health status across all areas with homogeneous patterns for most parameters. Tissue-specific differences included elevated gonadal cholinesterases and higher brain and hepatic carboxylesterase activities in the south, and increased hepatic EROD but lower lipid peroxidation in the central Barcelona area. Parasite assemblages were dominated by Digenea, Cestoda, and Nematoda, with higher cestode prevalence in both central and south zones. In summary, despite a greater prevalence of environmental pollution in the central region, there was a homogeneous pattern in hake health indicators throughout the three studied fishing zones. These results establish a baseline for hake health in Mediterranean waters and suggest that the species’ high mobility and wide depth range may limit its utility to detect local-scale pollution impacts, though it may serve as a regional-scale bioindicator. Full article
Show Figures

Graphical abstract

23 pages, 4955 KB  
Article
Earth Observation and Geospatial Analysis for Fire Risk Assessment in Wildland–Urban Interfaces: The Case of the Highly Dense Urban Area of Attica, Greece
by Antonia Oikonomou, Marilou Avramidou and Emmanouil Psomiadis
Remote Sens. 2025, 17(24), 4052; https://doi.org/10.3390/rs17244052 - 17 Dec 2025
Viewed by 656
Abstract
Wildfires increasingly threaten Mediterranean landscapes, particularly in regions like Attica, Greece, where urban sprawl, agricultural abandonment, and climatic conditions heighten the risk at the Wildland–Urban Interface (WUI). The Mediterranean basin, recognized as one of the global wildfire “hotspots”, has witnessed a steady increase [...] Read more.
Wildfires increasingly threaten Mediterranean landscapes, particularly in regions like Attica, Greece, where urban sprawl, agricultural abandonment, and climatic conditions heighten the risk at the Wildland–Urban Interface (WUI). The Mediterranean basin, recognized as one of the global wildfire “hotspots”, has witnessed a steady increase in both fire severity, frequency, and burned area during the last four decades, a trend amplified by urban sprawl and agricultural land abandonment. This study represents the first integrated, region-wide mapping of the WUI and associated wildfire risk in Attica, the most densely urbanized area in Greece and one of the most fire-exposed metropolitan regions in Southern Europe, utilizing advanced techniques such as Earth Observation and GIS analysis. For this purpose, various geospatial datasets were coupled, including Copernicus High Resolution Layers, multi-decadal Landsat fire history archive, UCR-STAR building footprints, and CORINE Land Cover, among others. The research delineated WUI zones into 40 interface and intermix categories, revealing that WUI encompasses 26.29% of Attica, predominantly in shrub-dominated areas. An analysis of fire frequency history from 1983 to 2023 indicated that approximately 102,366 hectares have been affected by wildfires. Risk assessments indicate that moderate hazard zones are most prevalent, covering 36.85% of the region, while approximately 25% of Attica is classified as moderate, high, or very high susceptibility zones. The integrated risk map indicates that 37.74% of Attica is situated in high- and very high-risk zones, principally concentrated in peri-urban areas. These findings underscore Attica’s designation as one of the most fire-prone metropolitan regions in Southern Europe and offer a viable methodology for enhancing land-use planning, fuel management, and civil protection efforts. Full article
(This article belongs to the Special Issue Remote Sensing in Natural Hazard Exploration and Impact Assessment)
Show Figures

Figure 1

15 pages, 5332 KB  
Article
Assessing Catastrophic Historical Floods in a Small Stream: The Case of Tripero River (Villafranca de los Barros, Spain)
by José Manuel Vaquero, Javier Vaquero-Martínez, Víctor Manuel Sánchez Carrasco, Alejandro Jesús Pérez Aparicio and María Cruz Gallego
Atmosphere 2025, 16(12), 1408; https://doi.org/10.3390/atmos16121408 - 17 Dec 2025
Viewed by 292
Abstract
This study investigates five catastrophic historical floods of the Tripero stream, a small tributary of the Guadiana River that flows through Villafranca de los Barros (Extremadura, Spain), occurring between 1865 and 1952. Despite their devastating impacts on the local population and infrastructure, these [...] Read more.
This study investigates five catastrophic historical floods of the Tripero stream, a small tributary of the Guadiana River that flows through Villafranca de los Barros (Extremadura, Spain), occurring between 1865 and 1952. Despite their devastating impacts on the local population and infrastructure, these events have received little scientific attention. By combining historical documentary evidence with meteorological reanalysis data from the Twentieth Century Reanalysis (20CRv3), this research reconstructs the circumstances and atmospheric mechanisms associated with each event. The results reveal a notable diversity of synoptic configurations, reflecting both seasonal variability and the distinct meteorological origins of the floods. The 1865 and 1876 events were associated with large-scale Atlantic disturbances—the former linked to a cut-off low and moisture transport resembling an atmospheric river, and the latter to a strongly negative North Atlantic Oscillation (NAO) phase and other atmospheric river, producing widespread flooding across southwestern Iberia. In contrast, the floods of 1903, 1949, and 1952 were triggered by intense convective activity, typical of late spring and summer thunderstorms, fueled by local moisture and instability. The combination of historical sources and modern reanalysis provides valuable insights into the climatological context of extreme hydrometeorological events in small Mediterranean basins, contributing to improved understanding of local flood risks in historically understudied regions. Full article
Show Figures

Figure 1

30 pages, 12789 KB  
Article
Enhancing Drought Identification and Characterization in the Tensift River Basin (Morocco): A Comparative Analysis of Data and Tools
by Mohamed Naim, Brunella Bonaccorso and Shewandagn Tekle
Hydrology 2025, 12(12), 334; https://doi.org/10.3390/hydrology12120334 - 16 Dec 2025
Viewed by 628
Abstract
The Tensift River Basin, part of the Mediterranean region, faces significant agricultural losses due to increasing drought frequency and severity, impacting up to 15% of the national GDP. The increasing climate crisis demands our immediate attention and proactive adaptation measures, including the enhancement [...] Read more.
The Tensift River Basin, part of the Mediterranean region, faces significant agricultural losses due to increasing drought frequency and severity, impacting up to 15% of the national GDP. The increasing climate crisis demands our immediate attention and proactive adaptation measures, including the enhancement of early-warning tools to support timely and informed responses. To this end, our study aims to achieve the following goals: (1) evaluate satellite and reanalysis products against in situ observations using statistical metrics; (2) identify the best probability distribution for calculating drought indices using goodness-of-fit testing; (3) compare the performances of the Standardized Precipitation Index (SPI) and the Standardized Precipitation and Evapotranspiration Index (SPEI) at different aggregation timescales by comparing index-based and reported (i.e., impact-based) drought events using receiver operating characteristic (ROC) analysis. Our findings indicate that CHIRPS and ERA5-Land datasets perform well compared to in situ measurements for drought monitoring in the Tensift River Basin. Pearson Type 3 was identified as the optimal distribution for SPI calculation, while log-logistic was confirmed for SPEI. We also explored the effect of using the Thornthwaite method and the Hargreaves method when computing the SPEI. These results can serve as a basis for drought monitoring, modeling, and forecasting, to support decision-makers in the sustainable management of water resources. Full article
Show Figures

Graphical abstract

18 pages, 2923 KB  
Article
Chemical Components, Emission Dynamics, and External Immune Functions of Red Palm Weevil Larval Volatiles in Response to Changes in Developmental Stages and Pathogen Stress
by Can-Hui Ding, Wen-Qing You, Zong-Wei Zheng, Yu-Chen Pu, Li-Na Xu, You-Ming Hou, Yue Zhang and Cong Ou-Yang
Insects 2025, 16(12), 1266; https://doi.org/10.3390/insects16121266 - 13 Dec 2025
Viewed by 441
Abstract
Chemical defenses help insects resist pathogen infection. The volatile compositions, emission patterns, and external immune functions of the red palm weevil (RPW), a major invasive pest now established in numerous countries including the Mediterranean Basin, North Africa, Middle East, and parts of Latin [...] Read more.
Chemical defenses help insects resist pathogen infection. The volatile compositions, emission patterns, and external immune functions of the red palm weevil (RPW), a major invasive pest now established in numerous countries including the Mediterranean Basin, North Africa, Middle East, and parts of Latin America and the Caribbean, are largely unknown. In this study, we examined RPW larval volatiles, analyzing their emission patterns across developmental stages and under pathogen stress from feeding Metarhizium anisopliae. RPW larvae shared a number of volatile components across stages, but the emission dynamics were significantly different. These volatile chemicals were primarily alcohols, phenols and aromatic hydrocarbons, and styrene was the predominant volatile. Furthermore, pathogen stress induced distinct volatile profiles: phenylacetaldehyde unidirectionally decreased, whereas n-nonanol, 4-ethylguaiacol, 2-phenylethanol, hexanal, and benzophenone levels increased. Antimicrobial analysis showed that these upregulated compounds broadly inhibited fungal and bacterial growth. Therefore, our results illustrated the immune defense role of RPW larval volatiles and their potential bioactive compounds, including n-nonanol, 4-ethylguaiacol, 2-phenylethanol, hexanal, and benzophenone. Full article
(This article belongs to the Special Issue Invasive Pests: Bionomics, Damage, and Management)
Show Figures

Graphical abstract

31 pages, 4987 KB  
Article
First EST-SSRs of Helichrysum italicum (Roth) G. Don (Asteraceae) Revealed Insights into the Genetic Diversity and Population Structure in Corsica
by Petra Gabrovšek, Matjaž Hladnik, Dunja Bandelj, Zala Jenko Pražnikar, Saša Kenig, Félix Tomi, Marc Gibernau, Slavko Brana and Alenka Baruca Arbeiter
Plants 2025, 14(24), 3794; https://doi.org/10.3390/plants14243794 - 12 Dec 2025
Viewed by 532
Abstract
Helichrysum italicum (Roth) G. Don (Asteraceae) is a valuable medicinal and aromatic plant native to a variety of habitats across the Mediterranean region. However, genetic studies of this morphologically diverse species have been limited by the scarcity of species-specific DNA markers. To address [...] Read more.
Helichrysum italicum (Roth) G. Don (Asteraceae) is a valuable medicinal and aromatic plant native to a variety of habitats across the Mediterranean region. However, genetic studies of this morphologically diverse species have been limited by the scarcity of species-specific DNA markers. To address this limitation, we generated the first de novo transcriptome assembly comprising 24,806 transcripts from young shoots containing leaves and flowers, developed EST-SSR markers, and evaluated their utility in population genetic analysis. Seventy-eight primer pairs were designed, of which 23 showed successful amplification, polymorphism, and transferability to Helichrysum litoreum Guss. and Helichrysum arenarium (L.) Moench. A subset of 12 EST-SSRs was used to genotype 270 individuals from 12 natural populations of H. italicum in Corsica (France), along with one outgroup population from Croatia. The polymorphic information content ranged from 0.250 to 0.796, and Shannon’s information index ranged from 0.588 to 1.843, indicating the markers’ suitability for population genetic studies. Analysis of molecular variance revealed that 15% of the total genetic variation was attributable to differences among populations. Discriminant analysis of principal components and Bayesian clustering in STRUCTURE identified distinct population clusters corresponding to geographic locations. Notably, the southernmost coastal populations were clearly differentiated from the others. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

24 pages, 29134 KB  
Article
Climate-Driven Futures of Olive (Olea europaea L.): Machine Learning-Based Ensemble Species Distribution Modelling of Northward Shifts Under Aridity Stress
by Muhammed Mustafa Özdel, Beyza Ustaoğlu and İsa Cürebal
Plants 2025, 14(24), 3774; https://doi.org/10.3390/plants14243774 - 11 Dec 2025
Viewed by 694
Abstract
With its millennia-long agricultural history, Olive (Olea europaea L.) is one of the most strategic crops of the Mediterranean basin and a key component of the Turkish economy. This study assessed the effects of climate change on the potential distribution of olive [...] Read more.
With its millennia-long agricultural history, Olive (Olea europaea L.) is one of the most strategic crops of the Mediterranean basin and a key component of the Turkish economy. This study assessed the effects of climate change on the potential distribution of olive in Türkiye using machine learning-based species distribution models (SDMs). Analyses were conducted using the 1970–2000 reference period and future projections for 2041–2060 and 2081–2100 under the SSP2-–4.5 and SSP5–8.5 scenarios, incorporating bioclimatic variables as well as topographic factors such as elevation, slope, and aspect. The model showed strong predictive performance (AUC = 0.93; TSS = 0.77) and identified elevation, winter precipitation (Bio19), and mean temperature of driest quarter (Bio9) as the primary variables influencing the distribution of olive trees. Model results predict a significant shift in suitable areas for olive cultivation, both northward—from the traditional Aegean and Mediterranean coastal belt toward the Marmara and Black Sea regions—and upward in elevation into higher-altitude inland areas. High-suitability areas, which accounted for 4.4% of Türkiye’s land area during the reference period, are projected to decline to 0.2% by the end of the century under the SSP5–8.5 scenario. UNEP Aridity Index analyses indicate increasing aridity pressure on olive habitats. While 87.2% of suitable habitats were classified as sub-humid in the reference period, projections for 2081–2100 under SSP5–8.5 suggest that 40.1% of these areas will shift to dry sub-humid and 26.4% to semi-arid conditions. Full article
Show Figures

Graphical abstract

Back to TopTop