Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (388)

Search Parameters:
Keywords = Medicago sativa L.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2070 KiB  
Article
Optimizing Row Spacing and Seeding Rate for Yield and Quality of Alfalfa in Saline–Alkali Soils
by Jiaqi Shi, Nan Xie, Lifeng Zhang, Xuan Pan, Yanling Wang, Zhongkuan Liu, Zhenyu Liu, Jianfei Zhi, Wenli Qin, Wei Feng, Guotong Sun and Hexing Yu
Agronomy 2025, 15(8), 1828; https://doi.org/10.3390/agronomy15081828 - 28 Jul 2025
Viewed by 305
Abstract
To elucidate the photosynthetic physiological mechanisms influencing alfalfa (Medicago sativa L.) yield and quality under varying planting densities, the cultivar ‘Zhongmu No.1’ was used as experimental material. The effects of different row spacing (R1, R2, R3) and seeding rate (S1, S2, S3, [...] Read more.
To elucidate the photosynthetic physiological mechanisms influencing alfalfa (Medicago sativa L.) yield and quality under varying planting densities, the cultivar ‘Zhongmu No.1’ was used as experimental material. The effects of different row spacing (R1, R2, R3) and seeding rate (S1, S2, S3, S4, S5) combinations on chlorophyll content (ChlM), nitrogen flavonol index (NFI), chlorophyll fluorescence parameters, forage quality, and hay yield were systematically analyzed. Results showed that alfalfa under R1S3 treatment achieved peak values for ChIM, NFI, EE, and hay yield, whereas R1S4 treatment yielded the highest Fv/Fm and CP content. Redundancy analysis further indicated that yield was most strongly associated with ChlM, NFI, Y (II), and qP. Y (II), and qP significantly influenced alfalfa forage quality, exerting negative effects on ADF and NDF, while demonstrating positive effects on CP and EE. In conclusion, narrow row spacing (15 cm) with moderate seeding rates (22.5–30 kg·hm−2) optimizes photosynthetic performance while concurrently enhancing both productivity and forage quality in alfalfa cultivated, establishing a theoretical foundation for photosynthetic regulation in high-quality and high-yield alfalfa cultivation. Full article
Show Figures

Figure 1

19 pages, 1705 KiB  
Article
A Comparative Analysis of the Efficacy of Three Plant Growth Regulators and Dose Optimization for Improving Agronomic Traits and Seed Yield of Purple-Flowered Alfalfa (Medicago sativa L.)
by Xianwei Peng, Qunce Sun, Shuzhen Zhang, Youping An, Fengjun Peng, Jie Xiong, Ayixiwake Molidaxing, Shuming Chen, Yuxiang Wang and Bo Zhang
Plants 2025, 14(15), 2258; https://doi.org/10.3390/plants14152258 - 22 Jul 2025
Viewed by 263
Abstract
This study evaluated the effects of different plant growth regulators and their concentration gradients on the agronomic traits, seed yield, and yield components of Medicago sativa L. cv. “Xinmu No. 5” alfalfa. This experiment comprised 10 treatments, including 98% mepiquat chloride (200, 250, [...] Read more.
This study evaluated the effects of different plant growth regulators and their concentration gradients on the agronomic traits, seed yield, and yield components of Medicago sativa L. cv. “Xinmu No. 5” alfalfa. This experiment comprised 10 treatments, including 98% mepiquat chloride (200, 250, and 300 mg/L), 5% prohexadione-calcium (150, 250, and 350 mg/L), and 5% uniconazole (50, 100, and 150 mg/L), each at three concentration levels, along with a distilled water control (CK). The results show that the 98% mepiquat chloride treatment (MCT3) significantly reduced plant height (by 22%) and internode length (by 28.3%), while increasing stem diameter, branch number, and seed yield. Plant height and internode length exhibited a significant positive correlation, and both were highly significantly negatively correlated (p < 0.01) with seed yield components, indicating that controlling vegetative growth can enhance seed yield. Principal component analysis (extracting four principal components with a cumulative contribution rate of 80.8%) further confirmed that the 98% mepiquat chloride treatment MCT3 (300 mg/L) was the most effective treatment for improving seed yield of alfalfa in arid regions. Full article
(This article belongs to the Topic Biostimulants in Agriculture—2nd Edition)
Show Figures

Figure 1

21 pages, 3541 KiB  
Article
Drought Resistance Physiological Responses of Alfalfa to Alternate Partial Root-Zone Drying Irrigation
by Qunce Sun, Ying Wang, Shuzhen Zhang, Xianwei Peng, Xingyu Ge, Binghan Wen, Youping An, Guili Jin and Yingjun Zhang
Agriculture 2025, 15(13), 1446; https://doi.org/10.3390/agriculture15131446 - 4 Jul 2025
Viewed by 311
Abstract
In arid agricultural production, exploring suitable water-saving irrigation strategies and analyzing their water-saving mechanisms are of great significance. Alternating partial root-zone drying irrigation (APRI), a water-saving strategy, enhances the water use efficiency (WUE) of alfalfa (Medicago sativa L.) This paper aims to [...] Read more.
In arid agricultural production, exploring suitable water-saving irrigation strategies and analyzing their water-saving mechanisms are of great significance. Alternating partial root-zone drying irrigation (APRI), a water-saving strategy, enhances the water use efficiency (WUE) of alfalfa (Medicago sativa L.) This paper aims to clarify the physiological mechanisms by which the APRI method enhances the physiological WUE of alfalfa, as well as the differences between this water-saving irrigation strategy, conventional irrigation (CI), and their water deficit adjustments, in order to seek higher water use efficiency for alfalfa production in arid regions. In this experiment, alfalfa was used as the research subject, and three irrigation methods, CI, fixed partial root-zone drying (FPRI), and APRI, were set up, each paired with three decreasing moisture supply gradients of 90% water holding capacity (WHC) (W1), 70% WHC (W2), and 50% WHC (W3). Samples were taken and observed once after every three complete irrigation cycles. Through a comparative analysis of the growth status, leaf water status, antioxidant enzyme activity, and osmotic adjustment capabilities of alfalfa under different water supplies for the three irrigation strategies, the following conclusions were drawn: First, the APRI method, through artificially created periodic wet–dry cycles in the rhizosphere soil, provides pseudo-drought stress that enhances the osmotic adjustment capabilities and antioxidant enzyme activity of alfalfa leaves during the early to middle phases of irrigation treatment compared to CI and FPRI methods, resulting in healthier leaf water conditions. Secondly, the stronger drought tolerance and superior growth conditions of alfalfa under the APRI method due to reduced water availability are key factors in enhancing the water use efficiency of alfalfa under this strategy. Full article
(This article belongs to the Special Issue Innovative Conservation Cropping Systems and Practices—2nd Edition)
Show Figures

Figure 1

13 pages, 2462 KiB  
Communication
Species Interactions Shape Nitrogen Utilization Characteristics and Influence Soil Quality in Jujube–Alfalfa Intercropping System
by Hang Qiao, Hui Cheng, Tiantian Li, Wenxia Fan, Yaru Zhao, Zhengjun Cui, Jinbin Wang, Qingqing Yang, Chengze Jia, Wei Zhang, Guodong Chen and Sumei Wan
Plants 2025, 14(13), 2048; https://doi.org/10.3390/plants14132048 - 3 Jul 2025
Viewed by 398
Abstract
Intercropping legumes offers a sustainable approach to enhance resource efficiency and yields, yet the effects of different legume densities and nitrogen addition levels on soil quality within such systems remain unclear. We conducted a comparative analysis of crop yield, nitrogen use efficiency, and [...] Read more.
Intercropping legumes offers a sustainable approach to enhance resource efficiency and yields, yet the effects of different legume densities and nitrogen addition levels on soil quality within such systems remain unclear. We conducted a comparative analysis of crop yield, nitrogen use efficiency, and soil quality between intercropping and monoculture systems, and further examined the effects of four planting densities (D1: 210 kg ha−1, six rows; D2: 280 kg ha−1, eight rows; D3: 350 kg ha−1, ten rows) and four nitrogen application levels (N0: 0 kg ha−1; N1: 80 kg ha−1; N2: 160 kg ha−1; N3: 240 kg ha−1) within a jujube–alfalfa (Ziziphus jujuba Mill. and Medicago sativa L. respectively) intercropping system. The results showed that intercropping significantly enhanced land productivity within the agricultural system, with the highest yields (alfalfa: 13790 kg ha−1; jujube: 3825 kg ha−1) achieved at an alfalfa planting density of 280 kg ha−1. While the intercropping systems generally improved productivity, an alfalfa planting density of 350 kg ha−1 resulted in an actual yield loss due to excessive nutrient competition at higher densities. As the planting density of alfalfa increased, its competitive ratio declined, whereas the competitive ratio of jujube trees increased. Compared to monocropping systems, intercropping systems demonstrated a clear trend of enhanced nitrogen utilization efficiency and improved soil quality, particularly at an alfalfa planting density of 280 kg ha−1. At an alfalfa density of 280 kg ha−1, the intercropping system exhibited increases of 15.13% in nitrogen use efficiency (NUE), 46.60% in nitrogen partial factor productivity (NPFP), and 32.74% in nitrogen nutrition index (NNI), as well as improvements in soil quality of 19.53% at a depth of 0–20 cm and 15.59% at a depth of 20–40 cm, compared to the monoculture system. Further analysis revealed that nitrogen utilization efficiency initially increased and then decreased with a rising competitive ratio of alfalfa. Accordingly, soil quality was improved along with the enhanced nitrogen utilization efficiency. Thus, at an alfalfa planting density of 280 kg ha−1, resource use efficiency and soil quality were maximized as a result of optimal interspecific competitiveness and the highest nitrogen use efficiency, with minimal influence from the application of nitrogen fertilizer. Full article
Show Figures

Figure 1

24 pages, 1779 KiB  
Article
Carbon Metabolism Characteristics of Rhizosphere Soil Microbial Communities in Different-Aged Alfalfa (Medicago sativa L.) and Their Covarying Soil Factors in the Semi-Arid Loess Plateau
by Xianzhi Wang, Bingxue Zhou and Qian Yang
Agronomy 2025, 15(7), 1602; https://doi.org/10.3390/agronomy15071602 - 30 Jun 2025
Viewed by 392
Abstract
The carbon metabolism activity of rhizosphere soil microbial communities is an essential indicator for assessing soil ecosystem health, as it directly affects soil nutrient cycling and the stability of organic matter. However, there is a limited understanding of the carbon metabolism characteristics of [...] Read more.
The carbon metabolism activity of rhizosphere soil microbial communities is an essential indicator for assessing soil ecosystem health, as it directly affects soil nutrient cycling and the stability of organic matter. However, there is a limited understanding of the carbon metabolism characteristics of rhizosphere soil microorganisms in alfalfa (Medicago sativa L.) of different ages and their relationships with soil physicochemical properties. This study used Biolog EcoPlates to evaluate the carbon metabolism activity, functional diversity, and carbon-source utilization preferences of rhizosphere soil microbial communities in 5-, 7-, and 9-year-old alfalfa grasslands on the semi-arid Loess Plateau of western China. We analyzed the relationships between soil physicochemical properties and microbial carbon metabolism characteristics, considering their potential covariation. The results showed that, with the extension of alfalfa planting years, the rhizosphere soil water content decreased significantly, pH decreased slightly, but soil organic carbon, total nitrogen, and total phosphorus contents increased significantly. The rhizosphere soil microbial community of 9-year-old alfalfa exhibited the highest carbon metabolism activity, Shannon diversity index, and carbon-source utilization. Rhizosphere soil microorganisms from different-aged alfalfa showed significantly different preferences for carbon-source utilization, with microorganisms from 9-year-old alfalfa preferentially utilizing carbon sources such as N-acetyl-D-glucosamine, D-mannitol, and D-cellobiose. Redundancy analysis revealed that soil water content was among the most important factors influencing the carbon metabolism activity of rhizosphere soil microbial communities while acknowledging that the relative contributions of soil water content, organic carbon, and nitrogen require careful interpretation, owing to their potential collinearity. This study demonstrates that, under rain-fed conditions in the semi-arid Loess Plateau, the continuous cultivation of alfalfa for nine years led to a significant decrease in soil water content but enhanced the rhizosphere soil nutrient status and microbial carbon metabolism activity, with no apparent signs of microbial functional degradation, although soil water depletion was observed. These findings highlight the complex interactions among multiple soil factors in influencing microbial carbon metabolism, providing valuable microbiological insights for understanding the sustainability of alfalfa grasslands and a theoretical basis for the scientific management of alfalfa grasslands in the semi-arid Loess Plateau region. Future research should consider longer planting periods to determine the critical age of alfalfa grassland degradation under semi-arid conditions and its associated microbial mechanisms. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

25 pages, 3010 KiB  
Article
Wheat Straw Biochar Amendment Increases Salinity Stress Tolerance in Alfalfa Seedlings by Modulating Physiological and Biochemical Responses
by Shangzhi Zhong, Pengxin Hou, Congcong Zheng, Xuechen Yang, Qibo Tao and Juan Sun
Plants 2025, 14(13), 1954; https://doi.org/10.3390/plants14131954 - 26 Jun 2025
Viewed by 572
Abstract
Salinity stress is a major environmental challenge that adversely impacts the physiological and biochemical processes of pasture, consequently resulting in reduced yields and compromised quality. Biochar amendment has recently emerged as a promising strategy to alleviate the deleterious effects of salinity stress. However, [...] Read more.
Salinity stress is a major environmental challenge that adversely impacts the physiological and biochemical processes of pasture, consequently resulting in reduced yields and compromised quality. Biochar amendment has recently emerged as a promising strategy to alleviate the deleterious effects of salinity stress. However, the interactive influences of salinity stress and wheat straw biochar on the physiological, biochemical, and growth characteristics of alfalfa (Medicago sativa L.) remain underexplored. A factorial experiment was conducted using a randomized complete design with five salinity levels (0, 25, 50, 75, and 100 mM NaCl) and three application rates of biochar (0, 25, and 50 g kg−1) to evaluate wheat straw biochar’s potential in alleviating salinity stress in alfalfa. Results showed that salinity stress increased oxidative stress (hydrogen peroxide and malondialdehyde) and reduced chlorophyll fluorescence (maximum quantum efficiency of photosystem II by 1–27%), leading to decreasing photosynthetic parameters, thereby constraining biomass accumulation by 9–77%. Wheat straw biochar amendment under the highest salinity stress, particularly at 25 g kg−1, mitigated oxidative stress by reducing H2O2 and MDA levels by 35% and 33%, respectively, while decreasing the antioxidant enzymes activities of CAT, POD, and SOD by 47%, 42%, and 39%, respectively, compared to the control (non-biochar addition). Concurrently, biochar restored the osmoregulatory substance concentrations of proline and soluble sugar by 59% and 33%, respectively, compared to the control. Furthermore, wheat straw biochar amendment increased the net CO2 assimilation rate by 98%, thereby increasing biomass by 63%. Our study demonstrates that wheat straw biochar can contribute to protecting alfalfa against salinity stress by modulating physiological and biochemical responses. These findings demonstrate that the 25 g kg−1 wheat straw biochar application had the best performance, suggesting this amendment could be a viable strategy for improving alfalfa productivity in salt-affected soils. Future research should explore long-term field applications and the underlying mechanisms of biochar–plant–soil–plant interactions under diverse saline-alkali environments. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

19 pages, 3778 KiB  
Article
Coal Gangue Ecological Matrix Coupled with Microalgae for Soil Improvement and Plant Growth in Reclaimed Mining Areas
by Shuyu Yu, Jinning Li, Dandan Du, Hao Li, Jiayong Hao, Zedong Teng and Xiang Ji
Biology 2025, 14(7), 741; https://doi.org/10.3390/biology14070741 - 21 Jun 2025
Viewed by 314
Abstract
Coal gangue, a primary byproduct of coal mining, causes significant environmental harm due to its improper utilization. This research proposes integrating microalgae with coal gangue-derived ecological products to improve soil conditions in ecologically vulnerable coal-mining regions. A field-scale experiment at the Jintong Coal [...] Read more.
Coal gangue, a primary byproduct of coal mining, causes significant environmental harm due to its improper utilization. This research proposes integrating microalgae with coal gangue-derived ecological products to improve soil conditions in ecologically vulnerable coal-mining regions. A field-scale experiment at the Jintong Coal Mine tested soils amended with varying proportions of a coal gangue ecological matrix (0%, 10%, 30%, and 50%), with and without microalgae inoculation. The results demonstrated that coal gangue addition caused undesirable soil pH decreases (11.30~42.20%) while increasing total dissolved solids (506.88~524.93%) and organic matter (8.51~46.81%). These effects were mitigated by the presence of microalgae. Microalgae play a role in regulating soil nutrient profiles, enhancing enzymatic activities, and modulating the microbial community structure. For example, they restored catalase activity under the stress imposed by coal gangue and stimulated urease activity at higher coal gangue proportions. Plant growth trials revealed that adding 30% coal gangue or combining coal gangue with microalgae significantly promoted the growth of Medicago sativa L. In summary, coupling the coal gangue ecological matrix with microalgae effectively enhances soil quality. Maintaining the coal gangue addition at 30% or less in conjunction with microalgae application represents an optimal approach for soil improvement in mining areas. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

15 pages, 2301 KiB  
Article
Effects of Dissolved Organic Carbon Leaching and Soil Carbon Fractions Under Intercropping Dactylis glomerata L.–Medicago sativa L. in Response to Extreme Rainfall
by Cui Xu, Peng Zhang, Lu Chen, Wenzhi Wang, Xukun Yang, Zhenhuan Liu and Yanhua Mi
Agronomy 2025, 15(6), 1485; https://doi.org/10.3390/agronomy15061485 - 19 Jun 2025
Cited by 1 | Viewed by 609
Abstract
Climate change aggravates the frequency of extreme rainfall events, resulting in carbon (C) loss. For the special climate of the highlands, cultivating the land underneath orchards increases C reservation. Systematic research on the impact of extreme rainfall on soil organic carbon compositions and [...] Read more.
Climate change aggravates the frequency of extreme rainfall events, resulting in carbon (C) loss. For the special climate of the highlands, cultivating the land underneath orchards increases C reservation. Systematic research on the impact of extreme rainfall on soil organic carbon compositions and (dissolved organic carbon) DOC leaching is limited, especially regarding the response to different cropping patterns underneath orchards, requiring a deeper understanding. The results showed that the DOC-leaching fluxes for the cropping patterns under rainstorms and heavy rainstorms were in the order Dactylis glomerata L. monocropping (13.5, 4.4 kg/hm2) > Medicago sativa L. monocropping (11.2, 3.8 kg/hm2) ≥ D. glomerata. + M. sativa. (10.4, 3.6 kg/hm2). The DOC-leaching fluxes during heavy rainstorms were reduced with D + M, and the root morphology showed a significant correlation with DOC concentration. Compared to the D, SOC in layers 40–60 cm of the M and the D + M increased by 68.36% and 64.24%, respectively. TP and POC of the D + M increased with soil depth. Relationships between cropping pattern and rainfall intensity for particulate organic carbon (POC) and mineral-associated organic carbon (MOC) were observed. Heavy rainstorms reduced MOC, including the decomposition of substances related to the MOC, such as ROC and DOC, then POC in layers 40–60 cm increased; compared with 0–20 cm of D and M, the content of readily oxidizable carbon (ROC) in layers 40–60 cm reduced by 56.90~77.64%, and the POC increased by 38.38~87.00% in the D + M. Therefore, it was suggested that the decomposition of deeper MOC due to heavy rainstorms is the main source of soil POC and leaching DOC. This will provide a reference basis for research on assessing soil carbon-leaching fluxes and carbon stocks under extreme rainfall events. Full article
Show Figures

Figure 1

15 pages, 6554 KiB  
Article
Study on the Effects of Planting Alfalfa (Medicago sativa L.) and Adding Biochar on Soil Fertility in Jujube Orchards
by Tingrui Jing, Shuang Liang, Chubo Liu, Shipeng Liu and Luanzi Sun
Agronomy 2025, 15(6), 1462; https://doi.org/10.3390/agronomy15061462 - 16 Jun 2025
Viewed by 454
Abstract
Soil fertility has an important impact on orchard yield and quality, and sandy soil limits the economic yield of orchards due to its low water and fertilizer retention capacity. Although biochar and alfalfa planting have been widely utilized separately in soil improvement, few [...] Read more.
Soil fertility has an important impact on orchard yield and quality, and sandy soil limits the economic yield of orchards due to its low water and fertilizer retention capacity. Although biochar and alfalfa planting have been widely utilized separately in soil improvement, few studies have examined the effects of combined alfalfa planting and biochar application on jujube orchard soils. This study investigates the effects of alfalfa planting alone and alfalfa planting combined with different levels of biocarbon addition on soil properties. A field experiment was conducted in a jujube orchard in Yanchuan County, Shaanxi Province, with four treatments: clear tillage control (CK), alfalfa planting only (B1), alfalfa planting + 1.5 kg·m−2 biocarbon (B2), and alfalfa planting + 3 kg·m−2 biocarbon (B3). The results show that planting alfalfa significantly increased soil moisture content (SMC) and soil organic matter (SOM) content by 27.79% and 17.65%, respectively, and biochar addition significantly increased soil carbon, nitrogen, and phosphorus content by 8.11–37.7%, enhanced the soil moisture content (SMC) by 98.13–100.22%, promoted the growth of alfalfa, and increased vegetation cover (p < 0.05). The combination of biochar and alfalfa improves soil fertility more effectively than alfalfa alone. It can increase the soil N and P nutrient contents, improve soil available nutrients, promote alfalfa growth in a short period, and provide a feasible solution for soil improvement in the future. Full article
Show Figures

Figure 1

18 pages, 2047 KiB  
Article
Optimizing Management of Alfalfa (Medicago sativa L.) Nitrogen Fertilizer Based on Critical Nitrogen Concentration Dilution Curve Model
by Yaya Duan, Yi Ling, Haiyan Li, Wenjing Chang, Jiandong Lu, Minhua Yin, Yanxia Kang, Yanlin Ma, Yayu Wang, Guangping Qi and Guoyun Shen
Plants 2025, 14(12), 1782; https://doi.org/10.3390/plants14121782 - 11 Jun 2025
Viewed by 422
Abstract
The critical nitrogen dilution curve (CNDC) model enables precise nitrogen management by quantifying the threshold of nitrogen deficiency in crops, thereby enhancing both crop productivity and nitrogen use efficiency. However, its applicability to perennial crops remains unclear. In this study, alfalfa (Medicago [...] Read more.
The critical nitrogen dilution curve (CNDC) model enables precise nitrogen management by quantifying the threshold of nitrogen deficiency in crops, thereby enhancing both crop productivity and nitrogen use efficiency. However, its applicability to perennial crops remains unclear. In this study, alfalfa (Medicago sativa L.), a perennial leguminous forage, was used as the model crop. Based on two years of field experiments, CNDC models of aboveground biomass were constructed under two nitrogen fertilizer regimes: urea (0, 80, 160, and 240 kg·ha−1, applied in a 6:2:2 basal-to-topdressing ratio) and controlled-release urea (CRU; 0, 80, 160, and 240 kg·ha−1, applied as a single basal dose). Using these models, the nitrogen nutrition index (NNI) and cumulative nitrogen deficit (Nand) models were developed to diagnose alfalfa nitrogen status, and the optimal nitrogen application rates were determined via regression analysis. The results showed that critical nitrogen concentration and aboveground biomass followed a power function relationship under both fertilizer types. For CRU treatments, parameters a and b were 3.41 and 0.20 (first cut), 3.15 and 0.12 (second cut), and 2.24 and 0.40 (third cut), respectively. For urea treatments, a and b were 3.13 and 0.35 (first cut), 2.21 and 0.16 (second cut), and 1.75 and 0.73 (third cut). The normalized root mean square error (n-RMSE) of the models ranged from 3.1% to 13%, indicating high model reliability. Based on the NNI, Nand, and yield response models, the optimal nitrogen application rates were 175.44~181.71 kg·ha−1 for urea and 145.63~153.46 kg·ha−1 for CRU, corresponding to theoretical maximum yields of 14.76~17.40 t·ha−1 and 16.76~20.66 t·ha−1, respectively. Compared to urea, CRU reduced nitrogen input by 18.41~20.47% while achieving equivalent or higher theoretical yields. This study provides a scientific basis for nitrogen status diagnosis and precision nitrogen application in alfalfa cultivation. Full article
(This article belongs to the Special Issue Advances in Plant Nutrition Responses and Stress)
Show Figures

Figure 1

23 pages, 5021 KiB  
Article
Exogenous Gibberellins and Auxins Promote Crown Bud Regeneration and Influence Endogenous Hormone Changes in Alfalfa
by Haiyan Yue, Qunce Sun, Shuzhen Zhang, Youping An, Xianwei Peng, Binghan Wen, Xingyu Ge and Yuxiang Wang
Plants 2025, 14(11), 1699; https://doi.org/10.3390/plants14111699 - 2 Jun 2025
Viewed by 629
Abstract
Alfalfa (Medicago sativa L.) is a globally significant forage crop with notable economic value. Gibberellins (GA3) promote dormancy breaking and early germination whereas auxins (IAA) predominantly influence bud regeneration. This study investigated the effects of exogenous gibberellins and indole acetic [...] Read more.
Alfalfa (Medicago sativa L.) is a globally significant forage crop with notable economic value. Gibberellins (GA3) promote dormancy breaking and early germination whereas auxins (IAA) predominantly influence bud regeneration. This study investigated the effects of exogenous gibberellins and indole acetic acid on the regeneration and biomass of crown buds in two alfalfa varieties with different dormancy levels. The experiment involved five concentrations each of gibberellins (0 mg/L, 10 mg/L, 20 mg/L, 30 mg/L, and 40 mg/L) and auxins (0 mg/L, 5 mg/L, 10 mg/L, 15 mg/L, and 20 mg/L). The results indicated that both exogenous gibberellins and auxins significantly increased the endogenous levels of these hormones in the crown buds, while decreasing abscisic acid (ABA) levels. There was also a significant increase in sugar and total nitrogen content in the buds. Treatments with exogenous gibberellins enhanced the number of crown buds and the aboveground biomass per plant, with the best results at 30 mg/L. Auxin treatments showed the largest increase in aboveground biomass per plant at 15 mg/L. In summary, 30 mg/L gibberellins or 15 mg/L auxins is recommended as the optimal spraying concentration. This research provides practical evidence for the regulation of exogenous growth regulators in alfalfa cultivation. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

21 pages, 3120 KiB  
Article
Bacillus tropicus YJ33 and Medicago sativa L. Synergistically Enhance Soil Aggregate Stability in Saline–Alkali Environments
by Jingjing Li, Yajuan Che, Shiyang Chen, Mengge Liu, Mengmeng Diao, Chao Yang and Wenke Jia
Microorganisms 2025, 13(6), 1291; https://doi.org/10.3390/microorganisms13061291 - 31 May 2025
Viewed by 617
Abstract
Soil salinization represents a significant global environmental challenge, necessitating the urgent amelioration of saline–alkali lands. As a critical functional component of the soil system, soil aggregates play a pivotal role in enhancing soil structure and are essential for nutrient cycling and plant growth. [...] Read more.
Soil salinization represents a significant global environmental challenge, necessitating the urgent amelioration of saline–alkali lands. As a critical functional component of the soil system, soil aggregates play a pivotal role in enhancing soil structure and are essential for nutrient cycling and plant growth. However, the synergistic effects of plants and microorganisms on alterations in soil aggregate composition, stability, and nutrient content in saline–alkali soils remain inadequately understood. In this study, three saline soil gradients from the Yellow River Delta were analyzed: low saline soil (S1, 1.65 g/kg), medium saline soil (S2, 4.54 g/kg), and high saline soil (S3, 6.57 g/kg). For each gradient, four experimental treatments were established: (1) inoculation of Bacillus tropicus YJ33 alone (B), (2) planting of alfalfa alone (M), (3) combined alfalfa cultivation with B. tropicus YJ33 inoculation (MB), and (4) an unamended control (CK). These treatments were implemented in controlled laboratory pot experiments to evaluate the individual and synergistic impacts of alfalfa and B. tropicus YJ33 on saline soil aggregate stability and structural organization. Overall, B. tropicus YJ33 inoculation significantly promoted the growth and nutritional quality of alfalfa. B, M, and MB treatment increased the contents of total carbon (TC), total nitrogen (TN), and available phosphorus (AP) and promoted the activities of soil alkaline phosphatase (S-ALP) and soil urease (S-UE) in the soil. Simultaneously, these treatments resulted in a reduction in the proportion of micro-aggregates, an increase in the proportion of large and small aggregates, and significantly enhanced mean weight diameter (MWD) and geometric mean diameter (GMD), improving the stability of soil aggregates. Random forest analysis identified AP, B. tropicus YJ33, salinity, TC, and available nitrogen (AN) as key determinants of alfalfa biomass. Partial least squares (PLS) modeling further corroborated the role of B. tropicus YJ33 in enhancing soil nutrient content, improving aggregate stability, and increasing alfalfa yield. In conclusion, B. tropicus YJ33 was demonstrated to enhance the stability of soil aggregates and nutrient availability in saline–alkali soils, thereby significantly promoting the growth, yield, and nutritional quality of alfalfa. Full article
Show Figures

Figure 1

31 pages, 2935 KiB  
Article
Comprehensive Assessment of Alfalfa Aluminum Stress Resistance Using Growth and Physiological Trait Analysis
by Nannan Tang, Xiangming Zeng, Jizhi Wei, Zhou Li, Xuechun Zhao, Jihui Chen, Xinyao Gu, Chao Chen and Rui Dong
Agriculture 2025, 15(11), 1168; https://doi.org/10.3390/agriculture15111168 - 29 May 2025
Viewed by 439
Abstract
Alfalfa (Medicago sativa L.) is an important perennial leguminous forage; however, its high sensitivity to aluminum (Al) stress severely restricts its cultivation in regions with acidic soil. Therefore, this study conducted an integrated assessment of Al stress tolerance by performing systematic evaluations [...] Read more.
Alfalfa (Medicago sativa L.) is an important perennial leguminous forage; however, its high sensitivity to aluminum (Al) stress severely restricts its cultivation in regions with acidic soil. Therefore, this study conducted an integrated assessment of Al stress tolerance by performing systematic evaluations of 11 growth and physiological parameters across 30 alfalfa cultivars under Al stress, and calculated the Al tolerance coefficients based on these parameters. The results revealed that Al stress markedly inhibited root growth and biomass accumulation in alfalfa, thereby triggering increased malondialdehyde (MDA) content in roots across most cultivars, the scope of increase is 0.19–183.07%. Moreover, superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) increased by 7.50–121.44%, 2.50–135.89%, and 3.84–70.01%, respectively. Based on the comprehensive evaluation value (D) obtained via principal component analysis and membership function, the 30 alfalfa cultivars were categorized into four distinct groups: 4 highly Al-tolerant cultivars, 11 moderately high-Al-tolerant cultivars, 9 moderately low-Al-tolerant cultivars, and 6 low-Al-tolerant cultivars. Stepwise linear regression analysis identified root elongation rate, root-to-shoot ratio, root volume, SOD, MDA, CAT, root dry weight, POD, and root length as pivotal indicators for predicting and evaluating Al stress tolerance in alfalfa cultivars. The qRT-PCR analysis showed dynamic changes in ABC transporter gene expression in alfalfa roots over time under aluminum stress. Therefore, this study comprehensively evaluated Al tolerance by systematically investigating the morphophysiological effects of Al stress across 30 alfalfa cultivars using principal component analysis (PCA), membership function, and hierarchical clustering analysis. It provides a practical solution for expanding alfalfa planting in acid soil and improving feed production in acidic environments. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

25 pages, 5190 KiB  
Article
In Vitro Evaluation of Enzymatically Transformed Alfalfa Saponins on Methane Reduction, Rumen Microbes and Metabolomics in Goats
by Ran Zhang, Xinran Bao, Xingqi Shi, Shixuan Jin, Ying Meng, Zhiwei Li, Zhumei Du and Xuebing Yan
Animals 2025, 15(11), 1516; https://doi.org/10.3390/ani15111516 - 22 May 2025
Viewed by 401
Abstract
Alfalfa (Medicago sativa L.) saponins (AS), primarily pentacyclic triterpenoids, may reduce methane emissions from goats (Capra hircus L.). This study evaluated the methane-suppressing potential of Aspergillus niger β-glucosidase-modified AS using in vitro rumen fermentation (0.10 mg/mL inoculum, 24 h incubation, gas [...] Read more.
Alfalfa (Medicago sativa L.) saponins (AS), primarily pentacyclic triterpenoids, may reduce methane emissions from goats (Capra hircus L.). This study evaluated the methane-suppressing potential of Aspergillus niger β-glucosidase-modified AS using in vitro rumen fermentation (0.10 mg/mL inoculum, 24 h incubation, gas chromatography detection). Among the 21 alfalfa cultivars, Pegasis (fall dormancy 9) exhibited the highest antioxidant efficacy (half maximum effective concentration 2.13 mg/mL) and the lowest ferric-reducing activity (0.32 μM Fe2+/g) (p < 0.05). Fresh/silage AS reduced methane proportions to 4.50–5.21% of total gas, while enzymatic biotransformation further decreased it to 3.34–3.48% (p < 0.05). Methanogen abundance declined by 20.10–44.93%, and general anaerobic fungi declined by 34.22–44.66% compared to untreated AS (p < 0.05). Metabolomics linked methane suppression to six pathways, including zeatin biosynthesis (via nucleotide metabolites accumulation) and prolactin signaling pathway (via bioactive molecules downregulation), suggesting impaired methanogen energy metabolism and hydrogen flux redirection as mechanisms. Enzymatic AS also enhanced volatile fatty acid production, indicating improved fiber digestion. These in vitro findings demonstrate that enzyme-treated AS modulates rumen fermentation through dual methane mitigation and nutrient utilization enhancement, offering a sustainable feed additive strategy for livestock. Full article
(This article belongs to the Section Small Ruminants)
Show Figures

Figure 1

23 pages, 2297 KiB  
Article
Comparative Analysis of Economic and Environmental Trade-Offs in Alfalfa Production in China: A Case Study
by Helan Bai, Xueni Ma, Huilong Lin, Yanqin Wu and Zhibiao Nan
Sustainability 2025, 17(10), 4252; https://doi.org/10.3390/su17104252 - 8 May 2025
Viewed by 589
Abstract
Alfalfa (Medicago sativa L.) plays a crucial role in the revitalization of the dairy industry and grassland agriculture in China. However, regional differences in economic and environmental performance have not been adequately specified or quantified. This study compares alfalfa production in Wuhe [...] Read more.
Alfalfa (Medicago sativa L.) plays a crucial role in the revitalization of the dairy industry and grassland agriculture in China. However, regional differences in economic and environmental performance have not been adequately specified or quantified. This study compares alfalfa production in Wuhe County (Southern China) and Ar Horqin Banner (Northern China) by integrating cost–benefit analysis (CBA) with life cycle assessment (LCA). Field data from 22 enterprises were analyzed using one ton of alfalfa hay and a net profit of CNY 10,000 as functional units, over a three-year evaluation period (2017–2019). The assessment encompassed four impact categories: primary energy demand (PED), global warming potential (GWP), acidification potential (AP), and water use (WU). The northern case systems exhibited 67.45% higher production costs but 96.99% greater profitability per ton compared to the southern case, alongside 2.13 × 10−2 greater environmental impact. Conversely, the southern case systems were less profitable and demonstrated an 18.6% higher environmental impact per CNY 10,000 net profit compared to the northern case. Regional environmental hotspots differed: fertilizer use dominated impact in the south, whereas irrigation and electricity consumption drove burdens in the north. To facilitate a sustainable transition, policymakers should implement region-specific support measures, such as ecological incentives and crop rotation schemes for the south, and water-saving technologies along with renewable energy integration for the north. Farmers and enterprises are encouraged to adopt precision input strategies and climate risk management tools, while researchers should focus on advancing adaptive breeding techniques and optimizing resource utilization. The development of a unified system that integrates economic and environmental metrics is crucial for enabling stakeholders to drive the sustainable transformation of alfalfa production. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

Back to TopTop