Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = Martini force field

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 3464 KiB  
Article
Deciphering the Coarse-Grained Model of Ionic Liquid by Tunning the Interaction Level and Bead Types of Martini 3 Force Field
by Sukanya Konar, Arash Elahi and Santanu Chaudhuri
Physchem 2024, 4(4), 420-430; https://doi.org/10.3390/physchem4040029 - 23 Oct 2024
Viewed by 1640
Abstract
In recent years, ionic liquids (ILs) have served as potential solvents to dissolve organic, inorganic, and polymer materials. A copolymer (for example, Pluronic) can undergo self-organization by forming a micelle-like structure in pure IL medium, and its assembly depends upon the composition of [...] Read more.
In recent years, ionic liquids (ILs) have served as potential solvents to dissolve organic, inorganic, and polymer materials. A copolymer (for example, Pluronic) can undergo self-organization by forming a micelle-like structure in pure IL medium, and its assembly depends upon the composition of IL. To evaluate the role of ILs, accurate coarse-grained (CG) modeling of IL is needed. Here, we modeled 1-ethyl-3-methylimidazolium dicyanamide ([EMIM][DCA]) ionic liquid (IL) using a CG framework. We optimized CG parameters for the [DCA] anion by tuning the non-bonded parameters and selecting different kinds of beads. The molecular density (ρ) and radial distribution function (RDF) of our CG model reveal a good agreement with the all-atom (AA) simulation data. We further validated our model by choosing another imidazolium-based cation. Our modified CG model for the anion shows compatibility with the cation and the obtained density matches well with the experimental data. The strategies for developing the CG model will provide a guideline for accurate modeling of new types of ILs. Our CG model will be useful in studying the micellization of non-ionic Pluronic in the [EMIM][DCA] IL medium. Full article
(This article belongs to the Section Theoretical and Computational Chemistry)
Show Figures

Figure 1

13 pages, 4869 KiB  
Article
Dispersion of Hydrophilic Nanoparticles in Natural Rubber with Phospholipids
by Jiramate Kitjanon, Nililla Nisoh, Saree Phongphanphanee, Nattaporn Chattham, Mikko Karttunen and Jirasak Wong-ekkabut
Polymers 2024, 16(20), 2901; https://doi.org/10.3390/polym16202901 - 15 Oct 2024
Cited by 1 | Viewed by 1322
Abstract
Coarse-grained molecular dynamics (CGMD) simulations were employed to investigate the effects of phospholipids on the aggregation of hydrophilic, modified carbon-nanoparticle fillers in cis-polyisoprene (cis-PI) composites. The MARTINI force field was applied to model dipalmitoylphosphatidylcholine (DPPC) lipids and hydrophilic modified fullerenes [...] Read more.
Coarse-grained molecular dynamics (CGMD) simulations were employed to investigate the effects of phospholipids on the aggregation of hydrophilic, modified carbon-nanoparticle fillers in cis-polyisoprene (cis-PI) composites. The MARTINI force field was applied to model dipalmitoylphosphatidylcholine (DPPC) lipids and hydrophilic modified fullerenes (HMFs). The simulations of DPPC in cis-PI composites show that the DPPC lipids self-assemble to form a reverse micelle in a rubber matrix. Moreover, HMF molecules readily aggregate into a cluster, in agreement with the previous studies. Interestingly, the mixture of the DPPC and HMF in the rubber matrix shows a cluster of HMF is encapsulated inside the DPPC reverse micelle. The HMF encapsulated micelles disperse well in the rubber matrix, and their sizes are dependent on the lipid concentration. Mechanical and thermal properties of the composites were analyzed by calculating the diffusion coefficients (D), bulk modulus (κ), and glass transition temperatures (Tg). The results suggest that DPPC acts as a plasticizer and enhances the flexibility of the HMF-DPPC rubber composites. These findings provide valuable insights into the design and process of high-performance rubber composites, offering improved mechanical and thermal properties for various applications. Full article
(This article belongs to the Collection Feature Papers in Polymer Processing and Engineering)
Show Figures

Graphical abstract

46 pages, 8885 KiB  
Article
A Practical Guide to All-Atom and Coarse-Grained Molecular Dynamics Simulations Using Amber and Gromacs: A Case Study of Disulfide-Bond Impact on the Intrinsically Disordered Amyloid Beta
by Pamela Smardz, Midhun Mohan Anila, Paweł Rogowski, Mai Suan Li, Bartosz Różycki and Pawel Krupa
Int. J. Mol. Sci. 2024, 25(12), 6698; https://doi.org/10.3390/ijms25126698 - 18 Jun 2024
Cited by 9 | Viewed by 7754
Abstract
Intrinsically disordered proteins (IDPs) pose challenges to conventional experimental techniques due to their large-scale conformational fluctuations and transient structural elements. This work presents computational methods for studying IDPs at various resolutions using the Amber and Gromacs packages with both all-atom (Amber ff19SB with [...] Read more.
Intrinsically disordered proteins (IDPs) pose challenges to conventional experimental techniques due to their large-scale conformational fluctuations and transient structural elements. This work presents computational methods for studying IDPs at various resolutions using the Amber and Gromacs packages with both all-atom (Amber ff19SB with the OPC water model) and coarse-grained (Martini 3 and SIRAH) approaches. The effectiveness of these methodologies is demonstrated by examining the monomeric form of amyloid-β (Aβ42), an IDP, with and without disulfide bonds at different resolutions. Our results clearly show that the addition of a disulfide bond decreases the β-content of Aβ42; however, it increases the tendency of the monomeric Aβ42 to form fibril-like conformations, explaining the various aggregation rates observed in experiments. Moreover, analysis of the monomeric Aβ42 compactness, secondary structure content, and comparison between calculated and experimental chemical shifts demonstrates that all three methods provide a reasonable choice to study IDPs; however, coarse-grained approaches may lack some atomistic details, such as secondary structure recognition, due to the simplifications used. In general, this study not only explains the role of disulfide bonds in Aβ42 but also provides a step-by-step protocol for setting up, conducting, and analyzing molecular dynamics (MD) simulations, which is adaptable for studying other biomacromolecules, including folded and disordered proteins and peptides. Full article
(This article belongs to the Special Issue Molecular Simulation and Modeling)
Show Figures

Graphical abstract

18 pages, 9102 KiB  
Article
Scrutinising the Conformational Ensemble of the Intrinsically Mixed-Folded Protein Galectin-3
by Midhun Mohan Anila, Paweł Rogowski and Bartosz Różycki
Molecules 2024, 29(12), 2768; https://doi.org/10.3390/molecules29122768 - 11 Jun 2024
Cited by 1 | Viewed by 2618
Abstract
Galectin-3 is a protein involved in many intra- and extra-cellular processes. It has been identified as a diagnostic or prognostic biomarker for certain types of heart disease, kidney disease and cancer. Galectin-3 comprises a carbohydrate recognition domain (CRD) and an N-terminal domain (NTD), [...] Read more.
Galectin-3 is a protein involved in many intra- and extra-cellular processes. It has been identified as a diagnostic or prognostic biomarker for certain types of heart disease, kidney disease and cancer. Galectin-3 comprises a carbohydrate recognition domain (CRD) and an N-terminal domain (NTD), which is unstructured and contains eight collagen-like Pro-Gly-rich tandem repeats. While the structure of the CRD has been solved using protein crystallography, current knowledge about conformations of full-length galectin-3 is limited. To fill in this knowledge gap, we performed molecular dynamics (MD) simulations of full-length galectin-3. We systematically re-scaled the solute–solvent interactions in the Martini 3 force field to obtain the best possible agreement between available data from SAXS experiments and the ensemble of conformations generated in the MD simulations. The simulation conformations were found to be very diverse, as reflected, e.g., by (i) large fluctuations in the radius of gyration, ranging from about 2 to 5 nm, and (ii) multiple transient contacts made by amino acid residues in the NTD. Consistent with evidence from NMR experiments, contacts between the CRD and NTD were observed to not involve the carbohydrate-binding site on the CRD surface. Contacts within the NTD were found to be made most frequently by aromatic residues. Formation of fuzzy complexes with unspecific stoichiometry was observed to be mediated mostly by the NTD. Taken together, we offer a detailed picture of the conformational ensemble of full-length galectin-3, which will be important for explaining the biological functions of this protein at the molecular level. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

22 pages, 8703 KiB  
Article
Towards Molecular Understanding of the Functional Role of UbiJ-UbiK2 Complex in Ubiquinone Biosynthesis by Multiscale Molecular Modelling Studies
by Romain Launay, Elin Teppa, Carla Martins, Sophie S. Abby, Fabien Pierrel, Isabelle André and Jérémy Esque
Int. J. Mol. Sci. 2022, 23(18), 10323; https://doi.org/10.3390/ijms231810323 - 7 Sep 2022
Cited by 7 | Viewed by 3014
Abstract
Ubiquinone (UQ) is a polyisoprenoid lipid found in the membranes of bacteria and eukaryotes. UQ has important roles, notably in respiratory metabolisms which sustain cellular bioenergetics. Most steps of UQ biosynthesis take place in the cytosol of E. coli within a multiprotein complex [...] Read more.
Ubiquinone (UQ) is a polyisoprenoid lipid found in the membranes of bacteria and eukaryotes. UQ has important roles, notably in respiratory metabolisms which sustain cellular bioenergetics. Most steps of UQ biosynthesis take place in the cytosol of E. coli within a multiprotein complex called the Ubi metabolon, that contains five enzymes and two accessory proteins, UbiJ and UbiK. The SCP2 domain of UbiJ was proposed to bind the hydrophobic polyisoprenoid tail of UQ biosynthetic intermediates in the Ubi metabolon. How the newly synthesised UQ might be released in the membrane is currently unknown. In this paper, we focused on better understanding the role of the UbiJ-UbiK2 heterotrimer forming part of the metabolon. Given the difficulties to gain functional insights using biophysical techniques, we applied a multiscale molecular modelling approach to study the UbiJ-UbiK2 heterotrimer. Our data show that UbiJ-UbiK2 interacts closely with the membrane and suggests possible pathways to enable the release of UQ into the membrane. This study highlights the UbiJ-UbiK2 complex as the likely interface between the membrane and the enzymes of the Ubi metabolon and supports that the heterotrimer is key to the biosynthesis of UQ8 and its release into the membrane of E. coli. Full article
Show Figures

Figure 1

17 pages, 3116 KiB  
Article
Stability and Existence of Noncanonical I-motif DNA Structures in Computer Simulations Based on Atomistic and Coarse-Grained Force Fields
by Tomasz Panczyk, Krzysztof Nieszporek and Pawel Wolski
Molecules 2022, 27(15), 4915; https://doi.org/10.3390/molecules27154915 - 1 Aug 2022
Cited by 6 | Viewed by 2519
Abstract
Cytosine-rich DNA sequences are able to fold into noncanonical structures, in which semi-protonated cytosine pairs develop extra hydrogen bonds, and these bonds are responsible for the overall stability of a structure called the i-motif. The i-motif can be formed in many regions of [...] Read more.
Cytosine-rich DNA sequences are able to fold into noncanonical structures, in which semi-protonated cytosine pairs develop extra hydrogen bonds, and these bonds are responsible for the overall stability of a structure called the i-motif. The i-motif can be formed in many regions of the genome, but the most representative is the telomeric region in which the CCCTAA sequences are repeated thousands of times. The ability to reverse folding/unfolding in response to pH change makes the above sequence and i-motif very promising components of nanomachines, extended DNA structures, and drug carriers. Molecular dynamics analysis of such structures is highly beneficial due to direct insights into the microscopic structure of the considered systems. We show that Amber force fields for DNA predict the stability of the i-motif over a long timescale; however, these force fields are not able to predict folding of the cytosine-rich sequences into the i-motif. The reason is the kinetic partitioning of the folding process, which makes the transitions between various intermediates too time-consuming in atomistic force field representation. Application of coarse-grained force fields usually highly accelerates complex structural transitions. We, however, found that three of the most popular coarse-grained force fields for DNA (oxDNA, 3SPN, and Martini) were not able to predict the stability of the i-motif structure. Obviously, they were not able to accelerate the folding of unfolded states into an i-motif. This observation must be strongly highlighted, and the need to develop suitable extensions of coarse-grained force fields for DNA is pointed out. However, it will take a great deal of effort to successfully solve these problems. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Graphical abstract

16 pages, 4295 KiB  
Article
Computational and Experimental Evaluation of the Stability of a GLP-1-like Peptide in Ethanol–Water Mixtures
by Lok Hin Lui, Raphael Egbu, Thomas Graver, Gareth R. Williams, Steve Brocchini and Ajoy Velayudhan
Pharmaceutics 2022, 14(7), 1462; https://doi.org/10.3390/pharmaceutics14071462 - 14 Jul 2022
Cited by 1 | Viewed by 3945
Abstract
Aggregation resulting from the self-association of peptide molecules remains a major challenge during preformulation. Whereas certain organic solvents are known to promote aggregation, ethanol (EtOH) is capable of disrupting interactions between peptide molecules. It is unclear whether it is beneficial or counterproductive to [...] Read more.
Aggregation resulting from the self-association of peptide molecules remains a major challenge during preformulation. Whereas certain organic solvents are known to promote aggregation, ethanol (EtOH) is capable of disrupting interactions between peptide molecules. It is unclear whether it is beneficial or counterproductive to include EtOH in formulations of short peptides. Here, we employed molecular dynamics simulations using the DAFT protocol and MARTINI force field to predict the formation of self-associated dimers and to estimate the stability of a GLP-1-like peptide (G48) in 0–80% aqueous EtOH solutions. Both simulation and experimental data reveal that EtOH leads to a remarkable increase in the conformational stability of the peptide when stored over 15 days at 27 °C. In the absence of EtOH, dimerisation and subsequent loss in conformational stability (α-helix → random coil) were observed. EtOH improved conformational stability by reducing peptide–peptide interactions. The data suggest that a more nuanced approach may be applied in formulation decision making and, if the native state of the peptide is an α-helix organic solvent, such as EtOH, may enhance stability and improve prospects of long-term storage. Full article
(This article belongs to the Special Issue Developing Peptide and Protein Drug Formulations)
Show Figures

Figure 1

17 pages, 5519 KiB  
Article
Discovering Novel Small Molecule Compound for Prevention of Monoclonal Antibody Self-Association
by Lok Hin Lui, Christopher F. van der Walle, Steve Brocchini and Ajoy Velayudhan
Antibodies 2022, 11(2), 40; https://doi.org/10.3390/antib11020040 - 8 Jun 2022
Cited by 5 | Viewed by 4306
Abstract
Designing an antibody with the desired affinity to the antigen is challenging, often achieved by lengthening the hydrophobic CDRs, which can lead to aggregation and cause major hindrance to the development of successful biopharmaceutical products. Aggregation can cause immunogenicity, viscosity and stability issues [...] Read more.
Designing an antibody with the desired affinity to the antigen is challenging, often achieved by lengthening the hydrophobic CDRs, which can lead to aggregation and cause major hindrance to the development of successful biopharmaceutical products. Aggregation can cause immunogenicity, viscosity and stability issues affecting both the safety and quality of the product. As the hydrophobic residues on the CDR are required for direct binding to antigens, it is not always possible to substitute these residues for aggregation-reduction purposes. Therefore, discovery of specific excipients to prevent aggregation is highly desirable for formulation development. Here, we used a combination of in silico screening methods to identify aggregation-prone regions on an aggregation-prone therapeutic antibody. The most aggregation-prone region on the antibody was selected to conduct virtual screening of compounds that can bind to such regions and act as an aggregation breaker. The most promising excipient candidate was further studied alongside plain buffer formulations and formulations with trehalose using coarse-grained molecular dynamics (CGMD) simulations with MARTINI force field. Mean interaction value between two antibody molecules in each formulation was calculated based on 1024 replicates of 512 ns of such CGMD simulations. Corresponding formulations with an excipient:antibody ratio of 1:5 were compared experimentally by measuring the diffusion interaction parameter kD and accelerated stability studies. Although the compound with the highest affinity score did not show any additional protective effects compared with trehalose, this study proved using a combination of in silico tools can aid excipient design and formulation development. Full article
(This article belongs to the Special Issue Monoclonal Antibody-Directed Therapy Series II)
Show Figures

Figure 1

16 pages, 3977 KiB  
Article
Explicit-pH Coarse-Grained Molecular Dynamics Simulations Enable Insights into Restructuring of Intestinal Colloidal Aggregates with Permeation Enhancers
by Shakhawath Hossain, Albin Parrow, Aleksei Kabedev, Rosita Carolina Kneiszl, Yuning Leng and Per Larsson
Processes 2022, 10(1), 29; https://doi.org/10.3390/pr10010029 - 24 Dec 2021
Cited by 11 | Viewed by 5484
Abstract
Permeation enhancers (PEs) can increase the bioavailability of drugs. The mechanisms of action of these PEs are complex, but, typically, when used for oral administration, they can transiently induce the alteration of trans- and paracellular pathways, including increased solubilization and membrane fluidity, or [...] Read more.
Permeation enhancers (PEs) can increase the bioavailability of drugs. The mechanisms of action of these PEs are complex, but, typically, when used for oral administration, they can transiently induce the alteration of trans- and paracellular pathways, including increased solubilization and membrane fluidity, or the opening of the tight junctions. To elucidate these mechanistic details, it is important to understand the aggregation behavior of not only the PEs themselves but also other molecules already present in the intestine. Aggregation processes depend critically on, among other factors, the charge state of ionizable chemical groups, which is affected by the pH of the system. In this study, we used explicit-pH coarse-grained molecular dynamics simulations to investigate the aggregation behavior and pH dependence of two commonly used PEs—caprate and SNAC—together with other components of fasted- and fed-state simulated intestinal fluids. We also present and validate a coarse-grained molecular topology for the bile salt taurocholate suitable for the Martini3 force-field. Our results indicate an increase in the number of free molecules as a function of the system pH and for each combination of FaSSIF/FeSSIF and PEs. In addition, there are differences between caprate and SNAC, which are rationalized based on their different molecular structures and critical micelle concentrations. Full article
(This article belongs to the Special Issue Molecular Dynamics Modeling and Simulation)
Show Figures

Figure 1

13 pages, 3129 KiB  
Article
Nanocomposite of Fullerenes and Natural Rubbers: MARTINI Force Field Molecular Dynamics Simulations
by Jiramate Kitjanon, Wasinee Khuntawee, Saree Phongphanphanee, Thana Sutthibutpong, Nattaporn Chattham, Mikko Karttunen and Jirasak Wong-ekkabut
Polymers 2021, 13(22), 4044; https://doi.org/10.3390/polym13224044 - 22 Nov 2021
Cited by 12 | Viewed by 3504
Abstract
The mechanical properties of natural rubber (NR) composites depend on many factors, including the filler loading, filler size, filler dispersion, and filler-rubber interfacial interactions. Thus, NR composites with nano-sized fillers have attracted a great deal of attention for improving properties such as stiffness, [...] Read more.
The mechanical properties of natural rubber (NR) composites depend on many factors, including the filler loading, filler size, filler dispersion, and filler-rubber interfacial interactions. Thus, NR composites with nano-sized fillers have attracted a great deal of attention for improving properties such as stiffness, chemical resistance, and high wear resistance. Here, a coarse-grained (CG) model based on the MARTINI force field version 2.1 has been developed and deployed for simulations of cis-1,4-polyisoprene (cis-PI). The model shows qualitative and quantitative agreement with the experiments and atomistic simulations. Interestingly, only a 0.5% difference with respect to the experimental result of the glass transition temperature (Tg) of the cis-PI in the melts was observed. In addition, the mechanical and thermodynamical properties of the cis-PI-fullerene(C60) composites were investigated. Coarse-grained molecular dynamics (MD) simulations of cis-PI-C60 composites with varying fullerene concentrations (0–32 parts per hundred of rubber; phr) were performed over 200 microseconds. The structural, mechanical, and thermal properties of the composites were determined. The density, bulk modulus, thermal expansion, heat capacity, and Tg of the NR composites were found to increase with increasing C60 concentration. The presence of C60 resulted in a slight increasing of the end-to-end distance and radius of the gyration of the cis-PI chains. The contribution of C60 and cis-PI interfacial interactions led to an enhancement of the bulk moduli of the composites. This model should be helpful in the investigations and design of effective fillers of NR-C60 composites for improving their properties. Full article
(This article belongs to the Special Issue Computational Modeling of Polymers)
Show Figures

Graphical abstract

31 pages, 2899 KiB  
Article
Theory and Practice of Coarse-Grained Molecular Dynamics of Biologically Important Systems
by Adam Liwo, Cezary Czaplewski, Adam K. Sieradzan, Agnieszka G. Lipska, Sergey A. Samsonov and Rajesh K. Murarka
Biomolecules 2021, 11(9), 1347; https://doi.org/10.3390/biom11091347 - 11 Sep 2021
Cited by 45 | Viewed by 7447
Abstract
Molecular dynamics with coarse-grained models is nowadays extensively used to simulate biomolecular systems at large time and size scales, compared to those accessible to all-atom molecular dynamics. In this review article, we describe the physical basis of coarse-grained molecular dynamics, the coarse-grained force [...] Read more.
Molecular dynamics with coarse-grained models is nowadays extensively used to simulate biomolecular systems at large time and size scales, compared to those accessible to all-atom molecular dynamics. In this review article, we describe the physical basis of coarse-grained molecular dynamics, the coarse-grained force fields, the equations of motion and the respective numerical integration algorithms, and selected practical applications of coarse-grained molecular dynamics. We demonstrate that the motion of coarse-grained sites is governed by the potential of mean force and the friction and stochastic forces, resulting from integrating out the secondary degrees of freedom. Consequently, Langevin dynamics is a natural means of describing the motion of a system at the coarse-grained level and the potential of mean force is the physical basis of the coarse-grained force fields. Moreover, the choice of coarse-grained variables and the fact that coarse-grained sites often do not have spherical symmetry implies a non-diagonal inertia tensor. We describe selected coarse-grained models used in molecular dynamics simulations, including the most popular MARTINI model developed by Marrink’s group and the UNICORN model of biological macromolecules developed in our laboratory. We conclude by discussing examples of the application of coarse-grained molecular dynamics to study biologically important processes. Full article
Show Figures

Figure 1

13 pages, 4262 KiB  
Article
Molecular Dynamics Scoring of Protein–Peptide Models Derived from Coarse-Grained Docking
by Mateusz Zalewski, Sebastian Kmiecik and Michał Koliński
Molecules 2021, 26(11), 3293; https://doi.org/10.3390/molecules26113293 - 30 May 2021
Cited by 9 | Viewed by 4915
Abstract
One of the major challenges in the computational prediction of protein–peptide complexes is the scoring of predicted models. Usually, it is very difficult to find the most accurate solutions out of the vast number of sometimes very different and potentially plausible predictions. In [...] Read more.
One of the major challenges in the computational prediction of protein–peptide complexes is the scoring of predicted models. Usually, it is very difficult to find the most accurate solutions out of the vast number of sometimes very different and potentially plausible predictions. In this work, we tested the protocol for Molecular Dynamics (MD)-based scoring of protein–peptide complex models obtained from coarse-grained (CG) docking simulations. In the first step of the scoring procedure, all models generated by CABS-dock were reconstructed starting from their original C-alpha trace representations to all-atom (AA) structures. The second step included geometry optimization of the reconstructed complexes followed by model scoring based on receptor–ligand interaction energy estimated from short MD simulations in explicit water. We used two well-known AA MD force fields, CHARMM and AMBER, and a CG MARTINI force field. Scoring results for 66 different protein–peptide complexes show that the proposed MD-based scoring approach can be used to identify protein–peptide models of high accuracy. The results also indicate that the scoring accuracy may be significantly affected by the quality of the reconstructed protein receptor structures. Full article
(This article belongs to the Special Issue Drug Discovery and Molecular Docking II)
Show Figures

Graphical abstract

12 pages, 1341 KiB  
Article
CGMD Platform: Integrated Web Servers for the Preparation, Running, and Analysis of Coarse-Grained Molecular Dynamics Simulations
by Alessandro Marchetto, Zeineb Si Chaib, Carlo Alberto Rossi, Rui Ribeiro, Sergio Pantano, Giulia Rossetti and Alejandro Giorgetti
Molecules 2020, 25(24), 5934; https://doi.org/10.3390/molecules25245934 - 15 Dec 2020
Cited by 16 | Viewed by 8708
Abstract
Advances in coarse-grained molecular dynamics (CGMD) simulations have extended the use of computational studies on biological macromolecules and their complexes, as well as the interactions of membrane protein and lipid complexes at a reduced level of representation, allowing longer and larger molecular dynamics [...] Read more.
Advances in coarse-grained molecular dynamics (CGMD) simulations have extended the use of computational studies on biological macromolecules and their complexes, as well as the interactions of membrane protein and lipid complexes at a reduced level of representation, allowing longer and larger molecular dynamics simulations. Here, we present a computational platform dedicated to the preparation, running, and analysis of CGMD simulations. The platform is built on a completely revisited version of our Martini coarsE gRained MembrAne proteIn Dynamics (MERMAID) web server, and it integrates this with other three dedicated services. In its current version, the platform expands the existing implementation of the Martini force field for membrane proteins to also allow the simulation of soluble proteins using the Martini and the SIRAH force fields. Moreover, it offers an automated protocol for carrying out the backmapping of the coarse-grained description of the system into an atomistic one. Full article
Show Figures

Figure 1

18 pages, 5803 KiB  
Article
Impact of Cholesterol on the Stability of Monomeric and Dimeric Forms of the Translocator Protein TSPO: A Molecular Simulation Study
by Zeineb Si Chaib, Alessandro Marchetto, Klevia Dishnica, Paolo Carloni, Alejandro Giorgetti and Giulia Rossetti
Molecules 2020, 25(18), 4299; https://doi.org/10.3390/molecules25184299 - 19 Sep 2020
Cited by 7 | Viewed by 3732
Abstract
The translocator protein (TSPO) is a transmembrane protein present across the three domains of life. Its functional quaternary structure consists of one or more subunits. In mice, the dimer-to-monomer equilibrium is shifted in vitro towards the monomer by adding cholesterol, a natural component [...] Read more.
The translocator protein (TSPO) is a transmembrane protein present across the three domains of life. Its functional quaternary structure consists of one or more subunits. In mice, the dimer-to-monomer equilibrium is shifted in vitro towards the monomer by adding cholesterol, a natural component of mammalian membranes. Here, we present a coarse-grained molecular dynamics study on the mouse protein in the presence of a physiological content and of an excess of cholesterol. The latter turns out to weaken the interfaces of the dimer by clusterizing mostly at the inter-monomeric space and pushing the contact residues apart. It also increases the compactness and the rigidity of the monomer. These two factors might play a role for the experimentally observed incremented stability of the monomeric form with increased content of cholesterol. Comparison with simulations on bacterial proteins suggests that the effect of cholesterol is much less pronounced for the latter than for the mouse protein. Full article
Show Figures

Figure 1

12 pages, 6558 KiB  
Article
Computer Simulations of Lipid Nanoparticles
by Xavier F. Fernandez-Luengo, Juan Camacho and Jordi Faraudo
Nanomaterials 2017, 7(12), 461; https://doi.org/10.3390/nano7120461 - 20 Dec 2017
Cited by 7 | Viewed by 9271
Abstract
Lipid nanoparticles (LNP) are promising soft matter nanomaterials for drug delivery applications. In spite of their interest, little is known about the supramolecular organization of the components of these self-assembled nanoparticles. Here, we present a molecular dynamics simulation study, employing the Martini coarse-grain [...] Read more.
Lipid nanoparticles (LNP) are promising soft matter nanomaterials for drug delivery applications. In spite of their interest, little is known about the supramolecular organization of the components of these self-assembled nanoparticles. Here, we present a molecular dynamics simulation study, employing the Martini coarse-grain forcefield, of self-assembled LNPs made by tripalmitin lipid in water. We also study the adsorption of Tween 20 surfactant as a protective layer on top of the LNP. We show that, at 310 K (the temperature of interest in biological applications), the structure of the lipid nanoparticles is similar to that of a liquid droplet, in which the lipids show no nanostructuration and have high mobility. We show that, for large enough nanoparticles, the hydrophilic headgroups develop an interior surface in the NP core that stores liquid water. The surfactant is shown to organize in an inhomogeneous way at the LNP surface, with patches with high surfactant concentrations and surface patches not covered by surfactant. Full article
(This article belongs to the Special Issue Experimental Nanosciences, Computational Chemistry, and Data Analysis)
Show Figures

Figure 1

Back to TopTop