Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (531)

Search Parameters:
Keywords = Magnetic bead

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5542 KB  
Article
TARPγ2-Derived Peptide Enhances Early-Phase Long-Term Potentiation and Impairs Memory Retention in Male Rats
by Dominik Mátyás, Vanda Tukacs, Vilmos Tóth, Péter Baracskay, Stefánia Krisztina Pap, Pál Stráner, Trần Minh Hiền, Éva Hunyadi-Gulyás, Zsuzsanna Darula, András Perczel, Katalin Adrienna Kékesi and Gábor Juhász
Brain Sci. 2025, 15(8), 881; https://doi.org/10.3390/brainsci15080881 - 18 Aug 2025
Viewed by 431
Abstract
Background/Objectives: Disruption of AMPAR trafficking at excitatory synapses contributes to impaired synaptic plasticity and memory formation in several neurological and psychiatric disorders. Arc, an immediate early gene product, has been shown to interact with the AMPAR auxiliary subunit TARPγ2, affecting receptor mobility [...] Read more.
Background/Objectives: Disruption of AMPAR trafficking at excitatory synapses contributes to impaired synaptic plasticity and memory formation in several neurological and psychiatric disorders. Arc, an immediate early gene product, has been shown to interact with the AMPAR auxiliary subunit TARPγ2, affecting receptor mobility and synaptic stabilization. Methods: To investigate the in vivo functional effects and protein interactions of the Arc-TARPγ2 interfering peptide RIPSYR, we performed in vivo electrophysiology and spatial memory assessments in male rats. as well as proteomic analyses of peptide-protein interactions in synaptosome lysates. We then used in silico docking to evaluate candidate binding partners. Results: In the present study, in vivo electrophysiological measurements revealed that RIPSYR administration altered early-phase long-term potentiation at CA3 synapses of male rats. Subsequent behavioral testing that assessed spatial memory performance revealed depleted memory retrieval after 24 h, indicating that the peptide has a systemic effect on experience-dependent plasticity. Then, we examined the molecular interactome of RIPSYR using magnetic bead-based immunoprecipitation and subsequent LC-MS identification on synaptosome lysates, and identified additional candidate binding partners, suggesting that the peptide may have broader modulatory effects. RIPSYR binding to the other putative binding partners are investigated by in silico methods. Conclusion: Our results raise the question of how the molecular interactions of RIPSYR contribute to its sum effects on electrophysiology and behavior. Full article
(This article belongs to the Section Behavioral Neuroscience)
Show Figures

Figure 1

22 pages, 4428 KB  
Article
Pore Structure Characteristics and Controlling Factors of the Lower Cambrian Niutitang Formation Shale in Northern Guizhou: A Case Study of Well QX1
by Yuanyan Yin, Niuniu Zou, Daquan Zhang, Yi Chen, Zhilong Ye, Xia Feng and Wei Du
Fractal Fract. 2025, 9(8), 524; https://doi.org/10.3390/fractalfract9080524 - 13 Aug 2025
Viewed by 270
Abstract
Shale pore architecture governs gas storage capacity, permeability, and production potential in reservoirs. Therefore, this study systematically investigates the pore structure features and influencing factors of the Niutitang Formation shale from the QX1 well in northern Guizhou using field emission scanning electron microscopy [...] Read more.
Shale pore architecture governs gas storage capacity, permeability, and production potential in reservoirs. Therefore, this study systematically investigates the pore structure features and influencing factors of the Niutitang Formation shale from the QX1 well in northern Guizhou using field emission scanning electron microscopy (FE-SEM), high-pressure mercury intrusion (HPMI), low-temperature nitrogen adsorption (LTNA), and nuclear magnetic resonance (NMR) experiments. The results show that ① The pore size of the QX1 well’s Niutitang Formation shale is primarily in the nanometer range, with pore types including intragranular pores, intergranular pores, organic matter pores, and microfractures, with the former two types constituting the primary pore network. ② Pore shapes are plate-shaped intersecting conical microfractures or plate-shaped intersecting ink bottles, ellipsoidal, and beaded pores. ③ The pore size distribution showed a multi-peak distribution, predominantly mesopores, followed by micropores, with the fewest macropores. ④ The fractal dimension D1 > D2 indicates that the shale pore system is characterized by a rough surface and some connectivity of the pore network. ⑤ Carbonate mineral abundances are the main controlling factors affecting the pore structure of shales in the study area, and total organic carbon (TOC) content also has some influence, while clay mineral content shows negligible statistical correlation. Full article
(This article belongs to the Special Issue Multiscale Fractal Analysis in Unconventional Reservoirs)
Show Figures

Figure 1

17 pages, 1719 KB  
Article
A DNA Adsorption-Based Biosensor for Rapid Detection of Ratoon Stunting Disease in Sugarcane
by Moutoshi Chakraborty, Shamsul Arafin Bhuiyan, Simon Strachan, Muhammad J. A. Shiddiky, Nam-Trung Nguyen, Narshone Soda and Rebecca Ford
Biosensors 2025, 15(8), 518; https://doi.org/10.3390/bios15080518 - 8 Aug 2025
Viewed by 787
Abstract
Early and accurate detection of plant diseases is critical for ensuring global food security and agricultural resilience. Ratoon stunting disease (RSD), caused by the bacterium Leifsonia xyli subsp. xyli (Lxx), is among the most economically significant diseases of sugarcane worldwide. Its [...] Read more.
Early and accurate detection of plant diseases is critical for ensuring global food security and agricultural resilience. Ratoon stunting disease (RSD), caused by the bacterium Leifsonia xyli subsp. xyli (Lxx), is among the most economically significant diseases of sugarcane worldwide. Its cryptic nature—characterized by an absence of visible symptoms—renders timely diagnosis particularly difficult, contributing to substantial undetected yield losses across major sugar-producing regions. Here, we report the development of a potential-induced electrochemical (EC) nanobiosensor platform for the rapid, low-cost, and field-deployable detection of Lxx DNA directly from crude sugarcane sap. This method eliminates the need for conventional nucleic acid extraction and thermal cycling by integrating the following: (i) a boiling lysis-based DNA release from xylem sap; (ii) sequence-specific magnetic bead-based purification of Lxx DNA using immobilized capture probes; and (iii) label-free electrochemical detection using a potential-driven DNA adsorption sensing platform. The biosensor shows exceptional analytical performance, achieving a detection limit of 10 cells/µL with a broad dynamic range spanning from 105 to 1 copy/µL (r = 0.99) and high reproducibility (SD < 5%, n = 3). Field validation using genetically diverse sugarcane cultivars from an inoculated trial demonstrated a strong correlation between biosensor signals and known disease resistance ratings. Quantitative results from the EC biosensor also showed a robust correlation with qPCR data (r = 0.84, n = 10, p < 0.001), confirming diagnostic accuracy. This first-in-class EC nanobiosensor for RSD represents a major technological advance over existing methods by offering a cost-effective, equipment-free, and scalable solution suitable for on-site deployment by non-specialist users. Beyond sugarcane, the modular nature of this detection platform opens up opportunities for multiplexed detection of plant pathogens, making it a transformative tool for early disease surveillance, precision agriculture, and biosecurity monitoring. This work lays the foundation for the development of a universal point-of-care platform for managing plant and crop diseases, supporting sustainable agriculture and global food resilience in the face of climate and pathogen threats. Full article
(This article belongs to the Special Issue Nanomaterial-Based Biosensors for Point-of-Care Testing)
Show Figures

Figure 1

14 pages, 1984 KB  
Article
The Effect of Copper Adsorption on Iron Oxide Magnetic Nanoparticles Embedded in a Sodium Alginate Bead
by Michele Modestino, Armando Galluzzi, Marco Barozzi, Sabrina Copelli, Francesco Daniele, Eleonora Russo, Elisabetta Sieni, Paolo Sgarbossa, Patrizia Lamberti and Massimiliano Polichetti
Nanomaterials 2025, 15(15), 1196; https://doi.org/10.3390/nano15151196 - 5 Aug 2025
Viewed by 370
Abstract
The preparation and use of iron oxide magnetic nanoparticles for water remediation is a widely investigated research field. To improve the efficacy of such nanomaterials, different synthetic processes and functionalization methods have been developed in the framework of green chemistry to exploit their [...] Read more.
The preparation and use of iron oxide magnetic nanoparticles for water remediation is a widely investigated research field. To improve the efficacy of such nanomaterials, different synthetic processes and functionalization methods have been developed in the framework of green chemistry to exploit their magnetic properties and adsorption capacity in a sustainable way. In this work, iron oxide magnetic nanoparticles embedded in cross-linked sodium alginate beads designed to clean water from metal ions were magnetically characterized. In particular, the effect of copper adsorption on their magnetic properties was investigated. The magnetic characterization in a DC field of the beads before adsorption showed the presence of a superparamagnetic state at 300 K—a state that was also preserved after copper adsorption. The main differences in terms of magnetic properties before and after Cu2+ adsorption were the reduction of the magnetic signal (observed by comparing the saturation magnetization) and a different shape of the blocking temperature distribution obtained by magnetization versus temperature measurements. The evaluation of the reduction in magnetization can be important from the application perspective since it can affect the efficiency of the beads’ removal from the water medium after treatment. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Water Remediation (2nd Edition))
Show Figures

Figure 1

14 pages, 1462 KB  
Article
Theoretical Investigation of the Material Usage During On-Bead Enrichment of Post-Translationally Modified Peptides in Suspension Systems
by Kai Liu, Yuanyu Huang, Thomas Huang, Pengyuan Yang, Jilie Kong, Huali Shen and Quanqing Zhang
Molecules 2025, 30(15), 3245; https://doi.org/10.3390/molecules30153245 - 2 Aug 2025
Viewed by 322
Abstract
Over the past decade, the number and diversity of identified protein post-translational modifications (PTMs) have grown significantly. However, most PTMs occur at relatively low abundance, making selective enrichment of modified peptides essential. To address this, we developed a thermodynamic model describing the free [...] Read more.
Over the past decade, the number and diversity of identified protein post-translational modifications (PTMs) have grown significantly. However, most PTMs occur at relatively low abundance, making selective enrichment of modified peptides essential. To address this, we developed a thermodynamic model describing the free beads enrichment in suspension enrichment process and derived a theoretical relationship between material dosage and analyte recovery. The model predicts a non-linear trend, with enrichment efficiency increasing up to an optimal dosage and declining thereafter—a pattern confirmed by experimental data. We validated the model using centrifugation-based enrichment for glycosylated peptides and magnetic-based enrichment for phosphorylated peptides. In both cases, the results aligned with theoretical predictions. Additionally, the optimal dosage varied among peptides with the same modification type, highlighting the importance of tailoring enrichment strategies. This study provides a solid theoretical and experimental basis for optimizing PTMs enrichment and advancing more sensitive, accurate, and efficient mass spectrometry-based proteomic workflows. Full article
Show Figures

Figure 1

13 pages, 1944 KB  
Article
A Sliding Microfluidic Chip-Integrated Colorimetric Biosensor Using MnO2 Nanoflowers for Rapid Salmonella Detection
by Yidan Niu, Juntao Jiang, Xin Zhi, Jiahui An and Yuhe Wang
Micromachines 2025, 16(8), 904; https://doi.org/10.3390/mi16080904 - 31 Jul 2025
Viewed by 338
Abstract
Rapid screening of foodborne pathogens is critical for food safety, yet current detection techniques often suffer from low efficiency and complexity. In this study, we developed a sliding microfluidic colorimetric biosensor for the fast, sensitive, and multiplex detection of Salmonella. First, the [...] Read more.
Rapid screening of foodborne pathogens is critical for food safety, yet current detection techniques often suffer from low efficiency and complexity. In this study, we developed a sliding microfluidic colorimetric biosensor for the fast, sensitive, and multiplex detection of Salmonella. First, the target bacteria were specifically captured by antibody-functionalized magnetic nanoparticles in the microfluidic chip, forming magnetic bead–bacteria complexes. Then, through motor-assisted sliding of the chip, manganese dioxide (MnO2) nanoflowers conjugated with secondary antibodies were introduced to bind the captured bacteria, generating a dual-antibody sandwich structure. Finally, a second sliding step brought the complexes into contact with a chromogenic substrate, where the MnO2 nanoflowers catalyzed a colorimetric reaction, and the resulting signal was used to quantify the Salmonella concentration. Under optimized conditions, the biosensor achieved a detection limit of 10 CFU/mL within 20 min. In spiked pork samples, the average recovery rate of Salmonella ranged from 94.9% to 125.4%, with a coefficient of variation between 4.0% and 6.8%. By integrating mixing, separation, washing, catalysis, and detection into a single chip, this microfluidic biosensor offers a user-friendly, time-efficient, and highly sensitive platform, showing great potential for the on-site detection of foodborne pathogens. Full article
(This article belongs to the Section B1: Biosensors)
Show Figures

Figure 1

18 pages, 2207 KB  
Article
CSF1R-Dependent Microglial Repopulation and Contact-Dependent Inhibition of Proliferation In Vitro
by Rie Nakai, Kuniko Kohyama, Yasumasa Nishito and Hiroshi Sakuma
Brain Sci. 2025, 15(8), 825; https://doi.org/10.3390/brainsci15080825 - 31 Jul 2025
Viewed by 350
Abstract
Murine microglia exhibit rapid self-renewal upon removal from the postnatal brain. However, the signaling pathways that regulate microglial repopulation remain largely unclear. To address this knowledge gap, we depleted microglia from mixed glial cultures using anti-CD11b magnetic particles and cultured them for 4 [...] Read more.
Murine microglia exhibit rapid self-renewal upon removal from the postnatal brain. However, the signaling pathways that regulate microglial repopulation remain largely unclear. To address this knowledge gap, we depleted microglia from mixed glial cultures using anti-CD11b magnetic particles and cultured them for 4 weeks to monitor their repopulation ability in vitro. Flow cytometry and immunocytochemistry revealed that anti-CD11b bead treatment effectively eliminated >95% of microglia in mixed glial cultures. Following removal, the number of CX3CR1-positive microglia gradually increased; when a specific threshold was reached, repopulation ceased without any discernable rise in cell death. Cell cycle and 5-ethynyl-2′-deoxyuridine incorporation assays suggested the active proliferation of repopulating microglia at d7. Time-lapse imaging demonstrated post-removal division of microglia. Colony-stimulating factor 1 receptor-phosphoinositide 3-kinase-protein kinase B signaling was identified as crucial for microglial repopulation, as pharmacological inhibition or neutralization of the pathway significantly abrogated repopulation. Transwell cocultures revealed that resident microglia competitively inhibited microglial proliferation probably through contact inhibition. This in vitro microglial removal system provides valuable insights into the mechanisms underlying microglial proliferation. Full article
(This article belongs to the Section Neuroglia)
Show Figures

Graphical abstract

18 pages, 6694 KB  
Article
Effects of a ROCK Inhibitor on Retinal Ganglion Cells In Vivo and In Vitro
by Wanjing Chen, Yoko Iizuka, Fumihiko Mabuchi and Kenji Kashiwagi
J. Clin. Med. 2025, 14(15), 5344; https://doi.org/10.3390/jcm14155344 - 29 Jul 2025
Viewed by 397
Abstract
Objective: To investigate the neuroprotective effects of a Rho-associated kinase (ROCK) inhibitor on retinal ganglion cells (RGCs) in vitro and in vivo. Methods: For in vivo studies, a unilateral optic nerve crush mouse model was established. Then, 100 mM Y-27632 (a [...] Read more.
Objective: To investigate the neuroprotective effects of a Rho-associated kinase (ROCK) inhibitor on retinal ganglion cells (RGCs) in vitro and in vivo. Methods: For in vivo studies, a unilateral optic nerve crush mouse model was established. Then, 100 mM Y-27632 (a ROCK inhibitor) or saline was applied to the experimental eyes once a day for 14 days. The effects of the ROCK inhibitor were evaluated by counting the surviving RGCs in the enucleated flat retina tissues and measuring the inner retinal thickness using optical coherence tomography (OCT), the amplitude of the electroretinogram (ERG), and the change in intraocular pressure (IOP). For the in vitro study, RGCs were isolated from five-day-old mice using a modified immunopanning method with magnetic beads. The isolated RGCs were incubated for 72 h with various concentrations of Y-27632, after which TUNEL assays were performed to determine the number of surviving RGCs. Results: Y-27632 has neuroprotective effects, as it significantly increased the number of surviving RGCs by approximately 6.3%. OCT and ERG data also revealed that Y-27632 induced neuroprotective effects in vivo; furthermore, Y-27632 reduced IOP by approximately 18.3%. The in vitro study revealed the dose-dependent neuroprotective effects of Y-27632, with the highest dose of Y-27632 (1000 nM) increasing the RGC survival rate after 72 h of incubation compared with that of the control. Conclusions: The ROCK inhibitor Y-27632 may exert some neuroprotective effects on RGCs when it is used as an eye drop through an IOP-independent mechanism. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

18 pages, 3968 KB  
Article
Design, Development, and Clinical Validation of a Novel Kit for Cell-Free DNA Extraction
by Ekin Çelik, Hande Güner, Gizem Kayalı, Haktan Bagis Erdem, Taha Bahsi and Hasan Huseyin Kazan
Diagnostics 2025, 15(15), 1897; https://doi.org/10.3390/diagnostics15151897 - 29 Jul 2025
Viewed by 467
Abstract
Background: Cell-free DNA (cfDNA) has become a cornerstone of liquid biopsy applications, offering promise for early disease detection and monitoring. However, its widespread clinical adoption is limited by variability in pre-analytical processing, especially during isolation. Current extraction methods face challenges in yield, purity, [...] Read more.
Background: Cell-free DNA (cfDNA) has become a cornerstone of liquid biopsy applications, offering promise for early disease detection and monitoring. However, its widespread clinical adoption is limited by variability in pre-analytical processing, especially during isolation. Current extraction methods face challenges in yield, purity, and reproducibility. Methods: We developed and optimized SafeCAP 2.0, a novel magnetic bead-based cfDNA extraction kit, focusing on efficient recovery, minimal genomic DNA contamination, and PCR compatibility. Optimization involved systematic evaluation of magnetic bead chemistry, buffer composition, and reagent volumes. Performance was benchmarked against a commercial reference kit (Apostle MiniMax) using spiked oligonucleotides and plasma from patients with stage IV NSCLC. Results: The optimized protocol demonstrated superior recovery with a limit of detection (LoD) as low as 0.3 pg/µL and a limit of quantification (LoQ) of 1 pg/μL with no detectable PCR inhibition. In comparative studies, SafeCAP 2.0 showed equivalent or improved performance over the commercial kit. Clinical validation using 47 patient plasma samples confirmed robust cfDNA recovery and fragment integrity. Conclusions: SafeCAP 2.0 offers a cost-effective, high-performance solution for cfDNA extraction in both research and clinical workflows. Its design and validation address key pre-analytical barriers, supporting integration into routine diagnostics and precision medicine platforms. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

12 pages, 1599 KB  
Article
CRISPR/Cas12a-Chemiluminescence Cascaded Bioassay for Amplification-Free and Sensitive Detection of Nucleic Acids
by Xiaotian Guan, Peizheng Wang, Yi Wang and Shuqing Sun
Biosensors 2025, 15(8), 479; https://doi.org/10.3390/bios15080479 - 24 Jul 2025
Viewed by 439
Abstract
The CRISPR/Cas system has attracted increasing attention in accurate nucleic acid detection. Herein, we reported a CRISPR/Cas12a-chemiluminescence cascaded bioassay (CCCB) for the amplification-free and sensitive detection of human papillomavirus type 16 (HPV-16) and parvovirus B19 (PB-19). A magnetic bead (MB)-linking single-stranded DNA (LssDNA)-alkaline [...] Read more.
The CRISPR/Cas system has attracted increasing attention in accurate nucleic acid detection. Herein, we reported a CRISPR/Cas12a-chemiluminescence cascaded bioassay (CCCB) for the amplification-free and sensitive detection of human papillomavirus type 16 (HPV-16) and parvovirus B19 (PB-19). A magnetic bead (MB)-linking single-stranded DNA (LssDNA)-alkaline phosphatase (ALP) complex was constructed as the core component of the bioassay. During the detection process, the single-stranded target DNA was captured and enriched by LssDNA and then activated the trans-cleavage activity of Cas12a. Due to the Cas12a-mediated cleavage of LssDNA, ALP was released from the MB, subsequently catalyzing the substrate to generate a chemiluminescence (CL) signal. Given the cascade combination of CRISPR/Cas12a with the CL technique, the limits of detection for HPV-16 and PB-19 DNA were determined as 0.14 pM and 0.37 pM, respectively, and the whole detection could be completed within 60 min. The practicality and reliability of the platform were validated through target-spiked clinical specimens, and the recovery rate was 93.4–103.5%. This dual-amplification strategy—operating without target pre-amplification—featured high specificity, low contamination risk, facile preparation, and robust stability. It provides a novel approach for sensitive nucleic acid detection, with the potential for rapid extension to the diagnosis of various infectious diseases. Full article
Show Figures

Figure 1

16 pages, 3231 KB  
Article
Aptamer-Conjugated Magnetic Nanoparticles Integrated with SERS for Multiplex Salmonella Detection
by Fan Sun, Kun Pang, Keke Yang, Li Zheng, Mengmeng Wang, Yufeng Wang, Qiang Chen, Zihong Ye, Pei Liang and Xiaoping Yu
Biosensors 2025, 15(7), 464; https://doi.org/10.3390/bios15070464 - 19 Jul 2025
Viewed by 709
Abstract
Salmonella is a rapidly spreading and widespread zoonotic infectious disease that poses a serious threat to the safety of both poultry and human lives. Therefore, the timely detection of Salmonella in foods and animals has become an urgent need for food safety. This [...] Read more.
Salmonella is a rapidly spreading and widespread zoonotic infectious disease that poses a serious threat to the safety of both poultry and human lives. Therefore, the timely detection of Salmonella in foods and animals has become an urgent need for food safety. This work describes the construction of an aptamer-based sensor for Salmonella detection, using Fe3O4 magnetic beads and Ag@Au core–shell nanoparticles-embedded 4-mercaptobenzoic acid (4MBA). Leveraging the high affinity between biotin and streptavidin, aptamers were conjugated to Fe3O4 magnetic beads. These beads were then combined with Ag@4MBA@Au nanoparticles functionalized with complementary aptamers through hydrogen bonding and π-π stacking interactions, yielding a SERS-based aptamer sensor with optimized Raman signals from 4MBA. When target bacteria are present, aptamer-conjugated magnetic beads exhibit preferential binding to the bacteria, leading to a decrease in the surface-enhanced Raman scattering (SERS) signal. And it was used for the detection of five different serotypes of Salmonella, respectively, and the results showed that the aptamer sensor exhibited a good linear relationship between the concentration range of 102–108 CFU/mL and LOD is 35.51 CFU/mL. The SERS aptasensor was utilized for the detection of spiked authentic samples with recoveries between 94.0 and 100.4%, which proved the usability of the method and helped to achieve food safety detection. Full article
(This article belongs to the Special Issue Aptamer-Based Sensing: Designs and Applications)
Show Figures

Figure 1

13 pages, 3947 KB  
Communication
Validation of a New High-Throughput Cell Separation Method for Downstream Molecular Applications
by Daisy Shillingford, Andreas Radek, Andrea Kupitz, Rebecca Thomas, Christopher Connor and Stuart Paul Adams
Int. J. Mol. Sci. 2025, 26(14), 6747; https://doi.org/10.3390/ijms26146747 - 14 Jul 2025
Viewed by 259
Abstract
The development of new cell separation technologies has continued as the demand for sorted cell populations for molecular testing increases. The goal is to increase through-put potential and reduce the manual handling of samples required whilst ensuring that cells are sorted efficiently with [...] Read more.
The development of new cell separation technologies has continued as the demand for sorted cell populations for molecular testing increases. The goal is to increase through-put potential and reduce the manual handling of samples required whilst ensuring that cells are sorted efficiently with high purity. Herein, we review two affinity-based methods utilising magnetic beads to isolate cells: one is currently used within a clinical laboratory as standard of care and the other is a newly developed larger platform using the same principle. Cells were sorted simultaneously on both platforms and assessments were made of the purity, cell recovery, and hands-on time, indicating that the new larger platform is sufficient for use in a clinical laboratory as it not only increased cell sorting capacity and reduced manual processing but was also able to isolate cells with sufficient purity levels for downstream molecular testing. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

20 pages, 2995 KB  
Article
Standardized Workflow and Analytical Validation of Cell-Free DNA Extraction for Liquid Biopsy Using a Magnetic Bead-Based Cartridge System
by Shivaprasad H. Sathyanarayana, Sarah B. Spracklin, Sophie J. Deharvengt, Donald C. Green, Margery D. Instasi, Torrey L. Gallagher, Parth S. Shah and Gregory J. Tsongalis
Cells 2025, 14(14), 1062; https://doi.org/10.3390/cells14141062 - 11 Jul 2025
Viewed by 1179
Abstract
Circulating cell-free DNA (cfDNA) is an important biomarker for various cancer types, enabling a non-invasive testing approach. However, pre-analytical variables, including sample collection, tube type, processing conditions, and extraction methods, can significantly impact the yield, integrity, and overall quality of cfDNA. This study [...] Read more.
Circulating cell-free DNA (cfDNA) is an important biomarker for various cancer types, enabling a non-invasive testing approach. However, pre-analytical variables, including sample collection, tube type, processing conditions, and extraction methods, can significantly impact the yield, integrity, and overall quality of cfDNA. This study presents a comprehensive analytical validation of a magnetic bead-based, high-throughput cfDNA extraction system, with a focus on assessing its efficiency, reproducibility, and compatibility with downstream molecular applications. The validation was performed using a range of sample types: synthetic cfDNA spiked into DNA-free plasma, multi-analyte ctDNA plasma controls, Seraseq ctDNA reference material in a plasma-like matrix, extraction specificity controls, residual clinical specimen from patients, and samples from healthy individuals stored at room temperature or 4 °C for up to 48 h to assess stability. Extracted cfDNA was analyzed for concentration, percentage, and fragment size, using the Agilent TapeStation. Variant detection was evaluated using a next-generation sequencing (NGS) assay on the Seraseq ctDNA reference material. The results demonstrated high cfDNA recovery rates, consistent fragment size distribution (predominantly mononucleosomal and dinucleosomal), minimal genomic DNA (gDNA) contamination, and strong concordance between detected and expected variants in reference materials. The workflow also showed robust performance under different study parameters, variable sample conditions, including sample stability and integrity. Together, these findings confirm the efficiency and reliability of the evaluated cfDNA extraction system and underscore the importance of standardized pre-analytical workflows for the successful implementation of liquid biopsy for early cancer detection, therapeutic monitoring, and improved patient outcomes. Full article
(This article belongs to the Special Issue Current Status and Future Challenges of Liquid Biopsy)
Show Figures

Figure 1

12 pages, 600 KB  
Article
Expanded Performance Comparison of the Oncuria 10-Plex Bladder Cancer Urine Assay Using Three Different Luminex xMAP Instruments
by Sunao Tanaka, Takuto Shimizu, Ian Pagano, Wayne Hogrefe, Sherry Dunbar, Charles J. Rosser and Hideki Furuya
Diagnostics 2025, 15(14), 1749; https://doi.org/10.3390/diagnostics15141749 - 10 Jul 2025
Viewed by 532
Abstract
Background/Objectives: The clinically validated multiplex Oncuria bladder cancer (BC) assay quickly and noninvasively identifies disease risk and tracks treatment success by simultaneously profiling 10 protein biomarkers in voided urine samples. Oncuria uses paramagnetic bead-based fluorescence multiplex technology (xMAP®; Luminex, Austin, [...] Read more.
Background/Objectives: The clinically validated multiplex Oncuria bladder cancer (BC) assay quickly and noninvasively identifies disease risk and tracks treatment success by simultaneously profiling 10 protein biomarkers in voided urine samples. Oncuria uses paramagnetic bead-based fluorescence multiplex technology (xMAP®; Luminex, Austin, TX, USA) to simultaneously measure 10 protein analytes in urine [angiogenin, apolipoprotein E, carbonic anhydrase IX (CA9), interleukin-8, matrix metalloproteinase-9 and -10, alpha-1 anti-trypsin, plasminogen activator inhibitor-1, syndecan-1, and vascular endothelial growth factor]. Methods: In a pilot study (N = 36 subjects; 18 with BC), Oncuria performed essentially identically across three different common analyzers (the laser/flow-based FlexMap 3D and 200 systems, and the LED/image-based MagPix system; Luminex). The current study compared Oncuria performance across instrumentation platforms using a larger study population (N = 181 subjects; 51 with BC). Results: All three analyzers assessed all 10 analytes in identical samples with excellent concordance. The percent coefficient of variation (%CV) in protein concentrations across systems was ≤2.3% for 9/10 analytes, with only CA9 having %CVs > 2.3%. In pairwise correlation plot comparisons between instruments for all 10 biomarkers, R2 values were 0.999 for 15/30 comparisons and R2 ≥ 0.995 for 27/30 comparisons; CA9 showed the greatest variability (R2 = 0.948–0.970). Standard curve slopes were statistically indistinguishable for all 10 biomarkers across analyzers. Conclusions: The Oncuria BC assay generates comprehensive urinary protein signatures useful for assisting BC diagnosis, predicting treatment response, and tracking disease progression and recurrence. The equivalent performance of the multiplex BC assay using three popular analyzers rationalizes test adoption by CLIA (Clinical Laboratory Improvement Amendments) clinical and research laboratories. Full article
(This article belongs to the Special Issue Diagnostic Markers of Genitourinary Tumors)
Show Figures

Figure 1

12 pages, 3521 KB  
Article
Effect of Alternating Magnetic Field Intensity on Microstructure and Corrosion Properties of Deposited Metal in 304 Stainless Steel TIG Welding
by Jinjie Wang, Jiayi Li, Haokai Wang, Zan Ju, Juan Fu, Yong Zhao and Qianhao Zang
Metals 2025, 15(7), 761; https://doi.org/10.3390/met15070761 - 6 Jul 2025
Viewed by 436
Abstract
Stainless steel, due to its exceptional comprehensive properties, has been widely adopted as the primary material for liquid cargo tank containment systems and pipelines in liquefied natural gas (LNG) carriers. However, challenges such as hot cracking, excessive deformation, and the deterioration of welded [...] Read more.
Stainless steel, due to its exceptional comprehensive properties, has been widely adopted as the primary material for liquid cargo tank containment systems and pipelines in liquefied natural gas (LNG) carriers. However, challenges such as hot cracking, excessive deformation, and the deterioration of welded joint performance during stainless steel welding significantly constrain the construction quality and safety of LNG carriers. While conventional tungsten inert gas (TIG) welding can produce high-integrity welds, it is inherently limited by shallow penetration depth and low efficiency. Magnetic field-assisted TIG welding technology addresses these limitations by introducing an external magnetic field, which effectively modifies arc morphology, refines grain structure, enhances penetration depth, and improves corrosion resistance. In this study, TIG bead-on-plate welding was performed on 304 stainless steel plates, with a systematic investigation into the dynamic arc behavior during welding, as well as the microstructure and anti-corrosion properties of the deposited metal. The experimental results demonstrate that, in the absence of a magnetic field, the welding arc remains stable without deflection. As the intensity of the alternating magnetic field intensity increases, the arc exhibits pronounced periodic oscillations. At an applied magnetic field intensity of 30 mT, the maximum arc deflection angle reaches 76°. With increasing alternating magnetic field intensity, the weld penetration depth gradually decreases, while the weld width progressively expands. Specifically, at 30 mT, the penetration depth reaches a minimum value of 1.8 mm, representing a 44% reduction compared to the non-magnetic condition, whereas the weld width peaks at 9.3 mm, corresponding to a 9.4% increase. Furthermore, the ferrite grains in the weld metal are significantly refined at higher alternating magnetic field intensities. The weld metal subjected to a 30 mT alternating magnetic field exhibits the highest breakdown potential, the lowest corrosion rate, and the most protective passive film, indicating superior corrosion resistance compared to other tested conditions. Full article
(This article belongs to the Special Issue Advanced Metal Welding and Joining Technologies—2nd Edition)
Show Figures

Graphical abstract

Back to TopTop