Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = MWCO effect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4658 KB  
Article
Investigating the Separation Efficiency of Ultrafiltration/Diafiltration (UF/DF) of Whey by Dielectric Measurements
by Réka Dobozi, Zoltán Péter Jákói, Sándor Beszédes, Balázs P. Szabó and Szabolcs Kertész
Sustain. Chem. 2026, 7(1), 1; https://doi.org/10.3390/suschem7010001 - 4 Jan 2026
Viewed by 323
Abstract
In whey valorization, membrane separation stands out as a highly effective technique for purifying and isolating the various components of whey. The efficiency of whey ultrafiltration and diafiltration (UF/DF) largely depends on the balance between membrane selectivity, hydrodynamic conditions, and solute interactions at [...] Read more.
In whey valorization, membrane separation stands out as a highly effective technique for purifying and isolating the various components of whey. The efficiency of whey ultrafiltration and diafiltration (UF/DF) largely depends on the balance between membrane selectivity, hydrodynamic conditions, and solute interactions at the membrane interface. In this study, sweet whey was fractioned using 10, 30 and 50 kDa polyether sulfone (PES) membranes under identical transmembrane pressure (TMP = 2.5 bar) with ultrafiltration and a subsequent 4-step constant volume diafiltration stages. The resulting compositional and dielectric changes were evaluated to identify optimal separation conditions and assess the applicability of dielectric parameter measurement as a rapid, non-destructive monitoring technique. Results showed that, regardless of the applied molecular weight cut-off (MWCO), using three DF cycles can wash out almost all the removable lactose from the retentates, and the dielectric assessment of both permeate and retentate fractions showed a strong, linear relationship between the change in dielectric behavior and the composition of each fraction. Analysis of the dielectric spectra confirmed that the ratio of the dielectric constant to the loss factor (ε′/ε″) exhibited a strong linear correlation (R2 > 0.98, r > 0.99) with lactose concentration in the permeate fractions of all three MWCO membranes, as well as a similarly strong correlation (R2 > 0.975, r > 0.98) with the total chemical oxygen demand (TCOD) measured in the retentate fractions. Full article
Show Figures

Figure 1

15 pages, 1608 KB  
Article
Humic Substance Recovery from Reverse Osmosis Concentrate of a Landfill Leachate Treatment via Nanofiltration
by Letícia Barbosa Alves, Carlos Eduardo Alves da Silva, Bianca Ramalho Quintaes and Juacyara Carbonelli Campos
AgriEngineering 2026, 8(1), 12; https://doi.org/10.3390/agriengineering8010012 - 1 Jan 2026
Viewed by 362
Abstract
Landfill leachate reverse osmosis (RO) treatment generates a highly concentrated stream rich in recalcitrant organic matter, particularly humic substances (HS), which present potential for recovery and reuse as a biofertilizer. This study evaluated HS recovery from the RO concentrate of the Seropédica Landfill [...] Read more.
Landfill leachate reverse osmosis (RO) treatment generates a highly concentrated stream rich in recalcitrant organic matter, particularly humic substances (HS), which present potential for recovery and reuse as a biofertilizer. This study evaluated HS recovery from the RO concentrate of the Seropédica Landfill (Rio de Janeiro, Brazil) using a nanofiltration (NF) process with a polyethersulfone membrane (MWCO = 1000 Da) operated at 9 bar. The NF system achieved a volume reduction factor of 2.5, rejecting 70–75% of the organic matter. At the same time, salts were predominantly transmitted to the permeate. The phytotoxicity of recovered HS solution was evaluated through maize (Zea mays L.) germination assays at concentrations ranging from 20 to 100 mg HS/L. All treatments showed germination indices above 100%, indicating the absence of phytotoxicity, and seedling growth significantly improved relative to the control, especially at 20 mg HS/L. Trace metal concentrations in the recovered HS complied with Brazilian standards for irrigation water. Overall, the results show that nanofiltration is highly effective in concentrating humic substances from leachate RO concentrate, minimizing the presence of salts, and contributing to strategies for landfill leachate management. Full article
Show Figures

Figure 1

13 pages, 4027 KB  
Article
A Dialysis Membrane-Integrated Microfluidic Device for Controlled Drug Retention and Nutrient Supply
by Hajime Miyashita, Yuya Ito, Kenta Shinha, Hiroko Nakamura and Hiroshi Kimura
Micromachines 2025, 16(7), 745; https://doi.org/10.3390/mi16070745 - 25 Jun 2025
Viewed by 1488
Abstract
Traditional pre-clinical drug evaluation methods, including animal experiments and static cell cultures using human-derived cells, face critical limitations such as interspecies differences, ethical concerns, and poor physiological relevance. More recently, microphysiological systems (MPSs) that use microfluidic devices to mimic in vivo conditions have [...] Read more.
Traditional pre-clinical drug evaluation methods, including animal experiments and static cell cultures using human-derived cells, face critical limitations such as interspecies differences, ethical concerns, and poor physiological relevance. More recently, microphysiological systems (MPSs) that use microfluidic devices to mimic in vivo conditions have emerged as promising platforms. By enabling perfusion cell culture and incorporating human-derived cells, MPSs can evaluate drug efficacy and toxicity in a more human-relevant manner. However, standard MPS protocols rely on discrete medium changes, causing abrupt changes in drug concentrations that do not reflect the continuous pharmacokinetics seen in vivo. To overcome this limitation, we developed a Dialysis Membrane-integrated Microfluidic Device (DMiMD) which maintains continuous drug concentrations through selective medium change via a dialysis membrane. The membrane’s molecular weight cut-off (MWCO) enables the retention of high-molecular-weight drugs while facilitating the passage of essential low-molecular-weight nutrients such as glucose. We validated the membrane’s molecular selectivity and confirmed effective nutrient supply using cells. Additionally, anticancer drug efficacy was evaluated under continuously changing drug concentrations, demonstrating that the DMiMD successfully mimics in vivo drug exposure dynamics. These results indicate that the DMiMD offers a robust in vitro platform for accurate assessment of drug efficacy and toxicity, bridging the gap between conventional static assays and the physiological complexities of the human body. Full article
(This article belongs to the Special Issue Microfluidic Chips for Biomedical Applications)
Show Figures

Figure 1

20 pages, 2096 KB  
Article
Study of Total Ammoniacal Nitrogen Recovery Using Polymeric Thin-Film Composite Membranes for Continuous Operation of a Hybrid Membrane System
by Shirin Shahgodari, Joan Llorens and Jordi Labanda
Polymers 2025, 17(12), 1696; https://doi.org/10.3390/polym17121696 - 18 Jun 2025
Cited by 3 | Viewed by 773
Abstract
This study examined total ammoniacal nitrogen (TAN) rejection by two reverse osmosis (RO) and two nanofiltration (NF) membranes as a function of pH for three ammonium salts to optimize conditions for a hybrid membrane system that can produce high-purity TAN streams suitable for [...] Read more.
This study examined total ammoniacal nitrogen (TAN) rejection by two reverse osmosis (RO) and two nanofiltration (NF) membranes as a function of pH for three ammonium salts to optimize conditions for a hybrid membrane system that can produce high-purity TAN streams suitable for reuse. The results showed that TAN rejection was significantly influenced by membrane type, feed pH, and the ammonium salt used. This study represents the first attempt to simulate real manure wastewater conditions typically found in pig manure. TAN rejection for (NH4)2SO4 and NH4HCO3 reached up to 95% at pH values below 7, with the SW30 membrane showing the highest performance (99.5%), attributed to effective size exclusion and electrostatic repulsion of SO42− and HCO3 ions. In contrast, lower rejection was observed for NH4Cl, particularly with the MPF-34 membrane, due to its higher molecular weight cut-off (MWCO), which diminishes both exclusion mechanisms. TAN rejection decreased markedly with increasing pH across the BW30, NF90, and MPF-34 membranes as the proportion of uncharged NH3 increased. The lowest rejection rates (<15%) were recorded at pH 11.5 for both NF membranes. These results reveal a notable shift in separation behavior, where NH3 permeation under alkaline conditions becomes dominant over the commonly reported NH4+ retention at low pH. This novel insight offers a new perspective for optimizing membrane-based ammonia recovery in systems simulating realistic manure wastewater conditions. TAN recovery was evaluated using a hybrid membrane system, where NF membranes operated at high pH promoted NH3 permeation, and the SW30 membrane at pH 6.5 enabled TAN rejection as (NH4)2SO4. This hybrid system insight offers a new perspective for optimizing membrane-based ammonia recovery in systems simulating realistic manure wastewater conditions. Based on NH3 permeation and membrane characteristics, the NF90 membrane was operated at pH 9.5, achieving a TAN recovery of 48.3%, with a TAN concentration of 11.7 g/L, corresponding to 0.9% nitrogen. In contrast, the MPF-34 membrane was operated at pH 11.5. The NF90–SW30 system also achieved a TAN recovery of 48.3%, yielding 11.7 g/L of TAN with a nitrogen content of 1.22%. These nitrogen concentrations indicate that both retentate streams are suitable for use as liquid fertilizers in the form of (NH4)2SO4. A preliminary economic assessment estimated the chemical consumption cost at 0.586 EUR/kg and 0.729 EUR/kg of (NH4)2SO4 produced for the NF90–SW30 and MPF-34–SW30 systems, respectively. Full article
(This article belongs to the Special Issue Multifunctional Polymer Composite Materials, 2nd Edition)
Show Figures

Figure 1

25 pages, 6238 KB  
Article
Effect of Ultrasound on Dissolution of Polymeric Blends and Phase Inversion in Flat Sheet and Hollow Fiber Membranes for Ultrafiltration Applications
by Gilberto Katmandú Méndez-Valdivia, María De Lourdes Ballinas-Casarrubias, Guillermo González-Sánchez, Hugo Valdés, Efigenia Montalvo-González, Martina Alejandra Chacón-López, Emmanuel Martínez-Montaño, Beatriz Torrestiana-Sánchez, Herenia Adilene Miramontes-Escobar and Rosa Isela Ortiz-Basurto
Membranes 2025, 15(4), 120; https://doi.org/10.3390/membranes15040120 - 10 Apr 2025
Viewed by 2076
Abstract
In seeking alternatives for reducing environmental damage, fabricating filtration membranes using biopolymers derived from agro-industrial residues, such as cellulose acetate (CA), partially dissolved with green solvents, represents an economical and sustainable option. However, dissolving CA in green solvents through mechanical agitation can take [...] Read more.
In seeking alternatives for reducing environmental damage, fabricating filtration membranes using biopolymers derived from agro-industrial residues, such as cellulose acetate (CA), partially dissolved with green solvents, represents an economical and sustainable option. However, dissolving CA in green solvents through mechanical agitation can take up to 48 h. An ultrasonic probe was proposed to accelerate mass transfer and polymer dissolution via pulsed interval cavitation. Additionally, ultrasound-assisted phase inversion (UAPI) on the external coagulation bath was assessed to determine its influence on the properties of flat sheet and hollow fiber membranes during phase inversion. Results indicated that the ultrasonic pulses reduced dissolution time by up to 98% without affecting viscosity (3.24 ± 0.06 Pa·s), thermal stability, or the rheological behavior of the polymeric blend. UAPI increased water permeability in flat sheet membranes by 26% while maintaining whey protein rejection above 90%. For hollow fiber membranes, UAPI (wavelength amplitude of 0 to 20%) improved permeability by 15.7% and reduced protein retention from 90% to 70%, with MWCO between 68 and 240 kDa. This report demonstrates the effectiveness of ultrasonic probes for decreasing the dissolution time of dope solution with green cosolvents and its potential to change the structure of polymeric membranes by ultrasound-assisted phase inversion. Full article
(This article belongs to the Special Issue Membrane Processes for Water Recovery in Food Processing Industries)
Show Figures

Figure 1

19 pages, 2640 KB  
Article
Efficiency of an Ultrafiltration Process for the Depollution of Pretreated Olive Mill Wastewater
by Mohammed Zine, Noureddine Touach, El Mostapha Lotfi and Philippe Moulin
Membranes 2025, 15(3), 67; https://doi.org/10.3390/membranes15030067 - 20 Feb 2025
Cited by 2 | Viewed by 2069
Abstract
The depollution of constructed wetland-pretreated olive mill wastewater (OMW) using a membrane filtration system was experimentally studied. Dead-end filtration (DEF) was employed to evaluate suitable MF/UF membranes and select the appropriate molecular weight cut-off for optimal OMW treatment. Removal efficiencies for COD (chemical [...] Read more.
The depollution of constructed wetland-pretreated olive mill wastewater (OMW) using a membrane filtration system was experimentally studied. Dead-end filtration (DEF) was employed to evaluate suitable MF/UF membranes and select the appropriate molecular weight cut-off for optimal OMW treatment. Removal efficiencies for COD (chemical oxygen demand) and TOC (total organic carbon) using DEF reached maximum values of 88.14% and 11.17%, respectively. Adsorption of raw and pretreated OMW on granular activated carbon was also carried out for a comparative study against DEF and pretreatment. The semi-industrial-scale experiments were conducted using commercial ceramic ultrafiltration (UF) membranes (150 and 50 kDa) in cross-flow filtration (CFF) mode at a permeate flux around 200 L h−1 m−2 and a trans-membrane pressure (TMP) of 3.5–3.8 bars. This post-treatment had a significant impact on COD removal efficiency from pretreated OMW, reaching 78.5%. The coupled process proposed in this study achieved removal efficiencies of 97%, 97%, and 99.9% of COD, TOC, and turbidity, respectively. Full article
(This article belongs to the Special Issue Membrane Processes for Water Recovery in Food Processing Industries)
Show Figures

Figure 1

15 pages, 3804 KB  
Article
Elimination of Ethanol for the Production of Fucoidans from Brown Seaweeds: Characterization and Bioactivities
by Periaswamy Sivagnanam Saravana, Shanmugapriya Karuppusamy, Dilip K. Rai, Janith Wanigasekara, James Curtin and Brijesh K. Tiwari
Mar. Drugs 2024, 22(11), 493; https://doi.org/10.3390/md22110493 - 31 Oct 2024
Cited by 3 | Viewed by 2725
Abstract
Fucoidan, a sulphated polysaccharide from brown seaweed composed of several monosaccharides, has been stated to have several bioactive properties such as antioxidant, antiviral, anticancer, antithrombic, anti-inflammatory, and immunomodulatory effects. This paper provides research findings on green extraction methods, structural analysis of fucoidan, and [...] Read more.
Fucoidan, a sulphated polysaccharide from brown seaweed composed of several monosaccharides, has been stated to have several bioactive properties such as antioxidant, antiviral, anticancer, antithrombic, anti-inflammatory, and immunomodulatory effects. This paper provides research findings on green extraction methods, structural analysis of fucoidan, and its associated bioactivities. Fucoidans from brown seaweeds, Fucus vesiculosus and Ascophyllum nodosum, were extracted using green solvents such as citric acid (CA) followed by MWCO (molecular weight cut-off) filtration to obtain high-purity polysaccharides. The presence of functional groups typical to fucoidans, namely, fucose, sulfate, and glycosidic bonds, in the extracts were confirmed through the data obtained from FTIR (Fourier-transform infrared spectroscopy), TGA (thermogravimetric analysis), DSC (differential scanning calorimetry), and solid-state CP–MAS (cross-polarization magic angle spinning) analysis. The MWCO analysis identified that the >300 kDa fraction can have better content of fucoidan (FV-CA 79.16%, FV-HCl 63.59%, AN-CA 79.21%, AN-HCl 80.70%) than the conventional extraction process. Furthermore, the >300 kDa fraction showed significantly higher antioxidant activities compared to crude fucoidan extracts. Crude fucoidan extracts showed significant inhibition of cell viability in human lung (A459 lung carcinoma cells) and colorectal adenocarcinoma (Caco-2) cells at higher concentrations. The fucoidan extracted with green solvents and avoiding alcohol-based precipitation has substantial antioxidant/antitumor action, so, due to this activity, it can be employed as functional foods in food applications. Full article
(This article belongs to the Special Issue Green Extraction for Obtaining Marine Bioactive Products)
Show Figures

Figure 1

11 pages, 813 KB  
Article
Extraction and Concentration of Spirulina Water-Soluble Metabolites by Ultrafiltration
by Claudia Salazar-González, Carolina Mendoza Ramos, Hugo A. Martínez-Correa and Hugo Fabián Lobatón García
Plants 2024, 13(19), 2770; https://doi.org/10.3390/plants13192770 - 3 Oct 2024
Cited by 5 | Viewed by 3596
Abstract
Spirulina (Arthospira platensis) is known for its rich content of natural compounds like phycocyanin, chlorophylls, carotenoids, and high protein levels, making it a nutrient-dense food. Over the past decade, research has aimed to optimize the extraction, separation, and purification of these [...] Read more.
Spirulina (Arthospira platensis) is known for its rich content of natural compounds like phycocyanin, chlorophylls, carotenoids, and high protein levels, making it a nutrient-dense food. Over the past decade, research has aimed to optimize the extraction, separation, and purification of these valuable metabolites, focusing on technologies such as high-pressure processing, ultrasound-assisted extraction, and microwave-assisted extraction as well as enzymatic treatments, chromatographic precipitation, and membrane separation. In this study, various extraction methods (conventional vs. ultrasound-assisted), solvents (water vs. phosphate buffer), solvent-to-biomass ratios (1:5 vs. 1:10), and ultrafiltration (PES membrane of MWCO 3 kDa, 2 bar) were evaluated. The quantities of total protein, phycocyanin (PC), chlorophyll a (Cla), and total carotenoids (TCC) were measured. The results showed that ultrasound-assisted extraction (UAE) with phosphate buffer at a 1:10 ratio yielded a metabolite-rich retentate (MRR) with 37.0 ± 1.9 mg/g of PC, 617 ± 15 mg/g of protein, 0.4 ± 0.2 mg/g of Cla, and 0.15 ± 0.14 mg/g of TCC. Water extraction in the concentration process achieved the highest concentrations in MRR, with approximately 76% PC, 92% total protein, 62% Cla, and 41% TCC. These findings highlight the effective extraction and concentration processes to obtain a metabolite-rich retentate from Spirulina biomass, reducing the volume tenfold and showing potential as a functional ingredient for the food, cosmetic, and pharmaceutical industries. Full article
(This article belongs to the Special Issue Microalgae Photobiology, Biotechnology, and Bioproduction)
Show Figures

Figure 1

17 pages, 6405 KB  
Article
Cleaning of Ultrafiltration Membranes: Long-Term Treatment of Car Wash Wastewater as a Case Study
by Wirginia Tomczak, Piotr Woźniak, Marek Gryta, Joanna Grzechulska-Damszel and Monika Daniluk
Membranes 2024, 14(7), 159; https://doi.org/10.3390/membranes14070159 - 19 Jul 2024
Cited by 8 | Viewed by 3260
Abstract
Car wash wastewaters (CWWs) contain various pollutants with different contents. Hence, selecting an appropriate process for their treatment is a great challenge. Undoubtedly, the ultrafiltration (UF) process is one of the most interesting and reliable choices. Therefore, the main aim of the current [...] Read more.
Car wash wastewaters (CWWs) contain various pollutants with different contents. Hence, selecting an appropriate process for their treatment is a great challenge. Undoubtedly, the ultrafiltration (UF) process is one of the most interesting and reliable choices. Therefore, the main aim of the current study was to investigate the performance of the UF membranes used for the long-term treatment of real CWWs. For this purpose, two polyethersulfone (PES) membranes with molecular weight cut-off (MWCO) values equal to 10 and 100 kDa were applied. As expected, a significant decrease in the permeate flux during the UF run was observed. However, it was immediately demonstrated that the systematic cleaning of membranes (every day) with Insect agent (pH = 11.5) prevented a further decline in the process’s performance. In addition, this study focused on the relative flux during the process run with breaks lasting a few days when the UF installation was filled with distilled water. The results of this research indicated that aqueous media favor microorganism adherence to the surface which leads to the formation of biofilms inside processing installations. As a consequence, many attempts have been made to restore the initial membrane performance. It has been found that the application of several chemical agents is required. More precisely, the use of an Insect solution, P3 Ultrasil 11 agent, and phosphoric acid increases the relative flux to a value of 0.8. Finally, it has been indicated that the membranes used in this work are resistant to the long-term exposure to bacteria and chemical agents. However, during the separation of CWWs for the membrane with an MWCO of 10 kDa, a lesser fouling influence and higher effectiveness of cleaning were obtained. Finally, the present study demonstrates a novel analysis and innovative implications towards applying the UF process for the CWW treatment. Full article
Show Figures

Figure 1

20 pages, 2141 KB  
Article
Synthesis of Responsive Membranes for Water Recovery through Desalination of Saline Industrial Effluents
by Elizabeth Vazquez, Claudia Muro, Sergio Pérez-Sicairos, Yolanda Alvarado, Vianney Díaz-Blancas and Karina Hernández
Sustainability 2024, 16(13), 5796; https://doi.org/10.3390/su16135796 - 8 Jul 2024
Cited by 2 | Viewed by 2043
Abstract
Polysulfone (PSF) and smart polymers (SRPs)—including polyacrylic acid (AAc), poly N-isopropylacrylamide (NIPA), and sulfonated poly(1,4-phenylene ether-ether-sulfone) (SPEES)—were used in the synthesis of responsive membranes (PSF-SRP) for application in sustainable desalination processes involving food industry effluents for water recovery and recycling. With the inclusion [...] Read more.
Polysulfone (PSF) and smart polymers (SRPs)—including polyacrylic acid (AAc), poly N-isopropylacrylamide (NIPA), and sulfonated poly(1,4-phenylene ether-ether-sulfone) (SPEES)—were used in the synthesis of responsive membranes (PSF-SRP) for application in sustainable desalination processes involving food industry effluents for water recovery and recycling. With the inclusion of SRPs, PSF-SRP membranes showed different characteristics when compared to the PSF membrane. AAc caused fibers to occur in the surface structure, increasing the MWCO of the PSF membrane, whereas NIPA and SPEES diminished the MWCO, resulting in ultrafiltration and nanofiltration membranes. Furthermore, NIPA and SPEES provided high mechanical and thermal resistance when incorporated into the PSF membrane. The performance of the membranes also showed important changes. In comparison with only PSF, PSF-SPEES and PSF-NIPA increased the water flux and salt rejection percentage by 20–30%. In addition, the highest membrane fouling resistance was observed with PSF-NIPA, while PSF-AAc and PSF-NIPA-AAc presented the lowest resistances. Therefore, PSF-NIPA and PSF-SPEES resulted in membrane improvement, including stimuli-responsive properties, allowing for effective saline effluent treatment. Full article
(This article belongs to the Special Issue Wastewater Purification, Treatment, and Reuse)
Show Figures

Figure 1

13 pages, 7170 KB  
Article
Application of Recycled Ultrafiltration Membranes in an Aerobic Membrane Bioreactor (aMBR): A Validation Study
by Laura Rodríguez-Sáez, Junkal Landaburu-Aguirre, Eloy García-Calvo and Serena Molina
Membranes 2024, 14(7), 149; https://doi.org/10.3390/membranes14070149 - 5 Jul 2024
Cited by 1 | Viewed by 2653
Abstract
A validation study using recycled ultrafiltration membranes (r-UF) on an aerobic membrane bioreactor (aMBR) was conducted for the first time. Four different polyethersulfone (PES) membranes were tested using synthetic urban wastewater (COD 0.4–0.5 g/L) during two experimental periods: (i) recycled ultrafiltration membrane (r-UF) [...] Read more.
A validation study using recycled ultrafiltration membranes (r-UF) on an aerobic membrane bioreactor (aMBR) was conducted for the first time. Four different polyethersulfone (PES) membranes were tested using synthetic urban wastewater (COD 0.4–0.5 g/L) during two experimental periods: (i) recycled ultrafiltration membrane (r-UF) and commercial UF membrane (molecular weight cut-off (MWCO) 150 kDa) (c-150 kDa); (ii) r-UF membrane modified by dip-coating using catechol (CA) and polyethyleneimine (PEI) (mr-UF) and c-20 kDa membrane. Permeability, fouling behavior, and permeate quality were evaluated. Extensive membrane characterization was conducted using scanning electron microscopy (SEM), atomic force microscopy (AFM), energy-dispersive X-ray (EDX), and confocal laser scanning microscopy (CLSM). Permeate quality for r-UF and mr-UF membranes was excellent and comparable to that obtained using commercial membranes under similar conditions. Additionally, r-UF and mr-UF membranes presented a steadier performance time. Additionally, r-UF membrane demonstrated less tendency to be fouled (Rf, m−1) r-UF 7.92 ± 0.57 × 1012; mr-UF 9.90 ± 0.14 × 1012, c-150 kDa 1.56 ± 0.07 × 1013 and c-20 kDa 1.25 ± 0.50 × 1013. The r-UF membrane showed an excellent antibiofouling character. Therefore, r-UF membranes can be successfully implemented for wastewater treatment in aMBR, being a sustainable and cost-effective alternative to commercial membranes that can contribute to overcome membrane fouling and membrane replacement issues. Full article
(This article belongs to the Special Issue Advanced Membranes and Membrane Technologies for Wastewater Treatment)
Show Figures

Figure 1

18 pages, 929 KB  
Article
Green Separation by Using Nanofiltration of Tristerix tetrandus Fruits and Identification of Its Bioactive Molecules through MS/MS Spectrometry
by Nicolás Cifuentes-Araya, Mario Simirgiotis, Beatriz Sepúlveda and Carlos Areche
Plants 2024, 13(11), 1521; https://doi.org/10.3390/plants13111521 - 31 May 2024
Cited by 4 | Viewed by 1371
Abstract
Membrane technology allows the separation of active compounds, providing an alternative to conventional methods such as column chromatography, liquid–liquid extraction, and solid–liquid extraction. The nanofiltration of a Muérdago (Tristerix tetrandus Mart.) fruit juice was realized to recover valuable metabolites using three different [...] Read more.
Membrane technology allows the separation of active compounds, providing an alternative to conventional methods such as column chromatography, liquid–liquid extraction, and solid–liquid extraction. The nanofiltration of a Muérdago (Tristerix tetrandus Mart.) fruit juice was realized to recover valuable metabolites using three different membranes (DL, NFW, and NDX (molecular weight cut-offs (MWCOs): 150~300, 300~500, and 500~700 Da, respectively)). The metabolites were identified by ESI-MS/MS. The results showed that the target compounds were effectively fractionated according to their different molecular weights (MWs). The tested membranes showed retention percentages (RPs) of up to 100% for several phenolics. However, lower RPs appeared in the case of coumaric acid (84.51 ± 6.43% (DL), 2.64 ± 2.21% (NFW), 51.95 ± 1.23% (NDX)) and some other phenolics. The RPs observed for the phenolics cryptochlorogenic acid and chlorogenic acid were 99.74 ± 0.21 and 99.91 ± 0.01% (DL membrane), 96.85 ± 0.83 and 99.20 ± 0.05% (NFW membrane), and 92.98 ± 2.34 and 98.65 ± 0.00% (NDX membrane), respectively. The phenolic quantification was realized by UHPLC-ESI-MS/MS. The DL membrane allowed the permeation of amino acids with the MW range of about 300~100 Da (aspartic acid, proline, tryptophan). This membrane allowed the highest permeate flux (22.10–27.73 L/m2h), followed by the membranes NDX (16.44–20.82 L/m2h) and NFW (12.40–14.45 L/m2h). Moreover, the DL membrane allowed the highest recovery of total compounds in the permeate during the concentration process (19.33%), followed by the membranes NFW (16.28%) and NDX (14.02%). Permeate fractions containing phenolics and amino acids were identified in the membrane permeates DL (10 metabolites identified), NFW (13 metabolites identified), and NDX (10 metabolites identified). Particularly, tryptophan was identified only in the DL permeate fractions obtained. Leucine and isoleucine were identified only in the NFW permeate fractions, whereas methionine and arginine were identified only in the NDX ones. Liquid permeates of great interest to the food and pharmaceutical industries were obtained from plant resources and are suitable for future process optimization and scale-up. Full article
Show Figures

Figure 1

20 pages, 6008 KB  
Article
Peptidome Profiling of Bubalus bubalis Urine and Assessment of Its Antimicrobial Activity against Mastitis-Causing Pathogens
by Rohit Kumar, Nikunj Tyagi, Anju Nagpal, Jai Kumar Kaushik, Ashok Kumar Mohanty and Sudarshan Kumar
Antibiotics 2024, 13(4), 299; https://doi.org/10.3390/antibiotics13040299 - 26 Mar 2024
Cited by 2 | Viewed by 2697
Abstract
Urinary proteins have been studied quite exhaustively in the past, however, the small sized peptides have remained neglected for a long time in dairy cattle. These peptides are the products of systemic protein turnover, which are excreted out of the body and hence [...] Read more.
Urinary proteins have been studied quite exhaustively in the past, however, the small sized peptides have remained neglected for a long time in dairy cattle. These peptides are the products of systemic protein turnover, which are excreted out of the body and hence can serve as an important biomarker for various pathophysiologies. These peptides in other species of bovine have been reported to possess several bioactive properties. To investigate the urinary peptides in buffalo and simultaneously their bioactivities, we generated a peptidome profile from the urine of Murrah Buffaloes (n = 10). Urine samples were processed using <10 kDa MWCO filter and filtrate obtained was used for peptide extraction using Solid Phase Extraction (SPE). The nLC-MS/MS of the aqueous phase from ten animals resulted in the identification of 8165 peptides originating from 6041 parent proteins. We further analyzed these peptide sequences to identify bioactive peptides and classify them into anti-cancerous, anti-hypertensive, anti-microbial, and anti-inflammatory groups with a special emphasis on antimicrobial properties. With this in mind, we simultaneously conducted experiments to evaluate the antimicrobial properties of urinary aqueous extract on three pathogenic bacterial strains: S. aureus, E. coli, and S. agalactiae. The urinary peptides observed in the study are the result of the activity of possibly 76 proteases. The GO of these proteases showed the significant enrichment of the antibacterial peptide production. The total urinary peptide showed antimicrobial activity against the aforementioned pathogenic bacterial strains with no significant inhibitory effects against a buffalo mammary epithelial cell line. Just like our previous study in cows, the present study suggests the prime role of the antimicrobial peptides in the maintenance of the sterility of the urinary tract in buffalo by virtue of their amino acid composition. Full article
(This article belongs to the Special Issue Bioactive Peptides and Their Antibiotic Activity)
Show Figures

Figure 1

16 pages, 2278 KB  
Article
Experimental and Modeling Study of the Nanofiltration of Alcohol-Based Molecules and Amino Acids by Commercial Membranes
by Shirin Shahgodari, Jordi Labanda and Joan Llorens
Membranes 2023, 13(7), 631; https://doi.org/10.3390/membranes13070631 - 29 Jun 2023
Cited by 3 | Viewed by 3174
Abstract
The nanofiltration performance of three commercial membranes was analyzed by the Steric Pore Model (SPM) and the extended Nernst–Planck diffusion equation inside membrane pores. The model was completed with the equation to predict the concentration polarization, and the mass transfer coefficient was determined [...] Read more.
The nanofiltration performance of three commercial membranes was analyzed by the Steric Pore Model (SPM) and the extended Nernst–Planck diffusion equation inside membrane pores. The model was completed with the equation to predict the concentration polarization, and the mass transfer coefficient was determined by considering the presence of a feed spacer. The model parameters that characterized the performance of the membrane were the hydrodynamic coefficient, which accounts for the possible variations in solute size and membrane pore radius, the effective membrane thickness, and the water permeability coefficient. All experiments were conducted at fixed feed pH of 6. The rejections of uncharged solutes (glucose for membranes with a high molecular weight cut-off (MWCO) and glycerol and ethylene glycol for membranes with a low MWCO) allowed the model parameters to be determined. We found that glycerol and ethylene glycol overestimate the membrane pore radius due to their ability to interact with the membrane matrix. Therefore, the rejection of glycine as a small amino acid was explored to characterize the membranes with low MWCO since these molecules do not interact with the membrane matrix and have an almost zero charge at pH values between 4.5 and 6.5. Based on the experimental rejections, it was stated that glucose and glycine could be separated by these membranes operating in continuous diafiltration mode. Full article
(This article belongs to the Special Issue Separation Principles and Applications of Membrane Technology)
Show Figures

Figure 1

15 pages, 5023 KB  
Article
Magnetically Grafted Carbon Nanotubes Synthesis and Its Oriented Nanochannels Construction in the Poly(Vinylidene Fluoride) (PVDF) Ultrafiltration Membranes
by Xiangyuan Song, Wenzhong Ma, Peisen Peng, Sicheng Yin, Binghao Ma, Haicun Yang, Fanghong Gong and Chunlin Liu
Separations 2023, 10(4), 249; https://doi.org/10.3390/separations10040249 - 11 Apr 2023
Cited by 2 | Viewed by 2093
Abstract
Carbon nanotubes (CNTs) with hollow nanochannels have attracted much attention in preparing high-performance water treatment membranes. In this paper, the grafting polymer chains, including alkynyl terminated poly(methyl methacrylate) methacrylate (PMMA) single chain and PMMA-b-poly (ethylene glycol) methacrylate [P(PEGMA)] diblock molecular chains, were synthesized [...] Read more.
Carbon nanotubes (CNTs) with hollow nanochannels have attracted much attention in preparing high-performance water treatment membranes. In this paper, the grafting polymer chains, including alkynyl terminated poly(methyl methacrylate) methacrylate (PMMA) single chain and PMMA-b-poly (ethylene glycol) methacrylate [P(PEGMA)] diblock molecular chains, were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. A UV-induced click reaction was used to graft different linear polymers onto the surface of magnetic thiol-functionalized carbon nanotubes (mCNTs-SH). The poly(vinylidene fluoride) (PVDF) composite ultrafiltration membrane within the oriented nanochannels was prepared using phase inversion and magnetic field orientation. TEM and XRD results confirmed that the magnetic carbon nanotubes grafted with a diblock molecular chain had good nano-dispersion and orientation array effects in PVDF composite ultrafiltration membrane. The water contact angle of the array mCNT-g-diblock molecular chain-based composite membrane was 48.5°, significantly enhancing the PEGMA chain segments. The composite membrane with CTNs’ nanochannels attained a higher water flux. As the diblock molecular chain grafted mCNTs oriented in the membrane, the water flux reached 17.6 LMH (five times greater than the pure PVDF membrane), while the molecular weight cut-off (MWCO) for PEG1400 rejection could reach higher than 80%. Full article
(This article belongs to the Section Materials in Separation Science)
Show Figures

Figure 1

Back to TopTop