Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = MWCNTs-screen printed electrode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1974 KB  
Article
A Flexible Electrochemical Sensor Based on Porous Ceria Hollow Microspheres Nanozyme for Sensitive Detection of H2O2
by Jie Huang, Xuanda He, Shuang Zou, Keying Ling, Hongying Zhu, Qijia Jiang, Yuxuan Zhang, Zijian Feng, Penghui Wang, Xiaofei Duan, Haiyang Liao, Zheng Yuan, Yiwu Liu and Jinghua Tan
Biosensors 2025, 15(10), 664; https://doi.org/10.3390/bios15100664 - 2 Oct 2025
Viewed by 733
Abstract
The development of cost-effective and highly sensitive hydrogen peroxide (H2O2) biosensors with robust stability is critical due to the pivotal role of H2O2 in biological processes and its broad utility across various applications. In this work, [...] Read more.
The development of cost-effective and highly sensitive hydrogen peroxide (H2O2) biosensors with robust stability is critical due to the pivotal role of H2O2 in biological processes and its broad utility across various applications. In this work, porous ceria hollow microspheres (CeO2-phm) were synthesized using a solvothermal synthesis method and employed in the construction of an electrochemical biosensor for H2O2 detection. The resulting CeO2-phm featured a uniform pore size centered at 3.4 nm and a high specific surface area of 168.6 m2/g. These structural attributes contribute to an increased number of active catalytic sites and promote efficient electrolyte penetration and charge transport, thereby enhancing its electrochemical sensing performance. When integrated into screen-printed carbon electrodes (CeO2-phm/cMWCNTs/SPCE), the CeO2-phm/cMWCNTs/SPCE-based biosensor exhibited a wide linear detection range from 0.5 to 450 μM, a low detection limit of 0.017 μM, and a high sensitivity of 2070.9 and 2161.6 μA·mM−1·cm−2—surpassing the performance of many previously reported H2O2 sensors. In addition, the CeO2-phm/cMWCNTs/SPCE-based biosensor possesses excellent anti-interference performance, repeatability, reproducibility, and stability. Its effectiveness was further validated through successful application in real sample analysis. Hence, CeO2-phm with solvothermal synthesis has great potential applications as a sensing material for the quantitative determination of H2O2. Full article
(This article belongs to the Special Issue Advances in Nanozyme-Based Biosensors)
Show Figures

Figure 1

12 pages, 9594 KB  
Article
An Electrochemical Sensor Based on AuNPs@Cu-MOF/MWCNTs Integrated Microfluidic Device for Selective Monitoring of Hydroxychloroquine in Human Serum
by Xuanlin Feng, Jiaqi Zhao, Shiwei Wu, Ying Kan, Honemei Li and Weifei Zhang
Chemosensors 2025, 13(6), 200; https://doi.org/10.3390/chemosensors13060200 - 1 Jun 2025
Viewed by 1289
Abstract
Hydroxychloroquine (HCQ), a cornerstone therapeutic agent for autoimmune diseases, requires precise serum concentration monitoring due to its narrow therapeutic window. Current HCQ monitoring methods such as HPLC and LC-MS/MS are sensitive but costly and complex. While electrochemical sensors offer rapid, cost-effective detection, their [...] Read more.
Hydroxychloroquine (HCQ), a cornerstone therapeutic agent for autoimmune diseases, requires precise serum concentration monitoring due to its narrow therapeutic window. Current HCQ monitoring methods such as HPLC and LC-MS/MS are sensitive but costly and complex. While electrochemical sensors offer rapid, cost-effective detection, their large chambers and high sample consumption hinder point-of-care use. To address these challenges, we developed a microfluidic electrochemical sensing platform based on a screen-printed carbon electrode (SPCE) modified with a hierarchical nanocomposite of gold nanoparticles (AuNPs), copper-based metal–organic frameworks (Cu-MOFs), and multi-walled carbon nanotubes (MWCNTs). The Cu-MOF provided high porosity and analyte enrichment, MWCNTs established a 3D conductive network to enhance electron transfer, and AuNPs further optimized catalytic activity through localized plasmonic effects. Structural characterization (SEM, XRD, FT-IR) confirmed the successful integration of these components via π-π stacking and metal–carboxylate coordination. Electrochemical analyses (CV, EIS, DPV) revealed exceptional performance, with a wide linear range (0.05–50 μM), a low detection limit (19 nM, S/N = 3), and a rapid response time (<5 min). The sensor exhibited outstanding selectivity against common interferents, high reproducibility (RSD = 3.15%), and long-term stability (98% signal retention after 15 days). By integrating the nanocomposite-modified SPCE into a microfluidic chip, we achieved accurate HCQ detection in 50 μL of serum, with recovery rates of 95.0–103.0%, meeting FDA validation criteria. This portable platform combines the synergistic advantages of nanomaterials with microfluidic miniaturization, offering a robust and practical tool for real-time therapeutic drug monitoring in clinical settings. Full article
(This article belongs to the Special Issue Feature Papers on Luminescent Sensing (Second Edition))
Show Figures

Figure 1

17 pages, 3386 KB  
Article
MoS2/MWCNT Nanostructure: Enhanced Performance of Screen-Printed Carbon Electrode for Voltammetric Determination of 4-Nitrophenol in Water Samples
by Hadi Beitollahi and Somayeh Tajik
Micromachines 2025, 16(4), 366; https://doi.org/10.3390/mi16040366 - 23 Mar 2025
Cited by 2 | Viewed by 979
Abstract
In the present work, we designed a straightforward and disposable voltammetric sensor utilizing a molybdenum disulfide/multi-walled carbon nanotube nanostructure-modified screen-printed carbon electrode (MoS2/MWCNTs/SPCE) for 4-nitrophenol (4-NP) determination. The successful synthesis of the MoS2/MWCNT nanostructure was characterized using Fourier transform [...] Read more.
In the present work, we designed a straightforward and disposable voltammetric sensor utilizing a molybdenum disulfide/multi-walled carbon nanotube nanostructure-modified screen-printed carbon electrode (MoS2/MWCNTs/SPCE) for 4-nitrophenol (4-NP) determination. The successful synthesis of the MoS2/MWCNT nanostructure was characterized using Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EXD) mapping. The electrochemical behavior of 4-NP at the MoS2/MWCNTs/SPCE was examined using differential pulse voltammetry (DPV), cyclic voltammetry (CV), and chronoamperometry techniques. The MoS2/MWCNTs/SPCE exhibited outstanding electro-catalytic activity for the voltammetric detection of 4-NP. Under optimized conditions, the reduction peak current showed a linear dependence with the concentration of 4-NP in the range of 0.05 to 800.0 µM, and a detection limit (LOD) of 0.01 µM was determined. In addition, the MoS2/MWCNTs/SPCE sensor has advantages including repeatability, reproducibility, stability, inexpensiveness, and practical application. The MoS2/MWCNTs/SPCE-based sensor was also utilized for the determination of 4-NP in real water specimens. Full article
Show Figures

Figure 1

13 pages, 3764 KB  
Article
Study of a Sensitive and Selective Electrochemical Biosensor for Glucose Based on Bi2Ru2O7 Pyrochlore Clusters Combined with MWCNTs
by Jelena Isailović, Aleksandra Dapčević, Milan Žunić, Matjaž Finšgar, Kristijan Vidović, Nikola Tasić and Samo B. Hočevar
Chemosensors 2025, 13(3), 109; https://doi.org/10.3390/chemosensors13030109 - 15 Mar 2025
Cited by 1 | Viewed by 1444
Abstract
The development of sensitive, selective, and reliable glucose biosensors remains a persistent challenge in clinical diagnostics. In this study, we exploited the advantageous (electro)catalytic properties of bismuth ruthenate (Bi2Ru2O7) pyrochlore clusters, known for their high surface activity [...] Read more.
The development of sensitive, selective, and reliable glucose biosensors remains a persistent challenge in clinical diagnostics. In this study, we exploited the advantageous (electro)catalytic properties of bismuth ruthenate (Bi2Ru2O7) pyrochlore clusters, known for their high surface activity and metallic-like conductivity, and the favorable physicochemical properties of multi-walled carbon nanotubes (MWCNTs) by combining them with glucose oxidase (GOD) in a sensitive and selective disposable glucose biosensor. The integration of Bi2Ru2O7 enabled an enhanced and more reproducible response of the biosensor along with fast and improved communication between the supporting electrode and the upper biosensing layer. The architecture of the biosensor involves the deposition of an MWCNT layer on a ferrocyanide-modified screen-printed carbon electrode (FCN-SPCE), followed by the application of a biorecognition layer including GOD and Bi2Ru2O7 clusters. The voltammetric biosensor showed excellent electroanalytical performance, capable of detecting low glucose concentrations with a detection limit of 40 µM along with a linear response across the examined concentration range of 1.0–20.0 mM. The biosensor exhibited good reproducibility with a relative standard deviation (RSD) of 1.2% and interference-free operation against several of the most common interfering compounds. The practical applicability of the biosensor was demonstrated by the determination of glucose in a real serum sample spiked with different concentrations of glucose. Full article
Show Figures

Figure 1

17 pages, 3676 KB  
Article
Electrochemical Determination of Doxorubicin in the Presence of Dacarbazine Using MWCNTs/ZnO Nanocomposite Modified Disposable Screen-Printed Electrode
by Somayeh Tajik, Hadi Beitollahi, Fariba Garkani Nejad and Zahra Dourandish
Biosensors 2025, 15(1), 60; https://doi.org/10.3390/bios15010060 - 17 Jan 2025
Cited by 7 | Viewed by 1739
Abstract
In the current work, the MWCNTs/ZnO nanocomposite was successfully synthesized using simple method. Then, FE-SEM, XRD, and EDX techniques were applied for morphological and structural characterization. Afterward, a sensitive voltammetric sensor based on modification of a screen-printed carbon electrode (SPCE) using MWCNTs/ZnO nanocomposite [...] Read more.
In the current work, the MWCNTs/ZnO nanocomposite was successfully synthesized using simple method. Then, FE-SEM, XRD, and EDX techniques were applied for morphological and structural characterization. Afterward, a sensitive voltammetric sensor based on modification of a screen-printed carbon electrode (SPCE) using MWCNTs/ZnO nanocomposite was developed for the determination of doxorubicin in the presence of dacarbazine. To evaluate the electrochemical response of the MWCNTs/ZnO/SPCE towards doxorubicin, cyclic voltammetry (CV) was applied. The MWCNTs/ZnO nanocomposite showed a significant synergistic effect on the electrochemical response of the electrode for the redox reaction of doxorubicin. Also, the MWCNTs/ZnO/SPCE demonstrated an enhanced sensing platform for the quantification of doxorubicin, obtaining a detection limit (LOD) of 0.002 µM and a sensitivity of 0.0897 µA/µM, as determined by differential pulse voltammetry (DPV) within a linear range from 0.007 to 150.0 µM. Also, the MWCNTs/ZnO nanocomposite-modified SPCE showed high electrochemical activities towards the oxidation of doxorubicin and dacarbazine with peak-potential separation of 345 mV, which is sufficient for doxorubicin determination in the presence of dacarbazine. Also, the MWCNTs/ZnO nanocomposite-modified SPCE presented reproducible and stable responses to determine doxorubicin. Finally, the developed platform demonstrated a successful performance for doxorubicin and dacarbazine determination in real samples, with recovery in the range of 97.1% to 104.0% and relative standard deviation (RSD) from 1.8% to 3.5%. Full article
Show Figures

Figure 1

13 pages, 3372 KB  
Article
The Development of a Flexible Humidity Sensor Using MWCNT/PVA Thin Films
by Ana R. Santos and Júlio C. Viana
Nanomaterials 2024, 14(20), 1653; https://doi.org/10.3390/nano14201653 - 15 Oct 2024
Cited by 8 | Viewed by 2383
Abstract
The exponential demand for real-time monitoring applications has altered the course of sensor development, from sensor electronics miniaturization, e.g., resorting to printing techniques, to low-cost, flexible and functional wearable materials. Humidity sensing has been used in the prevention and diagnosis of medical conditions, [...] Read more.
The exponential demand for real-time monitoring applications has altered the course of sensor development, from sensor electronics miniaturization, e.g., resorting to printing techniques, to low-cost, flexible and functional wearable materials. Humidity sensing has been used in the prevention and diagnosis of medical conditions, as well as in the assessment of physical comfort. This paper presents a resistive flexible humidity sensor composed of silver interdigitated electrodes (IDTs) screen printed onto polyimide film and an active layer of multiwall carbon nanotubes (MWCNT) dispersed in a water-soluble polymer, polyvinyl alcohol (PVA). Different MWCNT/PVA sensor sizes and MWCNT percentages are tested to study their effect on the initial electrical resistance (Ri) values and sensor response at different humidity percentages. The results show that the Ri values decrease with the increase in % MWCNT. The sensor size did not influence the sensor response, while the % MWCNT affected the sensor behavior upon relative humidity (RH) increments. The 1% MWCNT/PVA sensor showed the best response, reaching a relative electrical resistance, ΔR/R0, of 509% at 99% RH. Comparable with other reported sensors, the produced MWCNT/PVA flexible sensor is simpler, greener and shows a good sensitivity to humidity, being easily incorporated in wearable monitoring applications, from sports to medical fields. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Soft and Wearable Electronics)
Show Figures

Figure 1

18 pages, 7913 KB  
Article
Utilizing a Disposable Sensor with Polyaniline-Doped Multi-Walled Carbon Nanotubes to Enable Dopamine Detection in Ex Vivo Mouse Brain Tissue Homogenates
by Thenmozhi Rajarathinam, Sivaguru Jayaraman, Jaeheon Seol, Jaewon Lee and Seung-Cheol Chang
Biosensors 2024, 14(6), 262; https://doi.org/10.3390/bios14060262 - 21 May 2024
Cited by 13 | Viewed by 2463
Abstract
Disposable sensors are inexpensive, user-friendly sensing tools designed for rapid single-point measurements of a target. Disposable sensors have become more and more essential as diagnostic tools due to the growing demand for quick, easy-to-access, and reliable information related to the target. Dopamine (DA), [...] Read more.
Disposable sensors are inexpensive, user-friendly sensing tools designed for rapid single-point measurements of a target. Disposable sensors have become more and more essential as diagnostic tools due to the growing demand for quick, easy-to-access, and reliable information related to the target. Dopamine (DA), a prevalent catecholamine neurotransmitter in the human brain, is associated with central nervous system activities and directly promotes neuronal communication. For the sensitive and selective estimation of DA, an enzyme-free amperometric sensor based on polyaniline-doped multi-walled carbon nanotubes (PANI-MWCNTs) drop-coated disposable screen-printed carbon electrodes (SPCEs) was fabricated. This PANI-MWCNTs-2/SPCE sensor boasts exceptional accuracy and sensitivity when working directly with ex vivo mouse brain homogenates. The sensor exhibited a detection limit of 0.05 μM (S/N = 3), and a wide linear range from 1.0 to 200 μM. The sensor’s high selectivity to DA amidst other endogenous interferents was recognized. Since the constructed sensor is enzyme-free yet biocompatible, it exhibited high stability in DA detection using ex vivo mouse brain homogenates extracted from both Parkinson’s disease and control mice models. This research thus presents new insights into understanding DA release dynamics at the tissue level in both of these models. Full article
(This article belongs to the Special Issue Biosensing Applications for Cell Monitoring)
Show Figures

Figure 1

24 pages, 4642 KB  
Article
Electrochemical Detection of Cd2+, Pb2+, Cu2+ and Hg2+ with Sensors Based on Carbonaceous Nanomaterials and Fe3O4 Nanoparticles
by Ancuța Dinu (Iacob), Alexandra Virginia Bounegru, Catalina Iticescu, Lucian P. Georgescu and Constantin Apetrei
Nanomaterials 2024, 14(8), 702; https://doi.org/10.3390/nano14080702 - 18 Apr 2024
Cited by 25 | Viewed by 4451
Abstract
Two electrochemical sensors were developed in this study, with their preparations using two nanomaterials with remarkable properties, namely, carbon nanofibers (CNF) modified with Fe3O4 nanoparticles and multilayer carbon nanotubes (MWCNT) modified with Fe3O4 nanoparticles. The modified screen-printed [...] Read more.
Two electrochemical sensors were developed in this study, with their preparations using two nanomaterials with remarkable properties, namely, carbon nanofibers (CNF) modified with Fe3O4 nanoparticles and multilayer carbon nanotubes (MWCNT) modified with Fe3O4 nanoparticles. The modified screen-printed electrodes (SPE) were thus named SPE/Fe3O4-CNF and SPE/Fe3O4-MWCNT and were used for the simultaneous detection of heavy metals (Cd2+, Pb2+, Cu2+ and Hg2+). The sensors have been spectrometrically and electrochemically characterized. The limits of detection of the SPE/Fe3O4-CNF sensor were 0.0615 μM, 0.0154 μM, 0.0320 μM and 0.0148 μM for Cd2+, Pb2+, Cu2+ and Hg2+, respectively, and 0.2719 μM, 0.3187 μM, 1.0436 μM and 0.9076 μM in the case of the SPE/ Fe3O4-MWCNT sensor (following optimization of the working parameters). Due to the modifying material, the results showed superior performance for the SPE/Fe3O4-CNF sensor, with extended linearity ranges and detection limits in the nanomolar range, compared to those of the SPE/Fe3O4-MWCNT sensor. For the quantification of heavy metal ions Cd2+, Pb2+, Cu2+ and Hg2+ with the SPE/Fe3O4-CNF sensor from real samples, the standard addition method was used because the values obtained for the recovery tests were good. The analysis of surface water samples from the Danube River has shown that the obtained values are significantly lower than the maximum limits allowed according to the quality standards specified by the United States Environmental Protection Agency (USEPA) and those of the World Health Organization (WHO). This research provides a complementary method based on electrochemical sensors for in situ monitoring of surface water quality, representing a useful tool in environmental studies. Full article
Show Figures

Figure 1

13 pages, 9755 KB  
Article
Screen-Printed Carbon Electrode Modified with Carbon Nanotubes and Copper Film as a Simple Tool for Determination of Trace Concentrations of Lead Ions
by Malgorzata Grabarczyk and Agnieszka Wawruch
Membranes 2024, 14(2), 53; https://doi.org/10.3390/membranes14020053 - 12 Feb 2024
Cited by 4 | Viewed by 2823
Abstract
A copper film-modified, carboxyl-functionalized, and multi-walled carbon nanotube (MWCNT-COOH)-modified screen-printed carbon electrode (CuF/MWCNTs/SPCE) was used for lead determination using anodic stripping voltammetry. The main parameters were investigated and optimized during the development of the research procedure. The most optimal electrolyte concentrations were determined [...] Read more.
A copper film-modified, carboxyl-functionalized, and multi-walled carbon nanotube (MWCNT-COOH)-modified screen-printed carbon electrode (CuF/MWCNTs/SPCE) was used for lead determination using anodic stripping voltammetry. The main parameters were investigated and optimized during the development of the research procedure. The most optimal electrolyte concentrations were determined to be 0.4 M HCl and 6.3 × 10−5 M Cu(II). The optimal parameters for voltammetric stripping measurements are as follows: an accumulation potential of −0.7 V; an accumulation time of 120 s; and a pulse amplitude and pulse time of 120 mV and 2 ms, respectively. The effect of surface active substances and humic substances as potential interferents present in aqueous environmental samples was investigated. The validation of the procedure was carried out using certified reference materials, like waste water SPS-WW1 and environmental matrix TM-25.5. In addition, the developed procedure was applied to investigate lead recovery from natural environmental water, such as rivers and lakes. Full article
Show Figures

Figure 1

17 pages, 3650 KB  
Article
Stereoselective Voltammetric Biosensor for Myo-Inositol and D-Chiro-Inositol Recognition
by Cristina Tortolini, Valeria Gigli, Flavio Rizzo, Andrea Lenzi, Mariano Bizzarri, Antonio Angeloni and Riccarda Antiochia
Sensors 2023, 23(22), 9211; https://doi.org/10.3390/s23229211 - 16 Nov 2023
Cited by 3 | Viewed by 2260
Abstract
This paper describes the development of a simple voltammetric biosensor for the stereoselective discrimination of myo-inositol (myo-Ins) and D-chiro-inositol (D-chiro-Ins) by means of bovine serum albumin (BSA) adsorption onto a multi-walled carbon nanotube (MWCNT) graphite screen-printed electrode (MWCNT-GSPE), previously functionalized by the electropolymerization [...] Read more.
This paper describes the development of a simple voltammetric biosensor for the stereoselective discrimination of myo-inositol (myo-Ins) and D-chiro-inositol (D-chiro-Ins) by means of bovine serum albumin (BSA) adsorption onto a multi-walled carbon nanotube (MWCNT) graphite screen-printed electrode (MWCNT-GSPE), previously functionalized by the electropolymerization of methylene blue (MB). After a morphological characterization, the enantioselective biosensor platform was electrochemically characterized after each modification step by differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The results show that the binding affinity between myo-Ins and BSA was higher than that between D-chiro-Ins and BSA, confirming the different interactions exhibited by the novel BSA/MB/MWCNT/GSPE platform towards the two diastereoisomers. The biosensor showed a linear response towards both stereoisomers in the range of 2–100 μM, with LODs of 0.5 and 1 μM for myo-Ins and D-chiro-Ins, respectively. Moreover, a stereoselectivity coefficient α of 1.6 was found, with association constants of 0.90 and 0.79, for the two stereoisomers, respectively. Lastly, the proposed biosensor allowed for the determination of the stereoisomeric composition of myo-/D-chiro-Ins mixtures in commercial pharmaceutical preparations, and thus, it is expected to be successfully applied in the chiral analysis of pharmaceuticals and illicit drugs of forensic interest. Full article
Show Figures

Figure 1

16 pages, 2314 KB  
Article
Novel Sensitive Electrochemical Immunosensor Development for the Selective Detection of HopQ H. pylori Bacteria Biomarker
by Hussamaldeen Jaradat, Ammar Al-Hamry, Mohammed Ibbini, Najla Fourati and Olfa Kanoun
Biosensors 2023, 13(5), 527; https://doi.org/10.3390/bios13050527 - 8 May 2023
Cited by 20 | Viewed by 4335
Abstract
Helicobacter pylori (H. pylori) is a highly contagious pathogenic bacterium that can cause gastrointestinal ulcers and may gradually lead to gastric cancer. H. pylori expresses the outer membrane HopQ protein at the earliest stages of infection. Therefore, HopQ is a highly [...] Read more.
Helicobacter pylori (H. pylori) is a highly contagious pathogenic bacterium that can cause gastrointestinal ulcers and may gradually lead to gastric cancer. H. pylori expresses the outer membrane HopQ protein at the earliest stages of infection. Therefore, HopQ is a highly reliable candidate as a biomarker for H. pylori detection in saliva samples. In this work, an H. pylori immunosensor is based on detecting HopQ as an H. pylori biomarker in saliva. The immunosensor was developed by surface modification of screen-printed carbon electrodes (SPCE) with MWCNT-COOH decorated with gold nanoparticles (AuNP) followed by HopQ capture antibody grafting on SPCE/MWCNT/AuNP surface using EDC/S-NHS chemistry. The sensor performance was investigated utilizing various methods, such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscope (SEM) coupled with energy-dispersive X-ray spectroscopy (EDX). H. pylori detection performance in spiked saliva samples was evaluated by square wave voltammetry (SWV). The sensor is suitable for HopQ detection with excellent sensitivity and linearity in the 10 pg/mL–100 ng/mL range, with a 2.0 pg/mL limit of detection (LOD) and an 8.6 pg/mL limit of quantification (LOQ). The sensor was tested in saliva at 10 ng/mL, and recovery of 107.6% was obtained by SWV. From Hill’s model, the dissociation constant Kd for HopQ/HopQ antibody interaction is estimated to be 4.60 × 10−10 mg/mL. The fabricated platform shows high selectivity, good stability, reproducibility, and cost-effectiveness for H. pylori early detection due to the proper choice of biomarker, the nanocomposite material utilization to boost the SPCE electrical performance, and the intrinsic selectivity of the antibody–antigen approach. Additionally, we provide insight into possible future aspects that researchers are recommended to focus on. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Figure 1

11 pages, 3305 KB  
Article
Simple Immunosensor Based on Carboxyl-Functionalized Multi-Walled Carbon Nanotubes @ Antimony-Doped Tin Oxide Composite Membrane for Aflatoxin B1 Detection
by Guanglei Chu, Zengning Liu, Yanyan Zhang, Yemin Guo, Xia Sun and Ming Li
Micromachines 2023, 14(5), 996; https://doi.org/10.3390/mi14050996 - 3 May 2023
Cited by 5 | Viewed by 2304
Abstract
This paper presents a novel nano-material composite membrane for detecting aflatoxin B1 (AFB1). The membrane is based on carboxyl-functionalized multi-walled carbon nanotubes (MWCNTs-COOH) @ antimony-doped tin oxide (ATO)-chitosan (CS). To prepare the immunosensor, MWCNTs-COOH were dissolved in the CS solution, [...] Read more.
This paper presents a novel nano-material composite membrane for detecting aflatoxin B1 (AFB1). The membrane is based on carboxyl-functionalized multi-walled carbon nanotubes (MWCNTs-COOH) @ antimony-doped tin oxide (ATO)-chitosan (CS). To prepare the immunosensor, MWCNTs-COOH were dissolved in the CS solution, but some MWCNTs-COOH formed aggregates due to the intertwining of carbon nanotubes, blocking some pores. ATO was added to the solution containing MWCNTs-COOH, and the gaps were filled by adsorbing hydroxide radicals to form a more uniform film. This greatly increased the specific surface area of the formed film, resulting in a nano-composite film that was modified on screen-printed electrodes (SPCEs). The immunosensor was then constructed by immobilizing anti-AFB1 antibodies (Ab) and bovine serum albumin (BSA) on an SPCE successively. The assembly process and effect of the immunosensor were characterized using scanning electron microscopy (SEM), differential pulse voltammetry (DPV), and cyclic voltammetry (CV). Under optimized conditions, the prepared immunosensor exhibited a low detection limit of 0.033 ng/mL with a linear range of 1 × 10−3–1 × 103 ng/mL. The immunosensor demonstrated good selectivity, reproducibility, and stability. In summary, the results suggest that the MWCNTs-COOH@ATO-CS composite membrane can be used as an effective immunosensor for detecting AFB1. Full article
Show Figures

Figure 1

16 pages, 3967 KB  
Article
Conductive Ink-Coated Paper-Based Supersandwich DNA Biosensor for Ultrasensitive Detection of Neisseria gonorrhoeae
by Niharika Gupta, D. Kumar, Asmita Das, Seema Sood and Bansi D. Malhotra
Biosensors 2023, 13(4), 486; https://doi.org/10.3390/bios13040486 - 18 Apr 2023
Cited by 10 | Viewed by 3035
Abstract
Herein, we report results of the studies relating to the development of an impedimetric, magnetic bead-assisted supersandwich DNA hybridization assay for ultrasensitive detection of Neisseria gonorrhoeae, the causative agent of a sexually transmitted infection (STI), gonorrhea. First, a conductive ink was formulated [...] Read more.
Herein, we report results of the studies relating to the development of an impedimetric, magnetic bead-assisted supersandwich DNA hybridization assay for ultrasensitive detection of Neisseria gonorrhoeae, the causative agent of a sexually transmitted infection (STI), gonorrhea. First, a conductive ink was formulated by homogenously dispersing carboxylated multiwalled carbon nanotubes (cMWCNTs) in a stable emulsion of terpineol and an aqueous suspension of carboxymethyl cellulose (CMC). The ink, labeled C5, was coated onto paper substrates to fabricate C5@paper conductive electrodes. Thereafter, a magnetic bead (MB)-assisted supersandwich DNA hybridization assay was optimized against the porA pseudogene of N. gonorrhoeae. For this purpose, a pair of specific 5′ aminated capture probes (SCP) and supersandwich detector probes (SDP) was designed, which allowed the enrichment of target gonorrheal DNA sequence from a milieu of substances. The SD probe was designed such that instead of 1:1 binding, it allowed the binding of more than one T strand, leading to a ‘ladder-like’ DNA supersandwich structure. The MB-assisted supersandwich assay was integrated into the C5@paper electrodes for electrochemical analysis. The C5@paper electrodes were found to be highly conductive by a four-probe conductivity method (maximum conductivity of 10.1 S·cm−1). Further, the biosensing assay displayed a wide linear range of 100 aM-100 nM (109 orders of magnitude) with an excellent sensitivity of 22.6 kΩ·(log[concentration])−1. The clinical applicability of the biosensing assay was assessed by detecting genomic DNA extracted from N. gonorrhoeae in the presence of DNA from different non-gonorrheal bacterial species. In conclusion, this study demonstrates a highly sensitive, cost-effective, and label-free paper-based device for STI diagnostics. The ink formulation prepared for the study was found to be highly thixotropic, which indicates that the paper electrodes can be screen-printed in a reproducible and scalable manner. Full article
(This article belongs to the Special Issue DNA Based Biosensors)
Show Figures

Figure 1

20 pages, 4647 KB  
Article
Flexible Miniaturized Electrochemical Sensors Based on Multiwalled Carbon Nanotube-Chitosan Nanomaterial for Determination of Nitrite in Soil Solutions
by Ana-Maria Gurban, Lucian-Gabriel Zamfir, Petru Epure, Ioana-Raluca Șuică-Bunghez, Raluca Mădălina Senin, Maria-Luiza Jecu, Maria Lorena Jinga and Mihaela Doni
Chemosensors 2023, 11(4), 224; https://doi.org/10.3390/chemosensors11040224 - 5 Apr 2023
Cited by 23 | Viewed by 3666
Abstract
Flexible screen-printed electrodes (SPE) were modified in a simple manner with different composite nanomaterials based on carbon allotropes, polymers, and metallic nanoparticles, for amperometric detection of nitrites in soil. Multiwalled carbon nanotubes (MWCNT), chitosan (CS), silver nanoparticles (AgNPs), 1,8-diaminonaphthalene (1,8-DAN), and a sol-gel [...] Read more.
Flexible screen-printed electrodes (SPE) were modified in a simple manner with different composite nanomaterials based on carbon allotropes, polymers, and metallic nanoparticles, for amperometric detection of nitrites in soil. Multiwalled carbon nanotubes (MWCNT), chitosan (CS), silver nanoparticles (AgNPs), 1,8-diaminonaphthalene (1,8-DAN), and a sol-gel (SG) matrix were used for modification of the carbon paste working electrodes. Sensitive and selective detection of nitrite was achieved by using a MWCNT-CS-modified sensor, in acetate buffer at pH 5, at an applied potential of 0.58 V vs. Ag/AgCl. The MWCNT-CS-based sensor displayed a specific sensitivity of 204.4 mA·M−1·cm−2, with a detection limit of 2.3 µM (S/N = 3) in a linear range up to 1.7 mM, showing good stability, reproducibility, and selectivity towards other interfering species. A miniaturized portable system using the developed flexible electrochemical MWCNT-CS-based sensors was dedicated for the detection of nitrite in different samples of soil solutions extracted by using suction lysimeters. Full article
(This article belongs to the Special Issue Carbon Nanomaterials and Related Materials for Sensing Applications)
Show Figures

Graphical abstract

18 pages, 3840 KB  
Article
Nonenzymatic Electrochemical Glutamate Sensor Using Copper Oxide Nanomaterials and Multiwall Carbon Nanotubes
by Md Younus Ali, Dorian Knight and Matiar M. R. Howlader
Biosensors 2023, 13(2), 237; https://doi.org/10.3390/bios13020237 - 7 Feb 2023
Cited by 17 | Viewed by 4899
Abstract
Glutamate is an important neurotransmitter due to its critical role in physiological and pathological processes. While enzymatic electrochemical sensors can selectively detect glutamate, enzymes cause instability of the sensors, thus necessitating the development of enzyme-free glutamate sensors. In this paper, we developed an [...] Read more.
Glutamate is an important neurotransmitter due to its critical role in physiological and pathological processes. While enzymatic electrochemical sensors can selectively detect glutamate, enzymes cause instability of the sensors, thus necessitating the development of enzyme-free glutamate sensors. In this paper, we developed an ultrahigh sensitive nonenzymatic electrochemical glutamate sensor by synthesizing copper oxide (CuO) nanostructures and physically mixing them with multiwall carbon nanotubes (MWCNTs) onto a screen-printed carbon electrode. We comprehensively investigated the sensing mechanism of glutamate; the optimized sensor showed irreversible oxidation of glutamate involving one electron and one proton, and a linear response from 20 μM to 200 μM at pH 7. The limit of detection and sensitivity of the sensor were about 17.5 μM and 8500 μA·mM−1·cm−2, respectively. The enhanced sensing performance is attributed to the synergetic electrochemical activities of CuO nanostructures and MWCNTs. The sensor detected glutamate in whole blood and urine and had minimal interference with common interferents, suggesting its potential for healthcare applications. Full article
Show Figures

Graphical abstract

Back to TopTop