Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (63)

Search Parameters:
Keywords = MWCNTs−OH

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 11927 KiB  
Article
Hydroxylated vs. Carboxylated Nanotubes: Differential Impacts on Fall Armyworm Development, Reproduction, and Population Dynamics
by Zhao Wang, Syed Husne Mobarak, Fa-Xu Lu, Jing Ai, Xie-Yuan Bai, Lei Wu, Shao-Zhao Qin and Chao-Xing Hu
Insects 2025, 16(8), 748; https://doi.org/10.3390/insects16080748 - 22 Jul 2025
Viewed by 365
Abstract
Carbon nanotubes are promising in agriculture for improving crop resilience and delivering agrochemicals. However, their effects on insect pests, especially chewing pests such as the fall armyworm (Spodoptera frugiperda), remain underexplored. In this study, we investigated how two types of functionalized [...] Read more.
Carbon nanotubes are promising in agriculture for improving crop resilience and delivering agrochemicals. However, their effects on insect pests, especially chewing pests such as the fall armyworm (Spodoptera frugiperda), remain underexplored. In this study, we investigated how two types of functionalized multi-walled carbon nanotubes—hydroxylated (MWCNTs-OH) and carboxylated (MWCNTs-COOH), both obtained from Jiangsu Xianfeng Nano (Nanjing, China)—affect the pest’s development and reproduction. Using an age-stage two-sex life table approach, we fed larvae diets containing 0.04, 0.4, or 4 mg/g of these nanomaterials. Both types of MWCNTs exhibited concentration-dependent inhibitory effects. At the highest dose (4 mg/g), larval development was significantly prolonged, adult pre-oviposition periods increased, and fecundity (egg production) sharply declined, especially with MWCNTs-OH. Population growth parameters were also suppressed: net reproductive rate (R0), intrinsic rate of increase (r), and finite rate of increase (λ) were reduced at 4 mg/g, particularly with MWCNTs-OH, while mean generation time (T) was extended with MWCNTs-COOH. Overall, MWCNTs-OH demonstrated a greater inhibitory impact compared to MWCNTs-COOH. These findings suggest that functionalized MWCNTs could serve as potential novel pest control agents against S. frugiperda by impeding its development and reproduction. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Graphical abstract

14 pages, 1369 KiB  
Article
Rapid and Simplified Determination of Amphetamine-Type Stimulants Using One-Pot Synthesized Magnetic Adsorbents with Built-In pH Regulation Coupled with Liquid Chromatography–Tandem Mass Spectrometry
by Yabing Shan, Ying Chen, Jiayi Li, Xianbin Zeng, Rui Jia, Yuwei Liu, Dongmei Li and Di Chen
J. Xenobiot. 2025, 15(4), 102; https://doi.org/10.3390/jox15040102 - 2 Jul 2025
Viewed by 345
Abstract
Background: Amphetamine-type stimulants (ATS) in water pose significant public health and ecological risks, necessitating reliable and efficient detection methods. Current approaches often involve time-consuming pH adjustments and post-processing steps, limiting their practicality for high-throughput analysis. This study aimed to develop a streamlined method [...] Read more.
Background: Amphetamine-type stimulants (ATS) in water pose significant public health and ecological risks, necessitating reliable and efficient detection methods. Current approaches often involve time-consuming pH adjustments and post-processing steps, limiting their practicality for high-throughput analysis. This study aimed to develop a streamlined method integrating pH regulation and adsorption into a single material to simplify sample preparation and enhance analytical efficiency. Methods: A novel Fe3O4/MWCNTs-OH/CaO composite adsorbent was synthesized via a one-pot grinding method, embedding pH adjustment and adsorption functionalities within a single material. This innovation enabled magnetic solid-phase extraction (MSPE) without pre-adjusting sample pH or post-desorption steps. The method was coupled with liquid chromatography–tandem mass spectrometry (LC-MS/MS) for ATS detection. Optimization included evaluating adsorption/desorption conditions and validating performance in real water matrices. Results: The method demonstrated exceptional linearity (R2 > 0.98), low detection limits (0.020–0.060 ng/mL), and high accuracy with relative recoveries of 92.8–104.8%. Precision was robust, with intra-/inter-day relative standard deviations (RSDs) below 11.6%. Single-blind experiments confirmed practical applicability, yielding consistent recoveries (relative errors: 1–8%) for ATS-spiked samples at 0.8 and 8 ng/mL. Compared to existing techniques, the approach reduced processing time to ~5 min by eliminating external pH adjustments and post-concentration steps. Conclusions: This work presents a rapid, reliable, and user-friendly method for ATS detection in complex environmental matrices. The integration of pH regulation and adsorption into a single adsorbent significantly simplifies workflows while maintaining high sensitivity and precision. The technique holds promise for large-scale environmental monitoring and forensic toxicology, offering a practical solution for high-throughput analysis of emerging contaminants. Full article
Show Figures

Graphical abstract

23 pages, 7235 KiB  
Article
Corrosion Resistance Behavior of Mg-Zn-Ce/MWCNT Magnesium Nanocomposites Synthesized by Ultrasonication-Assisted Hybrid Stir–Squeeze Casting for Sacrificial Anode Applications
by S. C. Amith, Poovazhagan Lakshmanan, Gnanavelbabu Annamalai, Manoj Gupta and Arunkumar Thirugnanasambandam
Metals 2025, 15(6), 673; https://doi.org/10.3390/met15060673 - 17 Jun 2025
Viewed by 326
Abstract
The influence of multiwall carbon nanotube (MWCNT) reinforcements on electrochemical corrosion investigations at varying NaCl concentrations (0.4 M, 0.6 M, 0.8 M, 1 M) of Mg-Zn-Ce nanocomposites is studied in this work. The Mg-Zn-Ce/MWCNT nanocomposites were developed by using an ultrasonication-assisted hybrid stir–squeeze [...] Read more.
The influence of multiwall carbon nanotube (MWCNT) reinforcements on electrochemical corrosion investigations at varying NaCl concentrations (0.4 M, 0.6 M, 0.8 M, 1 M) of Mg-Zn-Ce nanocomposites is studied in this work. The Mg-Zn-Ce/MWCNT nanocomposites were developed by using an ultrasonication-assisted hybrid stir–squeeze (UHSS) casting method with different MWCNT concentrations (0, 0.4, 0.8, 1.2 wt.%) in a Mg-Zn-Ce magnesium alloy matrix. The microstructural characterizations shown using X-ray diffraction revealed the presence of secondary phases (MgZn2, Mg12Ce), T-phase (Mg7Zn3RE), α-Mg, and MWCNT peaks. Optical microscopy results showed grain refinement in the case of nanocomposites. Transmission electron microscope studies revealed well-dispersed MWCNT, indicating the good selection of processing parameters. The uniform dispersion of MWCNTs was achieved due to a hybrid stirring mechanism along with transient cavitation, ultrasonic streaming, and squeeze effect. The higher Ecorr value of −1.39 V, lower Icorr value (5.81 µA/cm2), and lower corrosion rate of 0.1 mm/Yr (↑77%) were obtained by 0.8% nanocomposite at 0.4 M NaCl concentration, when compared to the monolithic alloy. The Mg(OH)2 passive film formation on 0.8 wt.% nanocomposite was denser, attributed to the refined grains. At higher NaCl concentration, the one-dimensional morphological advantage of MWCNT helped to act as a barrier for further Mg exposure to excessive Cl attack, which reduced the formation of MgCl2. Therefore, the UHSS-casted Mg-Zn-Ce/MWCNT nanocomposites present a good potential as sacrificial anodes for use in a wide range of industrial applications. Full article
(This article belongs to the Special Issue Advances in Corrosion and Protection of Materials (Third Edition))
Show Figures

Figure 1

26 pages, 3986 KiB  
Article
Research on the Rheological Properties and Modification Mechanisms of MWCNTs-OH/SBS-Modified Asphalt Binder
by Manman Su, Qi Ding, Zuohong He, Xuling Huang, Leilei He and Enlong Zhao
Coatings 2025, 15(6), 625; https://doi.org/10.3390/coatings15060625 - 23 May 2025
Viewed by 420
Abstract
The objective of this study is to explore the high-temperature rheological properties and microscopic interaction mechanisms of styrene–butadiene–styrene (SBS) composite-modified asphalt with hydroxylated multi-walled carbon nanotubes (MWCNT-OH). SBS-modified asphalt, MWCNT-modified asphalt and MWCNT/SBS composite-modified asphalt were prepared with high-speed shearing apparatus and machine [...] Read more.
The objective of this study is to explore the high-temperature rheological properties and microscopic interaction mechanisms of styrene–butadiene–styrene (SBS) composite-modified asphalt with hydroxylated multi-walled carbon nanotubes (MWCNT-OH). SBS-modified asphalt, MWCNT-modified asphalt and MWCNT/SBS composite-modified asphalt were prepared with high-speed shearing apparatus and machine mixer. Physical property tests, dynamic shear rheological (DSR) tests, multiple stress creep recovery (MSCR) tests, X-ray diffraction (XRD) and Raman spectroscopy analyses were carried out to systematically compare the differences in macroscopic performance and changes in microscopic structure of different types of asphalts. According to the results of physical property tests, DSR tests and MSCR tests, the composite-modified asphalt was superior to the single-component-modified asphalt in terms of complex modulus (G*) and rutting factor (G*/sin δ). Its creep recovery rate (R) and unrecoverable compliance (Jnr) exhibited better anti-deformation ability under high temperatures, verifying the synergistic effect of SBS and MWCNTs-OH. XRD analysis showed that composite modification reduced the disorder degree of the crystalline phase of asphalt. Raman spectroscopy confirmed that there were changes in the vibration of chemical bonds between the modifier and asphalt, indicating that the modifier and asphalt acted on the asphalt system through physical dispersion and chemical cross-linking. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Graphical abstract

17 pages, 5147 KiB  
Article
Response Surface Optimization of Biodiesel Production via Esterification Reaction of Methanol and Oleic Acid Catalyzed by a Brönsted–Lewis Catalyst PW/UiO/CNTs-OH
by Xuyao Xing, Qiong Wu, Li Zhang and Qing Shu
Catalysts 2025, 15(5), 412; https://doi.org/10.3390/catal15050412 - 23 Apr 2025
Viewed by 516
Abstract
In this study, a Brönsted–Lewis bifunctional acidic catalyst PW/UiO/CNTs-OH was synthesized via the hydrothermal method. The parameters for the esterification reaction of oleic acid with methanol catalyzed by PW/UiO/CNTs-OH were optimized using central composite design-response surface methodology (CCD-RSM). A biodiesel yield of 92.9% [...] Read more.
In this study, a Brönsted–Lewis bifunctional acidic catalyst PW/UiO/CNTs-OH was synthesized via the hydrothermal method. The parameters for the esterification reaction of oleic acid with methanol catalyzed by PW/UiO/CNTs-OH were optimized using central composite design-response surface methodology (CCD-RSM). A biodiesel yield of 92.9% was achieved under the optimized conditions, retaining 82.3% biodiesel yield after four catalytic cycles. The enhanced catalytic performance of PW/UiO/CNTs-OH can be attributed as follows: the [Zr6O4(OH)4]12+ anchored on the surface of multi-walled carbon nanotubes (MWCNTs) can serve as nucleation sites for UiO-66, not only encapsulating H3[P(W3O10)4] (HPW) but also reversing the quadrupole moment of MWCNTs to generate Lewis acid sites. In addition, introduction of HPW during synthesis of UiO-66 decreases the solution pH, inducing the protonation of p-phthalic acid (PTA) to disrupt the coordination with the [Zr6O4(OH)4] cluster, thereby creating an unsaturated Zr4+ site with electron pair-accepting capability, which generates Lewis acid sites. EIS analysis revealed that PW/UiO/CNTs-OH has higher electron migration efficiency than UiO-66 and PW/UiO. Furthermore, NH3-TPD and Py-IR analyses showed that PW/UiO/CNTs-OH possessed high densities of Lewis acidic sites of 83.69 μmol/g and Brönsted acidic sites of 9.98 μmol/g. Full article
(This article belongs to the Section Biomass Catalysis)
Show Figures

Graphical abstract

19 pages, 4227 KiB  
Article
Mechanical and Electrical Properties of Cementitious Composites Reinforced with Multi-Scale Carbon Fibers
by Nueraili Maimaitituersun, Jing Wang, Danna Wang and Zuojun Ning
Materials 2025, 18(8), 1830; https://doi.org/10.3390/ma18081830 - 16 Apr 2025
Cited by 1 | Viewed by 392
Abstract
Carbon fibers, with high modulus of elasticity, tensile strength, and electrical conductivity, can modify the mechanical and electrical properties of cementitious composites, facilitating their practical application in smart infrastructure. This study investigates the effects of carbon nanofibers (including carbon nanotubes, a special type [...] Read more.
Carbon fibers, with high modulus of elasticity, tensile strength, and electrical conductivity, can modify the mechanical and electrical properties of cementitious composites, facilitating their practical application in smart infrastructure. This study investigates the effects of carbon nanofibers (including carbon nanotubes, a special type of carbon nanofibers) and micron carbon fibers with different aspect ratios and surface treatments on the uniaxial tensile and electrical properties of cementitious composites. The results demonstrate that appropriate carbon fiber doping markedly improves the uniaxial tensile strength of cementitious composites, with enhancement effects following a gradient trend based on a geometric scale: carbon nanotubes (CNTs) < carbon nanofibers (CNFs) < short-cut carbon fibers (CFs). Hydroxyl-functionalized multi-walled carbon nanotubes (MWCNTs) form continuous conductive networks due to surface active groups (-OH content: 5.58 wt.%), increasing the composite’s electrical conductivity by two orders of magnitude (from 3.56 × 108 to 2.74 × 106 Ω·cm), with conductivity enhancement becoming more pronounced at higher doping levels. Short-cut CFs also improve conductivity, with longer fibers (6 mm) exhibiting a 12.4% greater reduction in resistivity. However, exceeding the percolation threshold (0.5–1.0 vol.%) leads to limited conductivity improvement (<5%) and mechanical degradation (8.7% tensile strength reduction) due to fiber agglomeration-induced interfacial defects. This study is a vital reference for material design and lays the groundwork for self-sensing cementitious composites. Full article
Show Figures

Figure 1

18 pages, 21154 KiB  
Article
Preparation of CCF/MWCNT-OH/Graphite/Resin Composite Bipolar Plates Using Bi-Directional Interfacial Modification and Study of Their Performance Improvement and the Mechanism of Their Interfacial Bonding Improvement
by Wenkai Li, Haodong Zeng and Zhiyong Xie
C 2025, 11(1), 24; https://doi.org/10.3390/c11010024 - 19 Mar 2025
Viewed by 1483
Abstract
Composite bipolar plates are a new class of material bipolar plates for PEMFCs. However, their application is limited by problems such as the difficulty of balancing their strength/conductivity properties. In this paper, by using surface-modified carboxylated short-cut carbon fibers and hydroxylated carbon nanotubes [...] Read more.
Composite bipolar plates are a new class of material bipolar plates for PEMFCs. However, their application is limited by problems such as the difficulty of balancing their strength/conductivity properties. In this paper, by using surface-modified carboxylated short-cut carbon fibers and hydroxylated carbon nanotubes as well as PI resin, the interfacial bonding between the carbon-based filler and the resin is effectively improved under the premise of ensuring electrical conductivity, which enhances the flexural strength. The effect of the surface modification of the filler on the interfacial bonding between the filler and the PI resin is thoroughly investigated through molecular dynamics simulations. The mechanism for this improved bonding was also studied. Through the surface modification of the filler, the composite bipolar plates possessed a flexural strength of 49.06 MPa and a planar conductivity of 228.52 S/cm with the addition of 6% MWCNT-OH as well as 12% CCFs, which has the potential to be an optional substrate for composite bipolar plates. Full article
Show Figures

Figure 1

16 pages, 2145 KiB  
Article
Highly Selective Oxidation of 1,2-Propanediol to Lactic Acid Using Pd Nanoparticles Supported on Functionalized Multi-Walled Carbon Nanotubes
by Zhiqing Wang, Xiong Xiong, Aiqian Jin, Lingqin Shen and Hengbo Yin
Catalysts 2025, 15(1), 53; https://doi.org/10.3390/catal15010053 - 9 Jan 2025
Cited by 1 | Viewed by 992
Abstract
1,2-Propanediol, with its highly functionalized molecular structure and abundant availability, serves as a viable feedstock for high-value chemicals. The oxidation of 1,2-propanediol can potentially yield lactic acid, an important commodity chemical. Herein, we report the catalytic oxidation of 1,2-propanediol in the presence of [...] Read more.
1,2-Propanediol, with its highly functionalized molecular structure and abundant availability, serves as a viable feedstock for high-value chemicals. The oxidation of 1,2-propanediol can potentially yield lactic acid, an important commodity chemical. Herein, we report the catalytic oxidation of 1,2-propanediol in the presence of NaOH, using Pd nanoparticles (NPs) supported on various functionalized multi-walled carbon nanotubes (MWCNTs). Both single-factor experiments and the response surface methodology were employed to investigate the optimal operating parameters. It was found that nitrogen doping promotes strong metal–support interactions between the active components and the support. Under optimal reaction conditions (123 °C, 1.25 MPa O2 pressure, 4 h, and a NaOH/1,2-PDO molar ratio of 4.0), a high lactic acid yield of 68.3% was achieved using nitrogen-doped MWCNT-supported Pd nanoparticles as the catalyst. The selectivity for lactic acid decreased with increasing reaction time, temperature, NaOH/1,2-PDO molar ratio, and O2 pressure, while the conversion rate increased correspondingly. After five cycles, the conversion of 1,2-PDO slightly decreased to 76.2%, while the LA selectivity remained high at 84.9%. Additionally, the reaction pathway was further investigated, confirming the formation mechanism of lactic acid. Full article
Show Figures

Figure 1

12 pages, 3209 KiB  
Article
Preparation of Molecularly Imprinted Electrochemical Sensors and Analysis of the Doping of Epinephrine in Equine Blood
by Zhao Wang, Yanqi Li, Xiaoxue Xi, Qichao Zou and Yuexing Zhang
Sensors 2025, 25(1), 70; https://doi.org/10.3390/s25010070 - 26 Dec 2024
Viewed by 791
Abstract
In this paper, a novel molecularly imprinted polymer membrane modified glassy carbon electrode for electrochemical sensors (MIP-OH-MWCNTs-GCE) for epinephrine (EP) was successfully prepared by a gel-sol method using an optimized functional monomer oligosilsesquioxane-Al2O3 sol-ITO composite sol (ITO-POSS-Al2O3 [...] Read more.
In this paper, a novel molecularly imprinted polymer membrane modified glassy carbon electrode for electrochemical sensors (MIP-OH-MWCNTs-GCE) for epinephrine (EP) was successfully prepared by a gel-sol method using an optimized functional monomer oligosilsesquioxane-Al2O3 sol-ITO composite sol (ITO-POSS-Al2O3). Hydroxylated multi-walled carbon nanotubes (OH-MWCNTs) were introduced during the modification of the electrodes, and the electrochemical behavior of EP on the molecularly imprinted electrochemical sensors was probed by the differential pulse velocity (DPV) method. The experimental conditions were optimized. Under the optimized conditions, the response peak current values showed a good linear relationship with the epinephrine concentration in the range of 0.0014–2.12 μM, and the detection limit was 4.656 × 10−11 M. The prepared molecularly imprinted electrochemical sensor was successfully applied to the detection of actual samples of horse serum with recoveries of 94.97–101.36% (RSD), which indicated that the constructed molecularly imprinted membrane electrochemical sensor has a high detection accuracy for epinephrine in horse blood, and that it has a better value for practical application. Full article
(This article belongs to the Special Issue Sensing in Supramolecular Chemistry)
Show Figures

Figure 1

17 pages, 11330 KiB  
Article
Combined Toxicity of Multi-Walled Carbon Nanotubes and Cu2+ on the Growth of Ryegrass: Effect of Surface Modification, Dose, and Exposure Time Pattern
by Wenwen Xie, Cheng Peng, Weiping Wang, Xiaoyi Chen, Jiaqi Tan and Wei Zhang
Nanomaterials 2024, 14(21), 1746; https://doi.org/10.3390/nano14211746 - 30 Oct 2024
Viewed by 936
Abstract
The escalating release of multi-walled carbon nanotubes (MWCNTs) into the environment has raised concerns due to their potential ecotoxicological impacts. However, their combined phytotoxicity with heavy metals such as copper (Cu) is still unclear. This study investigated the individual and combined toxic effects [...] Read more.
The escalating release of multi-walled carbon nanotubes (MWCNTs) into the environment has raised concerns due to their potential ecotoxicological impacts. However, their combined phytotoxicity with heavy metals such as copper (Cu) is still unclear. This study investigated the individual and combined toxic effects of MWCNTs (MWCNT, MWCNT-OH, and MWCNT-COOH) and Cu2+ on ryegrass (Lolium multiflorum), uniquely considering different addition orders. The results show that Cu severely inhibited the growth of ryegrass while MWCNTs exhibited a hormesis effect on ryegrass. When MWCNT and Cu were combined, the malondialdehyde (MDA) content in ryegrass showed a 32.39% increase at 20 mg/L MWCNT exposure, suggesting reduced oxidative stress. However, at the higher concentration of 1000 mg/L, it led to a significant 75.22% reduction in ryegrass biomass. MWCNT-COOH had the most pronounced effect, reducing the total chlorophyll content by 39.76% compared to unmodified MWCNT and by 10.67% compared to MWCNT-OH (500 mg/L). Additionally, pre-induced MWCNTs might alleviate the Cu in the plant by 23.08–35.38% through adsorption in the nutrient solution. Small molecule organic acids and amino acids primarily mediated the response to environmental stress in ryegrass. This research provides crucial insights into understanding the complex interactions of MWCNT and Cu2+ and their combined effects on plant ecosystems. Full article
Show Figures

Figure 1

23 pages, 6089 KiB  
Article
Nanofibrous Conductive Sensor for Limonene: One-Step Synthesis via Electrospinning and Molecular Imprinting
by Antonella Macagnano, Fabricio Nicolas Molinari, Paolo Papa, Tiziana Mancini, Stefano Lupi, Annalisa D’Arco, Anna Rita Taddei, Simone Serrecchia and Fabrizio De Cesare
Nanomaterials 2024, 14(13), 1123; https://doi.org/10.3390/nano14131123 - 29 Jun 2024
Cited by 3 | Viewed by 2114
Abstract
Detecting volatile organic compounds (VOCs) emitted from different plant species and their organs can provide valuable information about plant health and environmental factors that affect them. For example, limonene emission can be a biomarker to monitor plant health and detect stress. Traditional methods [...] Read more.
Detecting volatile organic compounds (VOCs) emitted from different plant species and their organs can provide valuable information about plant health and environmental factors that affect them. For example, limonene emission can be a biomarker to monitor plant health and detect stress. Traditional methods for VOC detection encounter challenges, prompting the proposal of novel approaches. In this study, we proposed integrating electrospinning, molecular imprinting, and conductive nanofibers to fabricate limonene sensors. In detail, polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) served here as fiber and cavity formers, respectively, with multiwalled carbon nanotubes (MWCNT) enhancing conductivity. We developed one-step monolithic molecularly imprinted fibers, where S(−)-limonene was the target molecule, using an electrospinning technique. The functional cavities were fixed using the UV curing method, followed by a target molecule washing. This procedure enabled the creation of recognition sites for limonene within the nanofiber matrix, enhancing sensor performance and streamlining manufacturing. Humidity was crucial for sensor working, with optimal conditions at about 50% RH. The sensors rapidly responded to S(−)-limonene, reaching a plateau within 200 s. Enhancing fiber density improved sensor performance, resulting in a lower limit of detection (LOD) of 137 ppb. However, excessive fiber density decreased accessibility to active sites, thus reducing sensitivity. Remarkably, the thinnest mat on the fibrous sensors created provided the highest selectivity to limonene (Selectivity Index: 72%) compared with other VOCs, such as EtOH (used as a solvent in nanofiber development), aromatic compounds (toluene), and two other monoterpenes (α-pinene and linalool) with similar structures. These findings underscored the potential of the proposed integrated approach for selective VOC detection in applications such as precision agriculture and environmental monitoring. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

17 pages, 2928 KiB  
Article
Exploring the Thermal-Oxidative Stability of Azithromycin Using a Thermoactivated Sensor Based on Cerium Molybdate and Multi-Walled Carbon Nanotubes
by Heryka R. A. Costa, André O. Santos, Yago N. Teixeira, Maria A. S. Silva, Valker A. Feitosa, Simone Morais and Thiago M. B. F. Oliveira
Nanomaterials 2024, 14(11), 899; https://doi.org/10.3390/nano14110899 - 21 May 2024
Cited by 2 | Viewed by 2067
Abstract
The chemical stability of azithromycin (AZM) may be compromised depending on the imposed thermo-oxidative conditions. This report addresses evidence of this process under varying conditions of temperature (20–80 °C), exposure time to UV radiation (1–3 h irradiation at 257 nm), and air saturation [...] Read more.
The chemical stability of azithromycin (AZM) may be compromised depending on the imposed thermo-oxidative conditions. This report addresses evidence of this process under varying conditions of temperature (20–80 °C), exposure time to UV radiation (1–3 h irradiation at 257 nm), and air saturation (1–3 h saturation with atmospheric air at 1.2 L min−1 and 15 kPa) through electrochemical measurements performed with a thermoactivated cerium molybdate (Ce2(MoO4)3)/multi-walled carbon nanotubes (MWCNT)-based composite electrode. Thermal treatment at 120 °C led to coordinated water elimination in Ce2(MoO4)3, improving its electrocatalytic effect on antibiotic oxidation, while MWCNT were essential to reduce the charge-transfer resistance and promote signal amplification. Theoretical–experimental data revealed remarkable reactivity for the irreversible oxidation of AZM on the working sensor using phosphate buffer (pH = 8) prepared in CH3OH/H2O (10:90%, v/v). Highly sensitive (230 nM detection limit) and precise (RSD < 4.0%) measurements were recorded under these conditions. The results also showed that AZM reduces its half-life as the temperature, exposure time to UV radiation, and air saturation increase. This fact reinforces the need for continuous quality control of AZM-based pharmaceuticals, using conditions closer to those observed during their transport and storage, reducing impacts on consumers’ health. Full article
(This article belongs to the Special Issue Carbon-Based Nanomaterials for Emerging Technologies)
Show Figures

Figure 1

13 pages, 6457 KiB  
Article
Study on the Properties of FEVE Modified with Ag2O/OH-MWCNTS Nanocomposites for Use as Adhesives for Wooden Heritage Objects
by Gele Teri, Cong Cheng, Kezhu Han, Dan Huang, Jing Li, Yujia Luo, Peng Fu and Yuhu Li
Molecules 2024, 29(6), 1365; https://doi.org/10.3390/molecules29061365 - 19 Mar 2024
Cited by 1 | Viewed by 1562
Abstract
The durability of wooden heritage objects and sites can be affected by external environmental factors, leading to decay, cracking, and other forms of deterioration, which might ultimately result in significant and irreversible loss. In this study, a FEVE resin was modified with Ag [...] Read more.
The durability of wooden heritage objects and sites can be affected by external environmental factors, leading to decay, cracking, and other forms of deterioration, which might ultimately result in significant and irreversible loss. In this study, a FEVE resin was modified with Ag2O/OH-MWCNTS (MA), denoted as MAF, where three concentrations were prepared using in situ precipitation, and the resulting composite adhesive was characterized by a high viscosity and effective bacteriostatic properties, demonstrating a better viscosity and thermal stability, as well as antibacterial properties, than pure FEVE resin. The results show that MAF adhesives present good thermal stability, as evidenced by a lower mass loss rate following treatment at 800 °C compared to the pure FEVE resin. At a consistent shear rate, the viscosity of MAF demonstrates a notable increase with the proportion of MA, which is better than that of FEVE. This suggests that the nano-Ag2O particles in MA act as physical crosslinking agents in FEVE, improving the viscosity of the composite adhesive MAF. The adhesion strength between MAF and wood exhibits a similar trend, with wooden samples showing higher shear strengths as the proportion of MA increases in comparison to FEVE. Simultaneously, the antibacterial effects of the MAF adhesive exceeded 1 mm for Trichoderma, Aspergillus niger, and white rot fungi. The antibacterial activity of the MAF adhesive exhibited a direct correlation with the concentration of Ag2O/OH-MWCNTS, with the most pronounced inhibitory effect observed on Trichoderma. The MAF adhesive demonstrates promising prospects as an adhesive for wooden heritage artifacts, offering a novel approach for the rapid, environmentally friendly, and efficient development of composite adhesives with superior adhesive properties. Full article
(This article belongs to the Special Issue Chemical Conservation of Paper-Based Cultural Heritage)
Show Figures

Figure 1

11 pages, 3616 KiB  
Article
Highly Thermally Conductive Triple-Level Ordered CNT/PVA Nanofibrous Films
by Yanyan Wu, Anqi Chen, Wenlong Jiang, Zhiye Tan, Tingting Fu, Tingting Xie, Guimei Zhu and Yuan Zhu
Polymers 2024, 16(6), 734; https://doi.org/10.3390/polym16060734 - 7 Mar 2024
Cited by 1 | Viewed by 1834
Abstract
The escalating thermal power density in electronic devices necessitates advanced thermal management technologies. Polymer-based materials, prized for their electrical insulation, flexibility, light weight, and strength, are extensively used in this field. However, the inherent low thermal conductivity of polymers requires enhancement for effective [...] Read more.
The escalating thermal power density in electronic devices necessitates advanced thermal management technologies. Polymer-based materials, prized for their electrical insulation, flexibility, light weight, and strength, are extensively used in this field. However, the inherent low thermal conductivity of polymers requires enhancement for effective heat dissipation. This work proposes a novel paradigm, emphasizing ordered structures with functional units, to create triple-level, ordered, low-filler loading of multi-walled carbon nanotube (MWCNT)/poly(vinyl alcohol)(PVA) nanofibrous films. By addressing interfacial thermal resistance through –OH groups, the coupling between polymer and MWCNT is strengthened. The triple-level ordered structure comprises aligned PVA chains, aligned MWCNTs, and aligned MWCNT/PVA composite fibers. Focusing on the filler’s impact on thermal conductivity and chain orientation, the thermal transport mechanisms have been elucidated level by level. Our MWCNT/PVA composite, with lower filler loadings (10 wt.%), achieves a remarkable TC exceeding 35.4 W/(m·K), surpassing other PVA composites with filler loading below 50 wt.%. Full article
(This article belongs to the Special Issue Thermal Properties Analysis of Polymers)
Show Figures

Figure 1

20 pages, 3196 KiB  
Article
Sustainably Sourced Mesoporous Carbon Molecular Sieves as Immobilization Matrices for Enzymatic Biofuel Cell Applications
by Federica Torrigino, Marcel Nagel, Zhujun Peng, Martin Hartmann and Katharina Herkendell
Catalysts 2023, 13(11), 1415; https://doi.org/10.3390/catal13111415 - 4 Nov 2023
Cited by 3 | Viewed by 2844
Abstract
Ordered mesoporous carbon CMK-3 sieves with a hexagonal structure and uniform pore size have recently emerged as promising materials for applications as adsorbents and electrodes. In this study, using sucrose as the sustainable carbon source and SBA-15 as a template, CMK-3 sieves are [...] Read more.
Ordered mesoporous carbon CMK-3 sieves with a hexagonal structure and uniform pore size have recently emerged as promising materials for applications as adsorbents and electrodes. In this study, using sucrose as the sustainable carbon source and SBA-15 as a template, CMK-3 sieves are synthesized to form bioelectrocatalytic immobilization matrices for enzymatic biofuel cell (EFC) electrodes. Their electrochemical performance, capacitive features, and the stability of enzyme immobilization are analyzed and compared to commercially available multi-walled carbon nanotubes (MWCNT) using cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The anodic reaction in the presence of glucose oxidase (GOx) and ferrocene methanol (FcMeOH) on the sustainably sourced CMK-3-based electrodes produces bioelectrocatalytic current responses at 0.5 V vs. saturated calomel electrode (SCE) that are twice as high as on the MWCNT-based electrodes under saturated glucose conditions. For the cathodic reaction, the MWCNT-based cathode performs marginally better than the CMK-3-based electrodes in the presence of bilirubin oxidase (BOD) and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS2−). The CMK-3-based EFCs assembled from the GOx anode and BOD cathode results in a power output of 93 μW cm−2. In contrast, the output power of MWCNT-based EFCs is approximately 53 μW cm−2. The efficiency of CMK-3 as a support material for biofuel cell applications is effectively demonstrated. Full article
Show Figures

Figure 1

Back to TopTop