Preparation of CCF/MWCNT-OH/Graphite/Resin Composite Bipolar Plates Using Bi-Directional Interfacial Modification and Study of Their Performance Improvement and the Mechanism of Their Interfacial Bonding Improvement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of CCFs-COOH and MWCNT-OH@G
2.3. Preparation of Composite Bipolar Plates
2.4. Means of Characterization and Detection
3. Results and Discussion
3.1. Effect of Surface Modification on the Properties of MWCNTs and CCFs
3.2. Effect of Surface Modification on the Performance of Composite Bipolar Plates
3.3. Investigation of the Mechanism of Improvement in the Performance of MWCNT-OH/CCFs-COOH Using MS Simulation
3.4. Corrosion Resistance of Composite Bipolar Plates
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
- The following abbreviations are used in this manuscript:
MWCNTs | Multi-walled carbon nanotubes |
PEMFC | Proton exchange membrane fuel cell |
CCFs | Chopped carbon fibers |
CED | Cohesive energy density |
MSD | Mean square displacement |
SP | Solubility parameters |
PI | Polyimide resin |
Requirements of DOE | Requirements of the U.S. Department of Energy |
References
- Sazali, N. Emerging technologies by hydrogen: A review. Int. J. Hydrogen Energy 2020, 45, 18753–18771. [Google Scholar] [CrossRef]
- Jaradat, M.; Almashaileh, S.; Bendea, C.; Juaidi, A.; Bendea, G.; Bungau, T. Green Hydrogen in Focus: A Review of Production Technologies, Policy Impact, and Market Developments. Energies 2024, 17, 3992. [Google Scholar] [CrossRef]
- Baroutaji, A.; Arjunan, A.; Robinson, J.; Wilberforce, T.; Abdelkareem, M.A.; Olabi, A.G. PEMFC poly-generation systems: Developments, merits, and challenges. Sustainability 2021, 13, 11696. [Google Scholar] [CrossRef]
- Qasem, N.A.; Abdulrahman, G.A. A recent comprehensive review of fuel cells: History, types, and applications. Int. J. Energy Res. 2024, 2024, 7271748. [Google Scholar] [CrossRef]
- Aminudin, M.; Kamarudin, S.; Lim, B.; Majilan, E.; Masdar, M.; Shaari, N. An overview: Current progress on hydrogen fuel cell vehicles. Int. J. Hydrogen Energy 2023, 48, 4371–4388. [Google Scholar] [CrossRef]
- Wilberforce, T.; Olabi, A.; Muhammad, I.; Alaswad, A.; Sayed, E.T.; Abo-Khalil, A.G.; Maghrabie, H.M.; Elsaid, K.; Abdelkareem, M.A. Recovery of waste heat from proton exchange membrane fuel cells–A review. Int. J. Hydrogen Energy 2024, 52, 933–972. [Google Scholar] [CrossRef]
- Gupta, P.; Toksha, B.; Rahaman, M. A Critical Review on Hydrogen Based Fuel Cell Technology and Applications. Chem. Rec. 2024, 24, e202300295. [Google Scholar] [CrossRef]
- Bhandari, R.; Adhikari, N. A comprehensive review on the role of hydrogen in renewable energy systems. Int. J. Hydrogen Energy 2024, 82, 923–951. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Z.; Fan, L.; Du, Q.; Jiao, K. Application progress of small-scale proton exchange membrane fuel cell. Energy Rev. 2023, 2, 100017. [Google Scholar] [CrossRef]
- Kampker, A.; Ayvaz, P.; Schön, C.; Karstedt, J.; Förstmann, R.; Welker, F. Challenges towards large-scale fuel cell production: Results of an expert assessment study. Int. J. Hydrogen Energy 2020, 45, 29288–29296. [Google Scholar] [CrossRef]
- Wang, Y.; Pang, Y.; Xu, H.; Martinez, A.; Chen, K.S. PEM Fuel cell and electrolysis cell technologies and hydrogen infrastructure development–a review. Energy Environ. Sci. 2022, 15, 2288–2328. [Google Scholar] [CrossRef]
- Moreno, N.G.; Molina, M.C.; Gervasio, D.; Robles, J.F.P. Approaches to polymer electrolyte membrane fuel cells (PEMFCs) and their cost. Renew. Sustain. Energy Rev. 2015, 52, 897–906. [Google Scholar] [CrossRef]
- Gao, X.; Chen, J.; Xu, R.; Zhen, Z.; Zeng, X.; Chen, X.; Cui, L. Research progress and prospect of the materials of bipolar plates for proton exchange membrane fuel cells (PEMFCs). Int. J. Hydrogen Energy 2024, 50, 711–743. [Google Scholar]
- Tang, A.; Crisci, L.; Bonville, L.; Jankovic, J. An overview of bipolar plates in proton exchange membrane fuel cells. J. Renew. Sustain. Energy 2021, 13, 022701. [Google Scholar] [CrossRef]
- Yan, Q.; Lu, G.; Li, S.; Xie, J.; Li, Y. Effects of cathode enhanced cooling channels and microporous metal mesh on performance of open cathode air-cooled fuel cells. Int. J. Electrochem. Sci. 2025, 20, 100927. [Google Scholar]
- Yang, D.; Fortin, P.; Garg, H.; Andersson, M. The Influence of bipolar plate wettability on performance and durability of a proton exchange membrane fuel cell. Int. J. Hydrogen Energy 2024, 95, 1284–1298. [Google Scholar] [CrossRef]
- Pourrahmani, H.; Siavashi, M.; Yavarinasab, A.; Matian, M.; Chitgar, N.; Wang, L.; Van Herle, J. A review on the long-term performance of proton exchange membrane fuel cells: From degradation modeling to the effects of bipolar plates, sealings, and contaminants. Energies 2022, 15, 5081. [Google Scholar] [CrossRef]
- Xiong, K.; Wu, W.; Wang, S.; Zhang, L. Modeling, design, materials and fabrication of bipolar plates for proton exchange membrane fuel cell: A review. Appl. Energy 2021, 301, 117443. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Ding, H.; Pan, Z.; Huang, X.; Pan, X. Heat and mass transfer characteristics of a novel three-dimensional flow field metal bipolar plate for PEMFC by laser 3D printing. Int. J. Hydrogen Energy 2024, 50, 1036–1049. [Google Scholar]
- Liu, J.; Zhang, L.; Yuan, B.; Zhang, Y.; Yang, Z.; Huang, J. Design and development of coating for metallic bipolar plates in proton exchange membrane fuel cell (PEMFC): A review. Mater. Des. 2024, 246, 113338. [Google Scholar]
- Liu, Q.; Lan, F.; Zeng, C.; Chen, J.; Wang, J. A review of proton exchange membrane fuel cell’s bipolar plate design and fabrication process. J. Power Sources 2022, 538, 231543. [Google Scholar]
- San, F.G.B.; Isik-Gulsac, I. Effect of surface wettability of polymer composite bipolar plates on polymer electrolyte membrane fuel cell performances. Int. J. Hydrogen Energy 2013, 38, 4089–4098. [Google Scholar]
- Song, Y.; Zhang, C.; Ling, C.-Y.; Han, M.; Yong, R.-Y.; Sun, D.; Chen, J. Review on current research of materials, fabrication and application for bipolar plate in proton exchange membrane fuel cell. Int. J. Hydrogen Energy 2020, 45, 29832–29847. [Google Scholar]
- Hinds, G.; Brightman, E. Towards more representative test methods for corrosion resistance of PEMFC metallic bipolar plates. Int. J. Hydrogen Energy 2015, 40, 2785–2791. [Google Scholar]
- Asri, N.F.; Husaini, T.; Sulong, A.B.; Majlan, E.H.; Daud, W.R.W. Coating of stainless steel and titanium bipolar plates for anticorrosion in PEMFC: A review. Int. J. Hydrogen Energy 2017, 42, 9135–9148. [Google Scholar]
- Tawfik, H.; Hung, Y.; Mahajan, D. Metal bipolar plates for PEM fuel cell—A review. J. Power Sources 2007, 163, 755–767. [Google Scholar]
- Pozio, A.; Zaza, F.; Masci, A.; Silva, R. Bipolar plate materials for PEMFCs: A conductivity and stability study. J. Power Sources 2008, 179, 631–639. [Google Scholar]
- Antunes, R.A.; Oliveira, M.C.L.; Ett, G.; Ett, V. Corrosion of metal bipolar plates for PEM fuel cells: A review. Int. J. Hydrogen Energy 2010, 35, 3632–3647. [Google Scholar]
- Song, P.; Qiao, G.; Hu, X.; Xia, X.; Xu, G.; Deng, Z. Current status and research progress of bipolar plates for proton exchange membrane fuel cells. In Proceedings of the 2021 International Conference on Power System Technology (POWERCON), Haikou, China, 8–9 December 2021; pp. 202–208. [Google Scholar]
- Mao, X.; Li, Y.; Li, Y.; Zhu, D.; Yu, W.; Ji, Y.; Wang, D.; Hu, X. Simultaneous electrical and mechanical properties improvement for composite expanded graphite bipolar plate by incorporating surface-activated carbon black paving on the carbonized melamine foam skeleton. Compos. Sci. Technol. 2024, 257, 110822. [Google Scholar]
- Yuan, X.Z.; Wang, H.; Zhang, J.; Wilkinson, D.P. Bipolar plates for PEM fuel cells-from materials to processing. J. New Mater. Electrochem. Syst. 2005, 8, 257. [Google Scholar]
- Stein, T.; Ein-Eli, Y. Challenges and perspectives of metal-based proton exchange membrane’s bipolar plates: Exploring durability and longevity. Energy Technol. 2020, 8, 2000007. [Google Scholar] [CrossRef]
- Wu, S.; Yang, W.; Yan, H.; Zuo, X.; Cao, Z.; Li, H.; Shi, M.; Chen, H. A review of modified metal bipolar plates for proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2021, 46, 8672–8701. [Google Scholar] [CrossRef]
- Xu, Z.; Qiu, D.; Yi, P.; Peng, L.; Lai, X. Towards mass applications: A review on the challenges and developments in metallic bipolar plates for PEMFC. Prog. Nat. Sci. Mater. Int. 2020, 30, 815–824. [Google Scholar] [CrossRef]
- Liu, R.; Jia, Q.; Zhang, B.; Lai, Z.; Chen, L. Protective coatings for metal bipolar plates of fuel cells: A review. Int. J. Hydrogen Energy 2022, 47, 22915–22937. [Google Scholar] [CrossRef]
- Matsuura, T.; Kato, M.; Hori, M. Study on metallic bipolar plate for proton exchange membrane fuel cell. J. Power Sources 2006, 161, 74–78. [Google Scholar]
- Mathew, C.; Naina Mohamed, S.; Devanathan, L.S. A comprehensive review of current research on various materials used for developing composite bipolar plates in polymer electrolyte membrane fuel cells. Polym. Compos. 2022, 43, 4100–4114. [Google Scholar]
- Jeong, K.I.; Oh, J.; Song, S.A.; Lee, D.; Lee, D.G.; Kim, S.S. A review of composite bipolar plates in proton exchange membrane fuel cells: Electrical properties and gas permeability. Compos. Struct. 2021, 262, 113617. [Google Scholar]
- Hui, C.; Liu, H.-B.; Li, J.-X.; Li, Y.; He, Y.-D. Characteristics and preparation of polymer/graphite composite bipolar plate for PEM fuel cells. J. Compos. Mater. 2009, 43, 755–767. [Google Scholar]
- Cunningham, B.D.; Huang, J.; Baird, D.G. Development of bipolar plates for fuel cells from graphite filled wet-lay material and a thermoplastic laminate skin layer. J. Power Sources 2007, 165, 764–773. [Google Scholar]
- Planes, E.; Flandin, L.; Alberola, N. Polymer composites bipolar plates for PEMFCs. Energy Procedia 2012, 20, 311–323. [Google Scholar] [CrossRef]
- Shojaei, S.; Rostami-Tapeh-Esmaeil, E.; Mighri, F. A review on key factors influencing the electrical conductivity of proton exchange membrane fuel cell composite bipolar plates. Polym. Adv. Technol. 2024, 35, e6301. [Google Scholar]
- Wang, X.; Qu, Z.; Yang, H.; Zhang, G.; Zhang, Y.; Liu, C. Collective enhancements on thermal-electrical and mechanical properties of graphite-based composite bipolar plates through the coupled manipulations of molding and impregnation pressures. Membranes 2022, 12, 222. [Google Scholar] [CrossRef] [PubMed]
- Darıcık, F.; Topcu, A.; Aydın, K.; Çelik, S. Carbon nanotube (CNT) modified carbon fiber/epoxy composite plates for the PEM fuel cell bipolar plate application. Int. J. Hydrogen Energy 2023, 48, 1090–1106. [Google Scholar]
- Choi, H.; Seo, D.J.; Choi, W.Y.; Choi, S.W.; Lee, M.H.; Park, Y.J.; Kim, T.Y.; Yoon, Y.G.; Yi, S.-C.; Jung, C.-Y. An ultralight-weight polymer electrolyte fuel cell based on woven carbon fiber-resin reinforced bipolar plate. J. Power Sources 2021, 484, 229291. [Google Scholar]
- Lv, B.; Shao, Z.; He, L.; Gou, Y.; Sun, S. A novel graphite/phenolic resin bipolar plate modified by doping carbon fibers for the application of proton exchange membrane fuel cells. Prog. Nat. Sci. Mater. Int. 2020, 30, 876–881. [Google Scholar]
- Madheswaran, D.K.; Thangavelu, P. MWCNT-infused polyaniline composite–based bipolar plates for proton exchange membrane fuel cells fabricated via 3D printing. Ionics 2024, 30, 6349–6368. [Google Scholar]
- Wei, H.; Chang, G.; Xu, S.; Liu, J. Muti-Filler Composites Reinforced with Multiwalled Carbon Nanotubes and Chopped Carbon Fibers for the Bipolar Plate of Fuel Cells. Energies 2024, 17, 1603. [Google Scholar] [CrossRef]
- Xu, G.; Du, X.; Chang, L.; Hu, X.; Song, J. Effect of molding temperature on the properties of phenolic resin/carbon black/graphite composite bipolar plates. J. Solid State Electrochem. 2024, 28, 2505–2513. [Google Scholar]
- Yue, L.; Deng, Z.F.; Tan, H.; Xu, G.Z.; Hu, X.; Song, J.; Zhang, G.Q.; Song, P.X.; Liu, X.T. Carbon Black Doped Graphite Composite Bipolar Plate Compounds for Improving Conductivity. In Materials Science Forum; Trans Tech Publications Ltd.: Zurich, Switzerland, 2023; pp. 3–17. [Google Scholar]
- Witpathomwong, S.; Okhawilai, M.; Jubsilp, C.; Karagiannidis, P.; Rimdusit, S. Highly filled graphite/graphene/carbon nanotube in polybenzoxazine composites for bipolar plate in PEMFC. Int. J. Hydrogen Energy 2020, 45, 30898–30910. [Google Scholar]
- Ling, X.-L.; Wei, Y.-Z.; Zou, L.-M.; Xu, S. Preparation and characterization of hydroxylated multi-walled carbon nanotubes. Colloids Surf. A Physicochem. Eng. Asp. 2013, 421, 9–15. [Google Scholar]
- Yang, D.; Guo, G.; Hu, J.; Wang, C.; Jiang, D. Hydrothermal treatment to prepare hydroxyl group modified multi-walled carbon nanotubes. J. Mater. Chem. 2008, 18, 350–354. [Google Scholar] [CrossRef]
- Jiang, F.; Liao, W.; Ayukawa, T.; Yoon, S.-H.; Nakabayashi, K.; Miyawaki, J. Enhanced performance and durability of composite bipolar plate with surface modification of cactus-like carbon nanofibers. J. Power Sources 2021, 482, 228903. [Google Scholar] [CrossRef]
- Wei, H.; Chang, G.; Shi, R.; Xu, S.; Liu, J. Preparation and properties of graphite/polypropylene composite material reinforced by chopped carbon fibers for proton-exchange membrane fuel cell bipolar plates. Fuel Cells 2023, 23, 60–74. [Google Scholar] [CrossRef]
- Mathew, C.; Boby, A.; Varghese, P.R.; Mohamed, S.N.; Lenin Singaravelu, D. Effect of multi-walled carbon nanotubes on the properties of Composite Bipolar Plate for Polymer Electrolyte Membrane Fuel Cells. Eng. Res. Express 2025, 7, 015552. [Google Scholar] [CrossRef]
- Yan, G.; Zhang, X.; Wei, L.; Lou, A.; Liu, Y.; Wang, S.; Zhao, N.; Li, Q. Study on the effects of nano-copper addition on the properties of epoxy resin/graphite composite bipolar plates. Int. J. Hydrogen Energy 2024, 69, 576–585. [Google Scholar]
- Yin, Q.; Sun, K.; Li, A.; Shao, L.; Liu, S.; Sun, C. Study on carbon nanotube reinforced phenol formaldehyde resin/graphite composite for bipolar plate. J. Power Sources 2008, 175, 861–865. [Google Scholar] [CrossRef]
- Thébault, M.; Kandelbauer, A.; Müller, U.; Zikulnig-Rusch, E.; Lammer, H. Factors influencing the processing and technological properties of laminates based on phenolic resin impregnated papers. Eur. J. Wood Wood Prod. 2017, 75, 785–806. [Google Scholar] [CrossRef]
- Friedrich, K. Mesoscopic aspects of polymer composites: Processing, structure and properties. J. Mater. Sci. 1998, 33, 5535–5556. [Google Scholar] [CrossRef]
- Zhang, W.; Deng, X.; Sui, G.; Yang, X. Improving interfacial and mechanical properties of carbon nanotube-sized carbon fiber/epoxy composites. Carbon 2019, 145, 629–639. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Song, C.; Zhu, Z.; Ma, X. Molecular dynamics simulations of the micro mechanism of functionalized SiO2 nanoparticles and carbon nanotubes modified epoxy resin adhesives. Polym. Compos. 2025, 46, 1587–1603. [Google Scholar]
- Sharma, K.; Shukla, M. Molecular modeling of the mechanical behavior of carbon fiber-amine functionalized multiwall carbon nanotube/epoxy composites. New Carbon Mater. 2014, 29, 132–142. [Google Scholar] [CrossRef]
- Wang, X.; Chen, D.; Zhong, W.; Zhang, L.; Fan, X.; Cai, Z.; Zhu, M. Experimental and theoretical evaluations of the interfacial interaction between carbon nanotubes and carboxylated butadiene nitrile rubber: Mechanical and damping properties. Mater. Des. 2020, 186, 108318. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, D.; Zhang, X.; Wu, Y. Thermal properties and mechanical behavior of functionalized carbon nanotube-filled polypropylene composites using molecular dynamics simulation. Mater. Today Commun. 2023, 37, 107510. [Google Scholar] [CrossRef]
- He, C.; Xu, B.; Li, X. Effects of modified single-wall carbon nanotubes on the mechanical properties of polyvinyl alcohol composites by molecular dynamics simulation. Mater. Today Commun. 2023, 35, 105598. [Google Scholar] [CrossRef]
- Cui, J.; Zhao, J.; Wang, S.; Wang, Y.; Li, Y. Effects of carbon nanotubes functionalization on mechanical and tribological properties of nitrile rubber nanocomposites: Molecular dynamics simulations. Comput. Mater. Sci. 2021, 196, 110556. [Google Scholar] [CrossRef]
- Li, K.; Gu, B. Molecular dynamic simulations investigating the wetting and interfacial properties of acrylonitrile nanodroplets in contact with variously functionalized graphene sheets. Chemical Physics Letters 2020, 739, 137023. [Google Scholar] [CrossRef]
- Liu, X.; Li, M.; Feng, P.; Fan, X.; Yan, Z.; Jia, H.; Jian, X.; Song, Y.; Xu, J. An anchor-inspired interface for improving interfacial properties of carbon fiber-reinforced high-performance thermoplastic composites. Compos. Part B Eng. 2024, 283, 111654. [Google Scholar] [CrossRef]
- Aung, N.N.; Zhou, W.; Goh, C.S.; Nai, S.M.L.; Wei, J. Effect of carbon nanotubes on corrosion of Mg–CNT composites. Corros. Sci. 2010, 52, 1551–1553. [Google Scholar] [CrossRef]
- Konsta-Gdoutos, M.S.; Batis, G.; Danoglidis, P.A.; Zacharopoulou, A.K.; Zacharopoulou, E.K.; Falara, M.G.; Shah, S.P. Effect of CNT and CNF loading and count on the corrosion resistance, conductivity and mechanical properties of nanomodified OPC mortars. Constr. Build. Mater. 2017, 147, 48–57. [Google Scholar] [CrossRef]
- Wang, F.; Liu, X.; Cao, B.; Wang, X.; Dong, K. Influence of the Dispersion of Carbon Nanotubes on the Electrical Conductivity, Adhesion Strength, and Corrosion Resistance of Waterborne Polyurethane Composites. Coatings 2024, 14, 1108. [Google Scholar] [CrossRef]
- Drive, U. Fuel Cell Technical Team Roadmap; US Drive Partnership: New York, NY, USA, 2013; pp. 1–26. [Google Scholar]
Sample | Fillers | Resin | Graphite |
---|---|---|---|
n-BPs | - | 25%PI | 75%EG |
LF-CBPs | 3% MWCNT@G + 6%CCFs | 25%PI | 66%EG |
LMF-CBPs | 3% MWCNT-OH@G + 6%CCFs-COOH | 25%PI | 66%EG |
MF-CBPs | 6% MWCNT@G + 12%CCFs | 25%PI | 57%EG |
MMF-CBPs | 6% MWCNT@G + 12%CCFs | 25%PI | 57%EG |
HMF-CBPs | 10%MWCNT-OH@G + 15%CCF-COOH | 25%PI | 50%EG |
Performance of Composite Bipolar Plates with Added Nanofillers | |||
---|---|---|---|
Materials | In-Plane Electrical Conductivity S/cm | Flexural Strength | Reference/Note |
CCFs-COOH/MWCNT-OH/PI/Graphite | 228.52 | 49.06 | This work |
CCFs/Graphite/PP | 189.4 | 30.2 | [55] |
CCFs/Graphite/MWCNT/PF | 272.8 | 43.1 | [48] |
PANI/Graphite/MWCNTs | 80.15 | 40 | [47] |
MWCNT/CB/NFG/EPR | 182 | 46 | [56] |
Nano-Co/EP/Graphite | 168.1 | 46 | [57] |
Fenton-Treated CNT/PF/Graphite | 145.2 | 68.6 | [58] |
Sample | Ea (kcal/mol) | Eb (kcal/mol) | Ea+b (kcal/mol) | Einterface−ab (kcal/mol) | Cohensive Energy Density (J/m3) | Solubility Parameter (J/cm3)0.5 |
---|---|---|---|---|---|---|
CNT/PI | 100,396.36 | −1003.07 | 97,764.06 | −1629.23 | 5.33 × 108 | 21.60 |
CNT-OH/PI | 97,098.83 | −1849.34 | 93,477.57 | −1771.92 | 5.67 × 108 | 23.81 |
- | Ea (kcal/mol) | Eb (kcal/mol) | Ea+b (kcal/mol) | Einterface−ab (kcal/mol) |
---|---|---|---|---|
CCFs/PI | 181,291.37 | −2294.70 | 184,391.49 | −805.42 |
CCFs-COOH/PI | 157,136.89 | −2199.16 | 160,234.13 | −898.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Zeng, H.; Xie, Z. Preparation of CCF/MWCNT-OH/Graphite/Resin Composite Bipolar Plates Using Bi-Directional Interfacial Modification and Study of Their Performance Improvement and the Mechanism of Their Interfacial Bonding Improvement. C 2025, 11, 24. https://doi.org/10.3390/c11010024
Li W, Zeng H, Xie Z. Preparation of CCF/MWCNT-OH/Graphite/Resin Composite Bipolar Plates Using Bi-Directional Interfacial Modification and Study of Their Performance Improvement and the Mechanism of Their Interfacial Bonding Improvement. C. 2025; 11(1):24. https://doi.org/10.3390/c11010024
Chicago/Turabian StyleLi, Wenkai, Haodong Zeng, and Zhiyong Xie. 2025. "Preparation of CCF/MWCNT-OH/Graphite/Resin Composite Bipolar Plates Using Bi-Directional Interfacial Modification and Study of Their Performance Improvement and the Mechanism of Their Interfacial Bonding Improvement" C 11, no. 1: 24. https://doi.org/10.3390/c11010024
APA StyleLi, W., Zeng, H., & Xie, Z. (2025). Preparation of CCF/MWCNT-OH/Graphite/Resin Composite Bipolar Plates Using Bi-Directional Interfacial Modification and Study of Their Performance Improvement and the Mechanism of Their Interfacial Bonding Improvement. C, 11(1), 24. https://doi.org/10.3390/c11010024