Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = MUX

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 5902 KiB  
Article
A 50 Gb/s 0.42 pJ/b Non-Return-to-Zero Transmitter for Extra-Short-Reach SerDes
by Lili Sun, Zhongxu Jin, Yanchao Liu, Xiaohua Yu and Ronghua Ni
Electronics 2025, 14(10), 1955; https://doi.org/10.3390/electronics14101955 - 11 May 2025
Viewed by 472
Abstract
An energy- and area-efficient non-return-to-zero (NRZ) transmitter with feedforward equalization (FFE) is proposed for an extra-short-reach (XSR) data interface in chiplet-based system in packages (SiPs) and multi-chip modules (MCMs). At the system level, the final-stage 2:1 multiplexer (MUX) in the transmitter is combined [...] Read more.
An energy- and area-efficient non-return-to-zero (NRZ) transmitter with feedforward equalization (FFE) is proposed for an extra-short-reach (XSR) data interface in chiplet-based system in packages (SiPs) and multi-chip modules (MCMs). At the system level, the final-stage 2:1 multiplexer (MUX) in the transmitter is combined with the driver to reduce the hardware and power consumption; at the circuit level, charge-steering-based moderate-swing signal processing further reduces the circuit power consumption and inter-symbol interference. Fabricated in a 28 nm CMOS process with a core area of 0.032 mm2, the prototype NRZ transmitter demonstrates an energy efficiency of 0.42 pJ/b at a data rate of 50 Gb/s with an insertion loss of 10 dB, which makes it a promising candidate for XSR die-to-die (D2D) interfaces. Full article
Show Figures

Figure 1

21 pages, 5152 KiB  
Article
Compact 8-Bit S-Boxes Based on Multiplication in a Galois Field GF(24)
by Phuc-Phan Duong, Tuan-Kiet Dang, Trong-Thuc Hoang and Cong-Kha Pham
Cryptography 2025, 9(2), 21; https://doi.org/10.3390/cryptography9020021 - 3 Apr 2025
Viewed by 1756
Abstract
Substitution boxes (S-Boxes) function as essential nonlinear elements in contemporary cryptographic systems, offering robust protection against cryptanalytic attacks. This study presents a novel technique for generating compact 8-bit S-Boxes based on multiplication in the Galois Field GF(24). [...] Read more.
Substitution boxes (S-Boxes) function as essential nonlinear elements in contemporary cryptographic systems, offering robust protection against cryptanalytic attacks. This study presents a novel technique for generating compact 8-bit S-Boxes based on multiplication in the Galois Field GF(24). The goal of this method is to create S-Boxes with low hardware implementation cost while ensuring cryptographic properties. Experimental results indicate that the suggested S-Boxes achieve a nonlinearity value of 112, matching the AES S-Box. They also maintain other cryptographic properties, such as the Bit Independence Criterion (BIC), the Strict Avalanche Criterion (SAC), Differential Approximation Probability, and Linear Approximation Probability, within acceptable security thresholds. Notably, compared to existing studies, the proposed S-Box architecture demonstrates enhanced hardware efficiency, significantly reducing resource utilization in implementations. Specifically, the implementation cost of the S-Box consists of 31 XOR gates, 32 two-input AND gates, 6 two-input OR gates, and 2 MUX21s. Moreover, this work provides a thorough assessment of the S-Box, covering cryptographic properties, side channel attacks, and implementation aspects. Furthermore, the study estimates the quantum resource requirements for implementing the S-Box, including an analysis of CNOT, Toffoli, and NOT gate counts. Full article
(This article belongs to the Special Issue Emerging Topics in Hardware Security)
Show Figures

Figure 1

15 pages, 4433 KiB  
Article
Wearable 256-Element MUX-Based Linear Array Transducer for Monitoring of Deep Abdominal Muscles
by Daniel Speicher, Tobias Grün, Steffen Weber, Holger Hewener, Stephan Klesy, Schabo Rumanus, Hannah Strohm, Oskar Stamm, Luis Perotti, Steffen H. Tretbar and Marc Fournelle
Appl. Sci. 2025, 15(7), 3600; https://doi.org/10.3390/app15073600 - 25 Mar 2025
Viewed by 519
Abstract
Reliable acoustic coupling in a non-handheld mode and reducing the form factor of electronics are specific challenges in making ultrasound wearable. Applications relying on a large field of view (such as tracking of large muscles) induce a need for a large element count [...] Read more.
Reliable acoustic coupling in a non-handheld mode and reducing the form factor of electronics are specific challenges in making ultrasound wearable. Applications relying on a large field of view (such as tracking of large muscles) induce a need for a large element count to achieve high image quality. In our work, we developed a 256-element linear array for imaging of abdominal muscles with four integrated custom-developed 8:32 multiplexer Integrated Circuits (ICs), allowing the array to be driven by our compact 32 ch electronics. The system is optimized for flexible use in R&D applications and allows adjustable transmit voltages (up to +/−100 V), arbitrary delay patterns, and 12-bit analog-to-digital conversion (ADC) with up to 50 MSPS and wireless (21.6 MBit/s) or USB link. Image metrics (SLL, FWHM) were very similar to a fully populated array driven with a 256 ch system. The contrast allowed imaging of lesions down to 7 cm in the phantom. In a first in-vivo study, we demonstrated reliable acoustic contact even during exercise and were able to visualize deep abdominal muscles such as the TrA. In combination with a muscle tracking algorithm, the change of thickness of the TrA during SSE could be monitored, demonstrating the potential of the approach as biofeedback for physiotherapy training. Full article
Show Figures

Figure 1

16 pages, 1161 KiB  
Article
Multiplex Graph Contrastive Learning with Soft Negatives
by Zhenhao Zhao, Minhong Zhu, Chen Wang, Sijia Wang, Jiqiang Zhang, Li Chen and Weiran Cai
Electronics 2025, 14(2), 396; https://doi.org/10.3390/electronics14020396 - 20 Jan 2025
Viewed by 849
Abstract
Graph Contrastive Learning (GCL) seeks to learn nodal or graph representations that contain maximal consistent information from graph-structured data. While node-level contrasting modes are dominating, some efforts have commenced to explore consistency across different scales. Yet, they tend to lose consistent information and [...] Read more.
Graph Contrastive Learning (GCL) seeks to learn nodal or graph representations that contain maximal consistent information from graph-structured data. While node-level contrasting modes are dominating, some efforts have commenced to explore consistency across different scales. Yet, they tend to lose consistent information and be contaminated by disturbing features. We propose MUX-GCL, a novel cross-scale contrastive learning framework that addresses these key challenges in GCL by leveraging multiplex representations as effective patches to enhance information consistency. Our method introduces a soft-negative contrasting strategy based on positional affinities to reduce false negatives, thereby minimizing information loss during multi-scale contrasts. While this learning mode minimizes contaminating noises, a commensurate contrasting strategy using positional affinities further avoids information loss by correcting false negative pairs across scales. Extensive downstream experiments demonstrate that MUX-GCL yields multiple state-of-the-art results on public datasets. Our theoretical analysis further guarantees the new objective function as a stricter lower bound of mutual information of raw input features and output embeddings, which rationalizes this paradigm. Full article
Show Figures

Figure 1

17 pages, 6147 KiB  
Article
Short-Term Warming Induces Cyanobacterial Blooms and Antibiotic Resistance in Freshwater Lake, as Revealed by Metagenomics Analysis
by Bharat Manna, Emma Jay, Wensi Zhang, Xueyang Zhou, Boyu Lyu, Gevargis Muramthookil Thomas and Naresh Singhal
Water 2024, 16(18), 2655; https://doi.org/10.3390/w16182655 - 18 Sep 2024
Cited by 2 | Viewed by 1829
Abstract
Climate change threatens freshwater ecosystems, potentially intensifying cyanobacterial blooms and antibiotic resistance. We investigated these risks in Cosseys Reservoir, New Zealand, using short-term warming simulations (22 °C, 24 °C, and 27 °C) with additional oxidative stress treatments. A metagenomic analysis revealed significant community [...] Read more.
Climate change threatens freshwater ecosystems, potentially intensifying cyanobacterial blooms and antibiotic resistance. We investigated these risks in Cosseys Reservoir, New Zealand, using short-term warming simulations (22 °C, 24 °C, and 27 °C) with additional oxidative stress treatments. A metagenomic analysis revealed significant community shifts under warming. The cyanobacterial abundance increased from 6.11% to 20.53% at 24 °C, with Microcystaceae and Nostocaceae proliferating considerably. The microcystin synthesis gene (mcy) cluster showed a strong association with cyanobacterial abundance. Cyanobacteria exhibited enhanced nutrient acquisition (pstS gene) and an upregulated nitrogen metabolism under warming. Concurrently, antibiotic resistance genes (ARGs) increased, particularly multidrug resistance genes (50.82% of total ARGs). A co-association network analysis identified the key antibiotic-resistant bacteria (e.g., Streptococcus pneumoniae and Acinetobacter baylyi) and ARGs (e.g., acrB, MexK, rpoB2, and bacA) central to resistance dissemination under warming conditions. Oxidative stress exacerbated both cyanobacterial growth and ARGs’ proliferation, especially efflux pump genes (e.g., acrB, adeJ, ceoB, emrB, MexK, and muxB). This study demonstrated that even modest warming (2–5 °C) could promote both toxic cyanobacteria and antibiotic resistance. These findings underscore the synergistic effects of temperature and oxidative stress posed by climate change on water quality and public health, emphasizing the need for targeted management strategies in freshwater ecosystems. Future research should focus on long-term impacts and potential mitigation measures. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Graphical abstract

21 pages, 10573 KiB  
Article
Spatial Mapping of Soil CO2 Flux in the Yellow River Delta Farmland of China Using Multi-Source Optical Remote Sensing Data
by Wenqing Yu, Shuo Chen, Weihao Yang, Yingqiang Song and Miao Lu
Agriculture 2024, 14(9), 1453; https://doi.org/10.3390/agriculture14091453 - 25 Aug 2024
Viewed by 1567
Abstract
The spatial prediction of soil CO2 flux is of great significance for assessing regional climate change and high-quality agricultural development. Using a single satellite to predict soil CO2 flux is limited by climatic conditions and land cover, resulting in low prediction [...] Read more.
The spatial prediction of soil CO2 flux is of great significance for assessing regional climate change and high-quality agricultural development. Using a single satellite to predict soil CO2 flux is limited by climatic conditions and land cover, resulting in low prediction accuracy. To this end, this study proposed a strategy of multi-source spectral satellite coordination and selected seven optical satellite remote sensing data sources (i.e., GF1-WFV, GF6-WFV, GF4-PMI, CB04-MUX, HJ2A-CCD, Sentinel 2-L2A, and Landsat 8-OLI) to extract auxiliary variables (i.e., vegetation indices and soil texture features). We developed a tree-structured Parzen estimator (TPE)-optimized extreme gradient boosting (XGBoost) model for the prediction and spatial mapping of soil CO2 flux. SHapley additive explanation (SHAP) was used to analyze the driving effects of auxiliary variables on soil CO2 flux. A scatter matrix correlation analysis showed that the distributions of auxiliary variables and soil CO2 flux were skewed, and the linear correlations between them (r < 0.2) were generally weak. Compared with single-satellite variables, the TPE-XGBoost model based on multiple-satellite variables significantly improved the prediction accuracy (RMSE = 3.23 kg C ha−1 d−1, R2 = 0.73), showing a stronger fitting ability for the spatial variability of soil CO2 flux. The spatial mapping results of soil CO2 flux based on the TPE-XGBoost model revealed that the high-flux areas were mainly concentrated in eastern and northern farmlands. The SHAP analysis revealed that PC2 and the TCARI of Sentinel 2-L2A and the TVI of HJ2A-CCD had significant positive driving effects on the prediction accuracy of soil CO2 flux. The above results indicate that the integration of multiple-satellite data can enhance the reliability and accuracy of spatial predictions of soil CO2 flux, thereby supporting regional agricultural sustainable development and climate change response strategies. Full article
(This article belongs to the Special Issue Applications of Remote Sensing in Agricultural Soil and Crop Mapping)
Show Figures

Figure 1

14 pages, 5803 KiB  
Article
High-Speed 2x1 Multiplexer with Carrier-Reservoir Semiconductor Optical Amplifiers
by Amer Kotb, Kyriakos E. Zoiros and Wei Chen
Photonics 2024, 11(7), 648; https://doi.org/10.3390/photonics11070648 - 10 Jul 2024
Cited by 2 | Viewed by 1466
Abstract
Leveraging the rapid carrier recovery times and minimal polarization sensitivity of carrier-reservoir semiconductor optical amplifiers (CR-SOAs), this study embeds them in a Mach–Zehnder interferometer (MZI) setup to emulate a 2x1 multiplexer (MUX) operating at 120 Gb/s. The focus is on incorporating AND logic [...] Read more.
Leveraging the rapid carrier recovery times and minimal polarization sensitivity of carrier-reservoir semiconductor optical amplifiers (CR-SOAs), this study embeds them in a Mach–Zehnder interferometer (MZI) setup to emulate a 2x1 multiplexer (MUX) operating at 120 Gb/s. The focus is on incorporating AND logic gate functionalities into the CR-SOAs-based MZI structure to facilitate high-quality multiplexing. The proposed methodology utilizes the intrinsic gain and phase modulation capabilities of CR-SOAs-based MZI to effectively manipulate data streams. This innovative approach capitalizes on the unique properties of CR-SOAs, such as fast response times and low polarization sensitivity, to achieve optimal signal transmission quality and efficient multiplexing. To assess MUX performance, a quality factor metric is introduced as a comprehensive measure of signal integrity. Through exhaustive simulations and meticulous analysis, the study demonstrates the feasibility of achieving the desired data rate while maintaining superior signal transmission quality. The results underscore the efficacy of CR-SOAs-based MZI as versatile modules for high-speed multiplexing applications, offering unparalleled performance and efficiency. This research represents a significant advancement in understanding optical communication systems and provides valuable insights for optimizing signal quality and mitigating interference in practical real-world scenarios. Full article
(This article belongs to the Special Issue Novel Advances in Optical Communications)
Show Figures

Figure 1

19 pages, 5709 KiB  
Review
Silicon-Nanowire-Based 100-GHz-Spaced 16λ DWDM, 800-GHz-Spaced 8λ LR-8, and 20-nm-Spaced 4λ CWDM Optical Demultiplexers for High-Density Interconnects in Datacenters
by Seok-Hwan Jeong
Photonics 2024, 11(4), 336; https://doi.org/10.3390/photonics11040336 - 5 Apr 2024
Cited by 3 | Viewed by 1842
Abstract
Several types of silicon-nanowire-based optical demultiplexers (DeMUXs) for use in short-reach targeted datacenter applications were proposed and their spectral responses were experimentally verified. First, a novel 100-GHz-spaced 16λ polarization-diversified optical DeMUX consisting of 2λ delayed interferometer (DI) type interleaver and 8λ arrayed waveguide [...] Read more.
Several types of silicon-nanowire-based optical demultiplexers (DeMUXs) for use in short-reach targeted datacenter applications were proposed and their spectral responses were experimentally verified. First, a novel 100-GHz-spaced 16λ polarization-diversified optical DeMUX consisting of 2λ delayed interferometer (DI) type interleaver and 8λ arrayed waveguide gratings will be discussed in the spectral regimes of C-band, together with experimental characterizations showing static and dynamic spectral properties. Second, a novel 800-GHz-spaced 8λ optical DeMUX was targeted for use in LR (long reach) 400 Gbps Ethernet applications. Based on multiple cascade-connected DIs, by integrating the extra band elimination cutting area, discontinuous filtering response was analytically identified with a flat-topped spectral window and a low spectral noise of <−20 dB within an entire LR-8 operating wavelength range. Finally, a 20-nm-spaced 4λ coarse wavelength division multiplexing (CWDM)-targeted optical DeMUX based on polarization diversity was experimentally verified. The measurement results showed a low excessive loss of 1.0 dB and a polarization-dependent loss of 1.0 dB, prominently reducing spectral noises from neighboring channels by less than −15 dB. Moreover, TM-mode elimination filters were theoretically analyzed and experimentally confirmed to minimize unwanted TM-mode-oriented polarization noises that were generated from the polarization-handling device. The TM-mode elimination filters functioned to reduce polarization noises to much lower than −20 dB across the entire CWDM operating window. Full article
(This article belongs to the Special Issue Silicon Photonics Devices and Integrated Circuits)
Show Figures

Figure 1

8 pages, 3071 KiB  
Communication
On-Chip Multichannel Dispersion Compensation and Wavelength Division MUX/DeMUX Using Chirped-Multimode-Grating-Assisted Counter-Directional Coupler
by Zhixiao Lv, Jiangbing Du and Zuyuan He
Photonics 2024, 11(2), 110; https://doi.org/10.3390/photonics11020110 - 25 Jan 2024
Cited by 1 | Viewed by 2058
Abstract
On-chip optical dispersion compensation and wavelength division multiplexing/demultiplexing (WDM) are highly demanded functions for optical communications. In this work, we proposed a multichannel dispersion compensation structure based on chirped multimode grating within a counter-directional coupler (CMG-CDC). Simultaneous wavelength division multiplexing and demultiplexing can [...] Read more.
On-chip optical dispersion compensation and wavelength division multiplexing/demultiplexing (WDM) are highly demanded functions for optical communications. In this work, we proposed a multichannel dispersion compensation structure based on chirped multimode grating within a counter-directional coupler (CMG-CDC). Simultaneous wavelength division multiplexing and demultiplexing can be realized within a compact footprint. A device design for four-channel CMG-CDC at the C/L (1530–1565 nm) band is presented with a channel spacing of 20 nm assisted by a grooved multimode waveguide structure. The average dispersion for all channels is about −2.25 ps/nm with a channel bandwidth of about 3.1 nm. The device is highly compact and highly scalable, which makes it rather convenient for increasing the group velocity dispersion (GVD) and channel number, indicating flexible applications for versatile systems, including typically coarse wavelength division multiplexer four-lane (CWDM4) transceivers. Full article
Show Figures

Figure 1

21 pages, 10051 KiB  
Article
A 0.8 V, 14.76 nVrms, Multiplexer-Based AFE for Wearable Devices Using 45 nm CMOS Techniques
by Esther Tamilarasan, Gracia Nirmala Rani Duraisamy, Muthu Kumaran Elangovan and Arun Samuel Thankmony Sarasam
Micromachines 2023, 14(10), 1816; https://doi.org/10.3390/mi14101816 - 23 Sep 2023
Cited by 3 | Viewed by 2056
Abstract
Wearable medical devices (WMDs) that continuously monitor health conditions enable people to stay healthy in everyday situations. A wristband is a monitoring format that can measure bioelectric signals. The main part of a wearable device is its analog front end (AFE). Wearables have [...] Read more.
Wearable medical devices (WMDs) that continuously monitor health conditions enable people to stay healthy in everyday situations. A wristband is a monitoring format that can measure bioelectric signals. The main part of a wearable device is its analog front end (AFE). Wearables have issues such as low reliability, high power consumption, and large size. A conventional AFE device uses more analog-to-digital converters, amplifiers, and filters for individual electrodes. Our proposed MUX-based AFE design requires fewer components than a conventional AFE device, reducing power consumption and area. It includes a single-ended differential feedback operational transconductance amplifier (OTA) and n-pass MUX-based AFE circuits which are related to the emergence of low power, low area, and low cost AFE-integrated chips that are required for wearable biomedical applications. The proposed 6T n-pass multiplexer measures a gain of −68 dB across a frequency range of 100 kHz with a 136.5 nW power consumption and a delay of 0.07 ns. The design layout area is approximately 9.8 µm2 and uses 45 nm complementary metal oxide semiconductor (CMOS) technology. Additionally, the proposed single-ended differential OTA has an obtained input referred noise of 0.014 µVrms, and a gain of −5.5 dB, while the design layout area is about 2 µm2 and was designed with the help of the Cadence Virtuoso layout design tool. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

18 pages, 6104 KiB  
Article
41.6 Gb/s High-Depth Pre-Interleaver for DFE Error Propagation in 65 nm CMOS Technology
by Yongzheng Zhan, Tuo Li, Xiaofeng Zou, Qingsheng Hu, Lianming Li and Lu Zhang
Electronics 2023, 12(18), 3912; https://doi.org/10.3390/electronics12183912 - 16 Sep 2023
Viewed by 1427
Abstract
A high-speed, high-depth pre-interleaver in the proposed symbol pre-interleaving Bit MUX (PBM) was implemented to mitigate decision feedback equalizer (DFE) error propagation in a 400 G Ethernet Serializer–Deserializer (SerDes) interface. Based on the SerDes interface link architecture with 5-tap DFE, the performance of [...] Read more.
A high-speed, high-depth pre-interleaver in the proposed symbol pre-interleaving Bit MUX (PBM) was implemented to mitigate decision feedback equalizer (DFE) error propagation in a 400 G Ethernet Serializer–Deserializer (SerDes) interface. Based on the SerDes interface link architecture with 5-tap DFE, the performance of the PBM under DFE error propagation was simulated theoretically, which could obtain an interleaving gain of 0.35 dB. In the pre-interleaver, in order to significantly increase the transmission rate while keeping the larger interleaving depth, characteristic polynomial parallelization with the logic expansion method and register-based memory with interleaving technology were adopted. Finally, the pre-interleaver was fabricated with 65 nm CMOS technology, with a total area of 0.615 mm2, including the I/O pad. The measurement results show that the horizontal opening degree of the output signal can reach 0.925 UI at the data rate of 41.6 Gb/s. The total power consumption is 38.52 mW at the supply voltage of 1.2 V and frequency of 1.3 GHz. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

14 pages, 7310 KiB  
Article
Silica Waveguide Four-Mode Multiplexer Based on Cascaded Directional Couplers
by Manzhuo Wang, Xiaoqiang Sun, Tingyu Liu, Jianbo Yue, Chaoyang Sun, Dehui Li, Yuanda Wu and Daming Zhang
Photonics 2023, 10(9), 983; https://doi.org/10.3390/photonics10090983 - 28 Aug 2023
Cited by 3 | Viewed by 1643
Abstract
Mode multiplexers/demultiplexers (MUX/deMUX) are key components in mode division multiplexing. A silica waveguide mode MUX consisting of four cascaded directional couplers is experimentally demonstrated. The beam propagation method is used in the device design and optimization. Thermal oxidation, plasma-enhanced chemical vapor deposition, and [...] Read more.
Mode multiplexers/demultiplexers (MUX/deMUX) are key components in mode division multiplexing. A silica waveguide mode MUX consisting of four cascaded directional couplers is experimentally demonstrated. The beam propagation method is used in the device design and optimization. Thermal oxidation, plasma-enhanced chemical vapor deposition, and ultraviolet photolithography are adopted in the silica waveguide mode MUX fabrication. The measurement results prove that the input E00 mode can be selectively converted to E10 mode, E20 mode, and E30 mode. Within the wavelength range of 1500 to 1620 nm, the insertion loss is less than 12.2 dB. The proposed mode MUX has good potential in on-chip MDM applications. Full article
(This article belongs to the Special Issue Photonic Devices Based on Plasmonic or Dielectric Nanostructures)
Show Figures

Figure 1

22 pages, 5234 KiB  
Article
Dual-Gate Organic Thin-Film Transistor and Multiplexer Chips for the Next Generation of Flexible EG-ISFET Sensor Chips
by Ashkan Rezaee and Jordi Carrabina
Sensors 2023, 23(14), 6577; https://doi.org/10.3390/s23146577 - 21 Jul 2023
Cited by 9 | Viewed by 3410
Abstract
Ion-sensitive field-effect transistors (ISFETs) are used as elementary devices to build many types of chemical sensors and biosensors. Organic thin-film transistor (OTFT) ISFETs use either small molecules or polymers as semiconductors together with an additive manufacturing process of much lower cost than standard [...] Read more.
Ion-sensitive field-effect transistors (ISFETs) are used as elementary devices to build many types of chemical sensors and biosensors. Organic thin-film transistor (OTFT) ISFETs use either small molecules or polymers as semiconductors together with an additive manufacturing process of much lower cost than standard silicon sensors and have the additional advantage of being environmentally friendly. OTFT ISFETs’ drawbacks include limited sensitivity and higher variability. In this paper, we propose a novel design technique for integrating extended-gate OTFT ISFETs (OTFT EG-ISFETs) together with dual-gate OTFT multiplexers (MUXs) made in the same process. The achieved results show that our OTFT ISFET sensors are of the state of the art of the literature. Our microsystem architecture enables switching between the different ISFETs implemented in the chip. In the case of sensors with the same gain, we have a fault-tolerant architecture since we are able to replace the faulty sensor with a fault-free one on the chip. For a chip including sensors with different gains, an external processor can select the sensor with the required sensitivity. Full article
(This article belongs to the Special Issue The Advanced Flexible Electronic Devices)
Show Figures

Figure 1

16 pages, 3412 KiB  
Article
Cost-Aware Optimization of Optical Add-Drop Multiplexers Placement in Packet-Optical xHaul Access Networks
by Mirosław Klinkowski and Marek Jaworski
Appl. Sci. 2023, 13(8), 4862; https://doi.org/10.3390/app13084862 - 12 Apr 2023
Cited by 4 | Viewed by 1774
Abstract
This work concentrates on the problem of optimizing the cost of a passive wavelength division multiplexing (WDM) optical network used as a transport network for carrying the xHaul packet traffic between a set of remote radio sites and a central hub in a [...] Read more.
This work concentrates on the problem of optimizing the cost of a passive wavelength division multiplexing (WDM) optical network used as a transport network for carrying the xHaul packet traffic between a set of remote radio sites and a central hub in a 5G radio access network (RAN). In this scope, we investigate the flexible use of optical add-drop multiplexers (OADMs) for the aggregation of traffic from a number of remote sites, where the type/capacity of optical devices—OADMs and optical multiplexers (MUXs)—is selected in accordance with the traffic demand. The approach is referred to as Flex-O. To this end, we formulate the xHaul network planning problem consisting in the joint provisioning of transmission paths (TPs) between the remote sites and the hub with optimized selection and placement of OADMs on the paths and proper selection of MUXs at the ends of the TPs. The problem formulation takes into accounts the optical power budget that limits the maximum transmission distance in a function of the amount and type of optical devices installed on the TPs. The network planning problem is modeled and solved as a mixed-integer linear programming (MILP) optimization problem. Several network scenarios are analyzed to evaluate the cost savings from the flexible (optimized) use of OADMs. The scenarios differ in terms of the availability of OADMs and the capacity of the WDM devices applied on the TPs. The numerical experiments performed in three mesh networks of different size show that the cost savings of up to between 35 and 45% can be achieved if the selection of OADMs is optimized comparing to the networks in which either single-type OADMs are used or the OADMs are not applied. Full article
Show Figures

Figure 1

14 pages, 4291 KiB  
Technical Note
Absolute Radiometric Calibration of ZY3-02 Satellite Multispectral Imager Based on Irradiance-Based Method
by Hongzhao Tang, Junfeng Xie, Wei Chen, Honggeng Zhang and Hengyang Wang
Remote Sens. 2023, 15(2), 448; https://doi.org/10.3390/rs15020448 - 11 Jan 2023
Cited by 6 | Viewed by 2039
Abstract
In this paper, an irradiance-based absolute radiometric calibration campaign at Baotou calibration site during June and July 2018 was described. This radiometric calibration campaign made use of six radiometric calibration tarps. The synchronous measurements of parameters such as surface reflectance, atmospheric parameters, and [...] Read more.
In this paper, an irradiance-based absolute radiometric calibration campaign at Baotou calibration site during June and July 2018 was described. This radiometric calibration campaign made use of six radiometric calibration tarps. The synchronous measurements of parameters such as surface reflectance, atmospheric parameters, and diffuse-to-global irradiance ratio were collected at the satellite overpass. The top-of-atmospheric radiance was predicted by radiative transfer model with these synchronous measurements. The linear relationship between DNs of satellite sensor and band-specific top-of-atmospheric spectral radiance was established, and a stable and reliable absolute calibration coefficient of ZY3-02 MUX was determined in this campaign. We compared the calibration results of the irradiance-based method with those of the reflectance-based method. The results suggested that the irradiance-based method is better than reflectance-based method. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

Back to TopTop