Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = MSOT

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2090 KiB  
Article
Microcystis aeruginosa msoT1/msoA1 Locus Displays Features of a Type I Toxin–Antitoxin System
by Matija Ruparčič and Marko Dolinar
Toxins 2025, 17(8), 360; https://doi.org/10.3390/toxins17080360 - 22 Jul 2025
Viewed by 242
Abstract
Type I toxin–antitoxin (TA) systems consist of a protein toxin that exerts a cytostatic or cytotoxic effect and an antisense RNA antitoxin that prevents translation of the toxin. Although well studied, type I TA systems have so far only been discovered in bacteria [...] Read more.
Type I toxin–antitoxin (TA) systems consist of a protein toxin that exerts a cytostatic or cytotoxic effect and an antisense RNA antitoxin that prevents translation of the toxin. Although well studied, type I TA systems have so far only been discovered in bacteria from the phyla Proteobacteria, Firmicutes, and Tenericutes. We hypothesized that type I systems could also be present in Cyanobacteria. Through bioinformatic analysis of the Microcystis aeruginosa PCC 7806SL genome, we discovered ten putative type I TA loci and characterized six of them experimentally. Two of the six putative type I toxins, BH695_0320 and MsoT1 (BH695_4017), were observed to negatively affect Escherichia coli cell growth, with MsoT1 exerting a phenotype similar to SrnB, a known type I toxin. We focused on the MsoT1/MsoA1 TA system and confirmed the expression of MsoT1 and MsoA1 in our assay. Additionally, we found that MsoA1 delays the toxic effects of MsoT1, indicating its role as a cognate antitoxin of MsoT1. Our results suggest that MsoT1/MsoA1 represents a novel candidate type I TA system, the first to be discovered in the Cyanobacteria phylum. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

18 pages, 3436 KiB  
Article
Local Magnetic Hyperthermia and Systemic Gemcitabine/Paclitaxel Chemotherapy Triggers Neo-Angiogenesis in Orthotopic Pancreatic Tumors without Involvement of Auto/Paracrine Tumor Cell VEGF Signaling and Hypoxia
by Wisdom O. Maduabuchi, Felista L. Tansi, Bernd Faenger, Paul Southern, Quentin A. Pankhurst, Frank Steiniger, Martin Westermann and Ingrid Hilger
Cancers 2024, 16(1), 33; https://doi.org/10.3390/cancers16010033 - 20 Dec 2023
Cited by 2 | Viewed by 1869
Abstract
There is a growing interest in exploring the therapeutically mediated modulation of tumor vascularization of pancreatic cancer, which is known for its poorly perfused tumor microenvironment limiting the delivery of therapeutic agents to the tumor site. Here, we assessed how magnetic hyperthermia in [...] Read more.
There is a growing interest in exploring the therapeutically mediated modulation of tumor vascularization of pancreatic cancer, which is known for its poorly perfused tumor microenvironment limiting the delivery of therapeutic agents to the tumor site. Here, we assessed how magnetic hyperthermia in combination with chemotherapy selectively affects growth, the vascular compartment of tumors, and the presence of tumor cells expressing key regulators of angiogenesis. To that purpose, a orthotopic PANC-1 (fluorescent human pancreatic adenocarcinoma) mouse tumor model (Rj:Athym-Foxn1nu/nu) was used. Magnetic hyperthermia was applied alone or in combination with systemic chemotherapy (gemcitabine 50 mg per kg body weight, nab-pacitaxel 30 mg/kg body weight) on days 1 and 7 following magnetic nanoparticle application (dose: 1 mg per 100 mm3 of tumor). We used ultrasound imaging, immunohistochemistry, multi-spectral optoacoustic tomography (MSOT), and hematology to assess the biological parameters mentioned above. We found that magnetic hyperthermia in combination with gemcitabine/paclitaxel chemotherapy was able to impact tumor growth (decreased volumes and Ki67 expression) and to trigger neo-angiogenesis (increased small vessel diameter) as a result of the therapeutically mediated cell damages/stress in tumors. The applied stressors activated specific pro-angiogenic mechanisms, which differed from those seen in hypoxic conditions involving HIF-1α, since (a) treated tumors showed a significant decrease of cells expressing VEGF, CD31, HIF-1α, and neuropilin-1; and (b) the relative tumor blood volume and oxygen level remained unchanged. Neo-angiogenesis seems to be the result of the activation of cell stress pathways, like MAPK pathways (high number of pERK-expressing tumor cells). In the long term, the combination of magnetic hyperthermia and chemotherapy could potentially be applied to transiently modulate tumor angiogenesis and to improve drug accessibility during oncologic therapies of pancreatic cancer. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

13 pages, 3475 KiB  
Article
Detection of Early Endothelial Dysfunction by Optoacoustic Tomography
by Carsten Höltke, Leonie Enders, Miriam Stölting, Christiane Geyer, Max Masthoff, Michael T. Kuhlmann, Moritz Wildgruber and Anne Helfen
Int. J. Mol. Sci. 2023, 24(10), 8627; https://doi.org/10.3390/ijms24108627 - 11 May 2023
Cited by 2 | Viewed by 2114
Abstract
Variations in vascular wall shear stress are often presumed to result in the formation of atherosclerotic lesions at specific arterial regions, where continuous laminar flow is disturbed. The influences of altered blood flow dynamics and oscillations on the integrity of endothelial cells and [...] Read more.
Variations in vascular wall shear stress are often presumed to result in the formation of atherosclerotic lesions at specific arterial regions, where continuous laminar flow is disturbed. The influences of altered blood flow dynamics and oscillations on the integrity of endothelial cells and the endothelial layer have been extensively studied in vitro and in vivo. Under pathological conditions, the Arg-Gly-Asp (RGD) motif binding integrin αvβ3 has been identified as a relevant target, as it induces endothelial cell activation. Animal models for in vivo imaging of endothelial dysfunction (ED) mainly rely on genetically modified knockout models that develop endothelial damage and atherosclerotic plaques upon hypercholesterolemia (ApoE−/− and LDLR−/−), thereby depicting late-stage pathophysiology. The visualization of early ED, however, remains a challenge. Therefore, a carotid artery cuff model of low and oscillating shear stress was applied in CD-1 wild-type mice, which should be able to show the effects of altered shear stress on a healthy endothelium, thus revealing alterations in early ED. Multispectral optoacoustic tomography (MSOT) was assessed as a non-invasive and highly sensitive imaging technique for the detection of an intravenously injected RGD-mimetic fluorescent probe in a longitudinal (2–12 weeks) study after surgical cuff intervention of the right common carotid artery (RCCA). Images were analyzed concerning the signal distribution upstream and downstream of the implanted cuff, as well as on the contralateral side as a control. Subsequent histological analysis was applied to delineate the distribution of relevant factors within the carotid vessel walls. Analysis revealed a significantly enhanced fluorescent signal intensity in the RCCA upstream of the cuff compared to the contralateral healthy side and the downstream region at all time points post-surgery. The most obvious differences were recorded at 6 and 8 weeks after implantation. Immunohistochemistry revealed a high degree of αv-positivity in this region of the RCCA, but not in the left common carotid artery (LCCA) or downstream of the cuff. In addition, macrophages could be detected by CD68 immunohistochemistry in the RCCA, showing ongoing inflammatory processes. In conclusion, MSOT is capable of delineating alterations in endothelial cell integrity in vivo in the applied model of early ED, where an elevated expression of integrin αvβ3 was detected within vascular structures. Full article
Show Figures

Figure 1

15 pages, 4115 KiB  
Article
Osthole Prevents Heart Damage Induced by Diet-Induced Metabolic Syndrome: Role of Fructokinase (KHK)
by Fernando E. García-Arroyo, Guillermo Gonzaga-Sánchez, Alejandro Silva-Palacios, Francisco Javier Roldán, María L. Loredo-Mendoza, Yamnia Quetzal Alvarez-Alvarez, Jesus A. de los Santos Coyotl, Kevin A. Vélez Orozco, Edilia Tapia, Horacio Osorio-Alonso, Abraham S. Arellano-Buendía, José L. Sánchez-Gloria, Miguel A. Lanaspa, Richard J. Johnson and Laura Gabriela Sánchez-Lozada
Antioxidants 2023, 12(5), 1023; https://doi.org/10.3390/antiox12051023 - 28 Apr 2023
Cited by 4 | Viewed by 2672
Abstract
There is increasing evidence that either ingested or produced fructose may have a role in metabolic syndrome. While not commonly considered a criterion for metabolic syndrome, cardiac hypertrophy is often associated with metabolic syndrome, and its presence carries increased cardiovascular risk. Recently it [...] Read more.
There is increasing evidence that either ingested or produced fructose may have a role in metabolic syndrome. While not commonly considered a criterion for metabolic syndrome, cardiac hypertrophy is often associated with metabolic syndrome, and its presence carries increased cardiovascular risk. Recently it has been shown that fructose and fructokinase C (KHK) can be induced in cardiac tissue. Here we tested whether diet-induced metabolic syndrome causes heart disease associated with increased fructose content and metabolism and whether it can be prevented with a fructokinase inhibitor (osthole). Male Wistar rats were provided a control diet (C) or high fat/sugar diet for 30 days (MS), with half of the latter group receiving osthol (MS+OT, 40 mg/kg/d). The Western diet increased fructose, uric acid, and triglyceride concentrations in cardiac tissue associated with cardiac hypertrophy, local hypoxia, oxidative stress, and increased activity and expression of KHK in cardiac tissue. Osthole reversed these effects. We conclude that the cardiac changes in metabolic syndrome involve increased fructose content and its metabolism and that blocking fructokinase can provide cardiac benefit through the inhibition of KHK with modulation of hypoxia, oxidative stress, hypertrophy, and fibrosis. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Graphical abstract

9 pages, 1421 KiB  
Article
Optoacoustic Imaging Offers New Insights into In Vivo Human Skin Vascular Physiology
by Luis Monteiro Rodrigues, Tiago F. Granja and Sergio Faloni de Andrade
Life 2022, 12(10), 1628; https://doi.org/10.3390/life12101628 - 18 Oct 2022
Cited by 8 | Viewed by 2438
Abstract
Functional imaging with new photoacoustic tomography (PAT) offers improved spatial and temporal resolution quality in in vivo human skin vascular assessments. In the present study, we followed a suprasystolic reactive hyperemia (RH) maneuver with a multi-spectral optoacoustic tomography (MSOT) system. A convenience sample [...] Read more.
Functional imaging with new photoacoustic tomography (PAT) offers improved spatial and temporal resolution quality in in vivo human skin vascular assessments. In the present study, we followed a suprasystolic reactive hyperemia (RH) maneuver with a multi-spectral optoacoustic tomography (MSOT) system. A convenience sample of ten participants, both sexes, mean age of 35.8 ± 13.3 years old, was selected. All procedures were in accordance with the principles of good clinical practice and approved by the institutional ethics committee. Images were obtained at baseline (resting), during occlusion, and immediately after pressure release. Observations of the RH by PAT identified superficial and deeper vascular structures parallel to the skin surface as part of the human skin vascular plexus. Furthermore, PAT revealed that the suprasystolic occlusion impacts both plexus differently, practically obliterating the superficial smaller vessels and evoking stasis at the deeper, larger structures in real-time (live) conditions. This dual effect of RH on the skin plexus has not been explored and is not considered in clinical settings. Thus, RH seems to represent much more than the local microvascular reperfusion as typically described, and PAT offers a vast potential for vascular clinical and preclinical research. Full article
(This article belongs to the Special Issue Skin Homeostasis: Mechanisms, Communication Routes, and Imbalances)
Show Figures

Figure 1

10 pages, 18776 KiB  
Article
The Medial Surface of the Auricle: Historical and Recent Maps. What Are the Possible Expectations of the “Thumb-Index Technique”
by Antonello Lovato, Francesco Ceccherelli, Giuseppe Gagliardi and Marco Postiglione
Medicines 2022, 9(2), 13; https://doi.org/10.3390/medicines9020013 - 17 Feb 2022
Cited by 4 | Viewed by 8871
Abstract
Introduction: The medial surface of the auricle (MSotA), as compared to the lateral, has been less studied and has limited consensus among schools of auricular acupuncture (AA) due to its small size, greater difficulty in carrying out an adequate physical examination on it, [...] Read more.
Introduction: The medial surface of the auricle (MSotA), as compared to the lateral, has been less studied and has limited consensus among schools of auricular acupuncture (AA) due to its small size, greater difficulty in carrying out an adequate physical examination on it, and less precise and limited agreement on its anatomical references as compared to the lateral surface. The thumb-index technique TIT is performed using a guiding finger (taking advantage of the anatomical conformation of the lateral surface) to guide the explorer finger (placed on the MSotA) to project the therapeutic areas and land marks on the MSotA. TIT could be considered useful and effective in AA to make the most of diagnostic and therapeutic MSotA potential. Methods: An investigation was carried out on the impact of TIT in AA practice through a survey collected from former AA students. Results: TIT showed a high consensus, and is used and appreciated by AA practitioners. Discussion/ Conclusions: To date, in AA, there is no thoroughly shared nomenclature for MSotA. TIT is simple and quick to project on to MSotA the well-coded lateral surface auricular maps from French or Chinese AA schools. Full article
Show Figures

Figure 1

12 pages, 1457 KiB  
Article
Multi-Aspect Optoacoustic Imaging of Breast Tumors under Chemotherapy with Exogenous and Endogenous Contrasts: Focus on Apoptosis and Hypoxia
by Angelos Karlas, Antonio Nunes, Wouter Driessen, Evangelos Liapis and Josefine Reber
Biomedicines 2021, 9(11), 1696; https://doi.org/10.3390/biomedicines9111696 - 16 Nov 2021
Cited by 3 | Viewed by 3022
Abstract
Breast cancer is a complex tumor type involving many biological processes. Most chemotherapeutic agents exert their antitumoral effects by rapid induction of apoptosis. Another main feature of breast cancer is hypoxia, which may drive malignant progression and confer resistance to various forms of [...] Read more.
Breast cancer is a complex tumor type involving many biological processes. Most chemotherapeutic agents exert their antitumoral effects by rapid induction of apoptosis. Another main feature of breast cancer is hypoxia, which may drive malignant progression and confer resistance to various forms of therapy. Thus, multi-aspect imaging of both tumor apoptosis and oxygenation in vivo would be of enormous value for the effective evaluation of therapy response. Herein, we demonstrate the capability of a hybrid imaging modality known as multispectral optoacoustic tomography (MSOT) to provide high-resolution, simultaneous imaging of tumor apoptosis and oxygenation, based on both the exogenous contrast of an apoptosis-targeting dye and the endogenous contrast of hemoglobin. MSOT imaging was applied on mice bearing orthotopic 4T1 breast tumors before and following treatment with doxorubicin. Apoptosis was monitored over time by imaging the distribution of xPLORE-APOFL750©, a highly sensitive poly-caspase binding apoptotic probe, within the tumors. Oxygenation was monitored by tracking the distribution of oxy- and deoxygenated hemoglobin within the same tumor areas. Doxorubicin treatment induced an increase in apoptosis-depending optoacoustic signal of xPLORE-APOFL750© at 24 h after treatment. Furthermore, our results showed spatial correspondence between xPLORE-APO750© and deoxygenated hemoglobin. In vivo apoptotic status of the tumor tissue was independently verified by ex vivo fluorescence analysis. Overall, our results provide a rationale for the use of MSOT as an effective tool for simultaneously investigating various aspects of tumor pathophysiology and potential effects of therapeutic regimes based on both endogenous and exogenous molecular contrasts. Full article
(This article belongs to the Special Issue Breast Cancer: Molecular Basis and Translational Research)
Show Figures

Figure 1

22 pages, 67825 KiB  
Article
Imaging-Guided Evaluation of the Novel Small-Molecule Benzosuberene Tubulin-Binding Agent KGP265 as a Potential Therapeutic Agent for Cancer Treatment
by Yihang Guo, Honghong Wang, Jeni L. Gerberich, Samuel O. Odutola, Amanda K. Charlton-Sevcik, Maoping Li, Rajendra P. Tanpure, Justin K. Tidmore, Mary Lynn Trawick, Kevin G. Pinney, Ralph P. Mason and Li Liu
Cancers 2021, 13(19), 4769; https://doi.org/10.3390/cancers13194769 - 24 Sep 2021
Cited by 12 | Viewed by 3856
Abstract
The selective disruption of tumor-associated vasculature represents an attractive therapeutic approach. We have undertaken the first in vivo evaluation of KGP265, a water-soluble prodrug of a benzosuberene-based tubulin-binding agent, and found promising vascular-disrupting activity in three distinct tumor types. Dose escalation in orthotopic [...] Read more.
The selective disruption of tumor-associated vasculature represents an attractive therapeutic approach. We have undertaken the first in vivo evaluation of KGP265, a water-soluble prodrug of a benzosuberene-based tubulin-binding agent, and found promising vascular-disrupting activity in three distinct tumor types. Dose escalation in orthotopic MDA-MB-231-luc breast tumor xenografts in mice indicated that higher doses produced more effective vascular shutdown, as revealed by dynamic bioluminescence imaging (BLI). In syngeneic orthotopic 4T1-luc breast and RENCA-luc kidney tumors, dynamic BLI and oxygen enhanced multispectral optoacoustic tomography (OE-MSOT) were used to compare vascular shutdown following the administration of KGP265 (7.5 mg/kg). The BLI signal and vascular oxygenation response (ΔsO2) to a gas breathing challenge were both significantly reduced within 2 h, indicating vascular disruption, which continued over 24 h. A correlative histology confirmed increased necrosis and hemorrhage. Twice-weekly doses of KGP265 caused significant growth delay in both MDA-MB-231 and 4T1 breast tumors, with no obvious systemic toxicity. A combination with carboplatin produced significantly greater tumor growth delay than carboplatin alone, though significant carboplatin-associated toxicity was observed (whole-body weight loss). KGP265 was found to be effective at low concentrations, generating long-term vascular shutdown and tumor growth delay, thus providing strong rationale for further development, particularly in combination therapies. Full article
Show Figures

Figure 1

10 pages, 12512 KiB  
Article
VEGF-Targeted Multispectral Optoacoustic Tomography and Fluorescence Molecular Imaging in Human Carotid Atherosclerotic Plaques
by Pieter J. Steinkamp, Jasper Vonk, Lydian A. Huisman, Gert-Jan Meersma, Gilles F. H. Diercks, Jan-Luuk Hillebrands, Wouter B. Nagengast, Clark J. Zeebregts, Riemer H. J. A. Slart, Hendrikus H. Boersma and Gooitzen M. van Dam
Diagnostics 2021, 11(7), 1227; https://doi.org/10.3390/diagnostics11071227 - 7 Jul 2021
Cited by 6 | Viewed by 3259
Abstract
Vulnerable atherosclerotic carotid plaques are prone to rupture, resulting in ischemic strokes. In contrast to radiological imaging techniques, molecular imaging techniques have the potential to assess plaque vulnerability by visualizing diseases-specific biomarkers. A risk factor for rupture is intra-plaque neovascularization, which is characterized [...] Read more.
Vulnerable atherosclerotic carotid plaques are prone to rupture, resulting in ischemic strokes. In contrast to radiological imaging techniques, molecular imaging techniques have the potential to assess plaque vulnerability by visualizing diseases-specific biomarkers. A risk factor for rupture is intra-plaque neovascularization, which is characterized by overexpression of vascular endothelial growth factor-A (VEGF-A). Here, we study if administration of bevacizumab-800CW, a near-infrared tracer targeting VEGF-A, is safe and if molecular assessment of atherosclerotic carotid plaques in vivo is possible using multispectral optoacoustic tomography (MSOT). Healthy volunteers and patients with symptomatic carotid artery stenosis scheduled for carotid artery endarterectomy were imaged with MSOT. Secondly, patients were imaged two days after intravenous administration of 4.5 bevacizumab-800CW. Ex vivo fluorescence molecular imaging of the surgically removed plaque specimen was performed and correlated with histopathology. In this first-in-human MSOT and fluorescence molecular imaging study, we show that administration of 4.5 mg bevacizumab-800CW appeared to be safe in five patients and accumulated in the carotid atherosclerotic plaque. Although we could visualize the carotid bifurcation area in all subjects using MSOT, bevacizumab-800CW-resolved signal could not be detected with MSOT in the patients. Future studies should evaluate tracer safety, higher doses of bevacizumab-800CW or develop dedicated contrast agents for carotid atherosclerotic plaque assessment using MSOT. Full article
(This article belongs to the Special Issue Fluorescence Optical Imaging)
Show Figures

Figure 1

11 pages, 1164 KiB  
Article
Polymer-Peptide Modified Gold Nanorods to Improve Cell Conjugation and Cell Labelling for Stem Cells Photoacoustic Imaging
by Dina Salah, Farahat S. Moghanm, Muhammad Arshad, Abdulaziz A. Alanazi, Salman Latif, Maie I. El-Gammal, Elmahdy M. Shimaa and Salah Elsayed
Diagnostics 2021, 11(7), 1196; https://doi.org/10.3390/diagnostics11071196 - 30 Jun 2021
Cited by 16 | Viewed by 3354
Abstract
The use of gold nanorods (GNRs) as a contrast agent in bioimaging and cell tracking has numerous advantages, primarily due to the unique optical properties of gold nanorods which allow for the use of infrared regions when imaging. Owing to their unique geometry, [...] Read more.
The use of gold nanorods (GNRs) as a contrast agent in bioimaging and cell tracking has numerous advantages, primarily due to the unique optical properties of gold nanorods which allow for the use of infrared regions when imaging. Owing to their unique geometry, Au NRs exhibit surface plasmon modes in the near-infrared wavelength range, which is ideal for carrying out optical measurements in biological fluids and tissue. Gold nanorod functionalization is essential, since the Cetyltrimethyl ammonium bromide CTAB gold nanorods are toxic, and for further in vitro and in vivo experiments the nanorods should be functionalized to become optically stable and biocompatible. In the present study, gold nanorods with an longitudinal surface plasmon resonance (LSPR) position around 800 nm were synthesized in order to be used for photoacoustic imaging applications for stem cell tracking. The gold nanorods were functionalized using both thiolated poly (ethylene glycol) (PEG) to stabilize the gold nanorods surface and a CALNN–TAT peptide sequence. Both ligands were attached to the gold nanorods through an Au–sulfur bond. CALNN–TAT is known as a cell penetrating peptide which ensures endocytosis of the gold nanorods inside the mesenchymal stem cells of mice (MSCD1). Surface modifications of gold nanorods were achieved using optical spectroscopy (UV–VIS), electron microscopy (TEM), zeta-potential, and FTIR. Gold nanorods were incubated in MSCD1 in order to achieve a cellular uptake that was characterized by a transmission electron microscope (TEM). For photoacoustic imaging, Multi-Spectral Optoacoustic Tomography (MSOT) was used. The results demonstrated good cellular uptake for PEG–CALNN–TAT GNRs and the successful use of modified gold nanorods as both a contrast agent in photoacoustic imaging and as a novel tracking bioimaging technique. Full article
(This article belongs to the Special Issue Diagnostic Photoacoustic Imaging)
Show Figures

Figure 1

18 pages, 3938 KiB  
Review
Optoacoustic Imaging in Inflammation
by Adrian P. Regensburger, Emma Brown, Gerhard Krönke, Maximilian J. Waldner and Ferdinand Knieling
Biomedicines 2021, 9(5), 483; https://doi.org/10.3390/biomedicines9050483 - 28 Apr 2021
Cited by 36 | Viewed by 5878
Abstract
Optoacoustic or photoacoustic imaging (OAI/PAI) is a technology which enables non-invasive visualization of laser-illuminated tissue by the detection of acoustic signals. The combination of “light in” and “sound out” offers unprecedented scalability with a high penetration depth and resolution. The wide range of [...] Read more.
Optoacoustic or photoacoustic imaging (OAI/PAI) is a technology which enables non-invasive visualization of laser-illuminated tissue by the detection of acoustic signals. The combination of “light in” and “sound out” offers unprecedented scalability with a high penetration depth and resolution. The wide range of biomedical applications makes this technology a versatile tool for preclinical and clinical research. Particularly when imaging inflammation, the technology offers advantages over current clinical methods to diagnose, stage, and monitor physiological and pathophysiological processes. This review discusses the clinical perspective of using OAI in the context of imaging inflammation as well as in current and emerging translational applications. Full article
(This article belongs to the Special Issue Advanced Research in Molecular Imaging of Immunity and Inflammation)
Show Figures

Figure 1

21 pages, 3670 KiB  
Article
Mutation of the Cell Cycle Regulator p27kip1 Drives Pseudohypoxic Pheochromocytoma Development
by Hermine Mohr, Simone Ballke, Nicole Bechmann, Sebastian Gulde, Jaber Malekzadeh-Najafabadi, Mirko Peitzsch, Vasilis Ntziachristos, Katja Steiger, Tobias Wiedemann and Natalia S. Pellegata
Cancers 2021, 13(1), 126; https://doi.org/10.3390/cancers13010126 - 2 Jan 2021
Cited by 10 | Viewed by 4407
Abstract
Background: Pseudohypoxic tumors activate pro-oncogenic pathways typically associated with severe hypoxia even when sufficient oxygen is present, leading to highly aggressive tumors. Prime examples are pseudohypoxic pheochromocytomas and paragangliomas (p-PPGLs), neuroendendocrine tumors currently lacking effective therapy. Previous attempts to generate mouse models for [...] Read more.
Background: Pseudohypoxic tumors activate pro-oncogenic pathways typically associated with severe hypoxia even when sufficient oxygen is present, leading to highly aggressive tumors. Prime examples are pseudohypoxic pheochromocytomas and paragangliomas (p-PPGLs), neuroendendocrine tumors currently lacking effective therapy. Previous attempts to generate mouse models for p-PPGLs all failed. Here, we describe that the rat MENX line, carrying a Cdkn1b (p27) frameshift-mutation, spontaneously develops pseudohypoxic pheochromocytoma (p-PCC). Methods: We compared rat p-PCCs with their cognate human tumors at different levels: histology, immunohistochemistry, catecholamine profiling, electron microscopy, transcriptome and metabolome. The vessel architecture and angiogenic potential of pheochromocytomas (PCCs) was analyzed by light-sheet fluorescence microscopy ex vivo and multi-spectral optoacoustic tomography (MSOT) in vivo. Results: The analysis of tissues at various stages, from hyperplasia to advanced grades, allowed us to correlate tumor characteristics with progression. Pathological changes affecting the mitochrondrial ultrastructure where present already in hyperplasias. Rat PCCs secreted high levels of norepinephrine and dopamine. Transcriptomic and metabolomic analysis revealed changes in oxidative phosphorylation that aggravated over time, leading to an accumulation of the oncometabolite 2-hydroxyglutarate, and to hypermethylation, evident by the loss of the epigenetic mark 5-hmC. While rat PCC xenografts showed high oxygenation, induced by massive neoangiogenesis, rat primary PCC transcriptomes possessed a pseudohypoxic signature of high Hif2a, Vegfa, and low Pnmt expression, thereby clustering with human p-PPGL. Conclusion: Endogenous rat PCCs recapitulate key phenotypic features of human p-PPGLs. Thus, MENX rats emerge as the best available animal model of these aggressive tumors. Our study provides evidence of a link between cell cycle dysregulation and pseudohypoxia. Full article
(This article belongs to the Special Issue Research Update on Pheochromocytoma and Paraganglioma)
Show Figures

Graphical abstract

10 pages, 8427 KiB  
Article
Bedside 3D Visualization of Lymphatic Vessels with a Handheld Multispectral Optoacoustic Tomography Device
by Guido Giacalone, Takumi Yamamoto, Florence Belva and Akitatsu Hayashi
J. Clin. Med. 2020, 9(3), 815; https://doi.org/10.3390/jcm9030815 - 17 Mar 2020
Cited by 29 | Viewed by 4637
Abstract
Identification of lymphatics by Indocyanine Green (ICG) lymphography in patients with severe lymphedema is limited due to the overlying dermal backflow. Nor can the method detect deep and/or small vessels. Multispectral optoacoustic tomography (MSOT), a real-time three- dimensional (3D) imaging modality which allows [...] Read more.
Identification of lymphatics by Indocyanine Green (ICG) lymphography in patients with severe lymphedema is limited due to the overlying dermal backflow. Nor can the method detect deep and/or small vessels. Multispectral optoacoustic tomography (MSOT), a real-time three- dimensional (3D) imaging modality which allows exact spatial identification of absorbers in tissue such as blood and injected dyes can overcome these hurdles. However, MSOT with a handheld probe has not been performed yet in lymphedema patients. We conducted a pilot study in 11 patients with primary and secondary lymphedema to test whether lymphatic vessels could be detected with a handheld MSOT device. In eight patients, we could not only identify lymphatics and veins but also visualize their position and contractility. Furthermore, deep lymphatic vessels not traceable by ICG lymphography and lymphatics covered by severe dermal backflow, could be clearly identified by MSOT. In three patients, two of which had advanced stage lymphedema, only veins but no lymphatic vessels could be identified. We found that MSOT can identify and image lymphatics and veins in real-time and beyond the limits of near-infrared technology during a single bedside examination. Given its easy use and high accuracy, the handheld MSOT device is a promising tool in lymphatic surgery. Full article
(This article belongs to the Section Nuclear Medicine & Radiology)
Show Figures

Figure 1

18 pages, 3803 KiB  
Article
Targeting Melanoma Hypoxia with the Food-Grade Lactic Acid Bacterium Lactococcus Lactis
by Rodolfo Garza-Morales, Beatriz E. Rendon, Mohammad Tariq Malik, Jeannete E. Garza-Cabrales, Anne Aucouturier, Luis G. Bermúdez-Humarán, Kelly M. McMasters, Lacey R. McNally and Jorge G. Gomez-Gutierrez
Cancers 2020, 12(2), 438; https://doi.org/10.3390/cancers12020438 - 13 Feb 2020
Cited by 18 | Viewed by 4836
Abstract
Melanoma is the most aggressive form of skin cancer. Hypoxia is a feature of the tumor microenvironment that reduces efficacy of immuno- and chemotherapies, resulting in poor clinical outcomes. Lactococcus lactis is a facultative anaerobic gram-positive lactic acid bacterium (LAB) that is Generally [...] Read more.
Melanoma is the most aggressive form of skin cancer. Hypoxia is a feature of the tumor microenvironment that reduces efficacy of immuno- and chemotherapies, resulting in poor clinical outcomes. Lactococcus lactis is a facultative anaerobic gram-positive lactic acid bacterium (LAB) that is Generally Recognized as Safe (GRAS). Recently, the use of LAB as a delivery vehicle has emerged as an alternative strategy to deliver therapeutic molecules; therefore, we investigated whether L. lactis can target and localize within melanoma hypoxic niches. To simulate hypoxic conditions in vitro, melanoma cells A2058, A375 and MeWo were cultured in a chamber with a gas mixture of 5% CO2, 94% N2 and 1% O2. Among the cell lines tested, MeWo cells displayed greater survival rates when compared to A2058 and A375 cells. Co-cultures of L. lactis expressing GFP or mCherry and MeWo cells revealed that L. lactis efficiently express the transgenes under hypoxic conditions. Moreover, multispectral optoacoustic tomography (MSOT), and near infrared (NIR) imaging of tumor-bearing BALB/c mice revealed that the intravenous injection of either L. lactis expressing β-galactosidase (β-gal) or infrared fluorescent protein (IRFP713) results in the establishment of the recombinant bacteria within tumor hypoxic niches. Overall, our data suggest that L. lactis represents an alternative strategy to target and deliver therapeutic molecules into the tumor hypoxic microenvironment. Full article
(This article belongs to the Collection Targeting Solid Tumors)
Show Figures

Figure 1

21 pages, 5283 KiB  
Review
Imaging Metabolically Active Fat: A Literature Review and Mechanistic Insights
by Joseph Frankl, Amber Sherwood, Deborah J. Clegg, Philipp E. Scherer and Orhan K. Öz
Int. J. Mol. Sci. 2019, 20(21), 5509; https://doi.org/10.3390/ijms20215509 - 5 Nov 2019
Cited by 14 | Viewed by 6992
Abstract
Currently, obesity is one of the leading causes death in the world. Shortly before 2000, researchers began describing metabolically active adipose tissue on cancer-surveillance 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in adult humans. This tissue generates heat through mitochondrial uncoupling and [...] Read more.
Currently, obesity is one of the leading causes death in the world. Shortly before 2000, researchers began describing metabolically active adipose tissue on cancer-surveillance 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in adult humans. This tissue generates heat through mitochondrial uncoupling and functions similar to classical brown and beige adipose tissue in mice. Despite extensive research, human brown/beige fat’s role in resistance to obesity in humans has not yet been fully delineated. FDG uptake is the de facto gold standard imaging technique when studying brown adipose tissue, although it has not been rigorously compared to other techniques. We, therefore, present a concise review of established and emerging methods to image brown adipose tissue activity in humans. Reviewed modalities include anatomic imaging with CT and magnetic resonance imaging (MRI); molecular imaging with FDG, fatty acids, and acetate; and emerging techniques. FDG-PET/CT is the most commonly used modality because of its widespread use in cancer imaging, but there are mechanistic reasons to believe other radiotracers may be more sensitive and accurate at detecting brown adipose tissue activity. Radiation-free modalities may help the longitudinal study of brown adipose tissue activity in the future. Full article
(This article belongs to the Special Issue Molecular Imaging in Diabetes, Obesity and Infections)
Show Figures

Figure 1

Back to TopTop