Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = MSM UV photodetector

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2780 KiB  
Article
Fabrication and Characterization of Flexible CuI-Based Photodetectors on Mica Substrates by a Low-Temperature Solution Process
by Chien-Yie Tsay, Yun-Chi Chen, Hsuan-Meng Tsai and Kai-Hsiang Liao
Materials 2024, 17(20), 5011; https://doi.org/10.3390/ma17205011 - 14 Oct 2024
Cited by 1 | Viewed by 1288
Abstract
Both CuI and CuI:Zn semiconductor thin films, along with MSM-structured UV photodetectors, were prepared on flexible mica substrates at low temperature (150 °C) by a wet chemical method. The two CuI-based films exhibited a polycrystalline phase with an optical bandgap energy close to [...] Read more.
Both CuI and CuI:Zn semiconductor thin films, along with MSM-structured UV photodetectors, were prepared on flexible mica substrates at low temperature (150 °C) by a wet chemical method. The two CuI-based films exhibited a polycrystalline phase with an optical bandgap energy close to 3.0 eV. Hall effect measurements indicated that the CuI thin film sample had p-type conductivity, while the CuI:Zn thin film sample exhibited n-type conductivity, with the latter showing a higher carrier mobility of 14.78 cm2/Vs compared to 7.67 cm2/Vs for the former. The I-V curves of both types of photodetectors showed asymmetric rectification characteristics with rectification ratios at ±3 V of 5.23 and 14.3 for the CuI and CuI:Zn devices, respectively. Flexible CuI:Zn devices exhibited significantly better sensitivity, responsivity, and specific detectivity than CuI devices both before and after static bending tests. It was found that, while the optoelectronic performance of flexible CuI-based photodetectors degraded under tensile stress during static bending tests, they still exhibited good reproducibility and repeatability in their photoresponses. Full article
Show Figures

Figure 1

12 pages, 3197 KiB  
Article
Ultrahigh Responsivity In2O3 UVA Photodetector through Modulation of Trimethylindium Flow Rate
by Yifei Li, Tiwei Chen, Yongjian Ma, Yu Hu, Li Zhang, Xiaodong Zhang, Jinghang Yang, Lu Wang, Huanyu Zhang, Changling Yan, Zhongming Zeng and Baoshun Zhang
Crystals 2024, 14(6), 494; https://doi.org/10.3390/cryst14060494 - 24 May 2024
Cited by 1 | Viewed by 1278
Abstract
Oxygen vacancies (Vo) can significantly degrade the electrical properties of indium oxide (In2O3) thin films, thus limiting their application in the field of ultraviolet detection. In this work, the Vo is effectively suppressed by adjusting [...] Read more.
Oxygen vacancies (Vo) can significantly degrade the electrical properties of indium oxide (In2O3) thin films, thus limiting their application in the field of ultraviolet detection. In this work, the Vo is effectively suppressed by adjusting the Trimethylindium (TMIn) flow rate (fTMIn). In addition, with the reduction of the fTMIn, the background carrier concentration and the roughness of the film decrease gradually. And a smooth In2O3 thin film with roughness of 0.44 nm is obtained when the fTMIn is 5 sccm. The MSM photodetectors (PDs) are constructed based on In2O3 thin films with different fTMIn to investigate the opto-electric characteristics of the films. The dark current of the PDs is significantly reduced by five orders from 100 mA to 0.28 μA with the reduction of the fTMIn from 50 sccm to 5 sccm. In addition, the photo response capacity of PDs is dramatically enhanced. The photo-to-dark current ratio (PDCR) increases from 0 to 2589. Finally, the PD with the fTMIn of 5 sccm possesses a record-high responsivity of 2.53 × 103 AW−1, a high detectivity of 5.43 × 107 Jones and a high EQE of 9383 × 100%. Our work provides an important reference for the fabrication of high-sensitivity UV PDs. Full article
Show Figures

Figure 1

14 pages, 5069 KiB  
Communication
Sol-Gel Synthesized Amorphous (InxGa1−x)2O3 for UV Photodetection with High Responsivity
by Yupeng Zhang, Ruiheng Zhou, Xinyan Liu, Zhengyu Bi, Shengping Ruan, Yan Ma, Xin Li, Caixia Liu, Yu Chen and Jingran Zhou
Sensors 2024, 24(3), 787; https://doi.org/10.3390/s24030787 - 25 Jan 2024
Cited by 5 | Viewed by 1779
Abstract
β-Ga2O3 photodetectors have the advantages of low dark current and strong radiation resistance in UV detection. However, the limited photocurrent has restricted their applications. Herein, MSM UV photodetectors based on (InxGa1−x)2O3 (x = [...] Read more.
β-Ga2O3 photodetectors have the advantages of low dark current and strong radiation resistance in UV detection. However, the limited photocurrent has restricted their applications. Herein, MSM UV photodetectors based on (InxGa1−x)2O3 (x = 0, 0.1, 0.2, 0.3) by a sol-gel method were fabricated and studied. The doping of indium ions in Ga2O3 leads to lattice distortion and promotes the formation of oxygen vacancies. The oxygen vacancies in (InxGa1−x)2O3 can be modulated by various proportions of indium, and the increased oxygen vacancies contribute to the enhancement of electron concentration. The results show that the amorphous In0.4Ga1.6O3 photodetector exhibited improved performances, including a high light-to-dark current ratio (2.8 × 103) and high responsivity (739.2 A/W). This work provides a promising semiconductor material In0.4Ga1.6O3 for high-performance MSM UV photodetectors. Full article
(This article belongs to the Special Issue Photoelectric Device and Sensing Technologies)
Show Figures

Figure 1

10 pages, 2474 KiB  
Article
High-Performance Nanoplasmonic Enhanced Indium Oxide—UV Photodetectors
by Eric Y. Li, Andrew F. Zhou and Peter X. Feng
Crystals 2023, 13(4), 689; https://doi.org/10.3390/cryst13040689 - 17 Apr 2023
Cited by 7 | Viewed by 2120
Abstract
In this paper, high-performance UV photodetectors have been demonstrated based on indium oxide (In2O3) thin films of approximately 1.5–2 μm thick, synthesized by a simple and quick plasma sputtering deposition approach. After the deposition, the thin-film surface was treated [...] Read more.
In this paper, high-performance UV photodetectors have been demonstrated based on indium oxide (In2O3) thin films of approximately 1.5–2 μm thick, synthesized by a simple and quick plasma sputtering deposition approach. After the deposition, the thin-film surface was treated with 4–5 nm-sized platinum (Pt) nanoparticles. Then, titanium metal electrodes were deposited onto the sample surface to form a metal–semiconductor–metal (MSM) photodetector of 50 mm2 in size. Raman scattering spectroscopy and scanning electron microscope (SEM) were used to study the crystal structure of the synthesized In2O3 film. The nanoplasmonic enhanced In2O3-based UV photodetectors were characterized by various UV wavelengths at different radiation intensities and temperatures. A high responsivity of up to 18 A/W was obtained at 300 nm wavelength when operating at 180 °C. In addition, the fabricated prototypes show a thermally stable baseline and excellent repeatability to a wide range of UV lights with low illumination intensity when operating at such a high temperature. Full article
(This article belongs to the Special Issue 1D and 2D Nanomaterials for Sensor Applications)
Show Figures

Figure 1

20 pages, 5408 KiB  
Article
Characterization and Growth of TiO2/ZnO on PTFE Substrates at Different Volumetric Ratios Using Chemical Bath Deposition
by Youssif S M Elzawiei, Md Roslan Hashim, Mohd Mahadi Halim and Abdullah Abdulhameed
Coatings 2023, 13(2), 379; https://doi.org/10.3390/coatings13020379 - 7 Feb 2023
Cited by 6 | Viewed by 2546
Abstract
Developing non-toxic, semiconductor-doped heterojunction materials for optoelectronic applications on the surface of a flexible substrate is a viable strategy for meeting the world’s energy needs without introducing any environmental issues. In this paper, Ti:TiO2/ZnO nanocomposites were prepared by heat treatment and [...] Read more.
Developing non-toxic, semiconductor-doped heterojunction materials for optoelectronic applications on the surface of a flexible substrate is a viable strategy for meeting the world’s energy needs without introducing any environmental issues. In this paper, Ti:TiO2/ZnO nanocomposites were prepared by heat treatment and utilized as an active layer in UV photodetectors. First, a ZnO seed layer was deposited by radio frequency (RF) sputtering on polytetrafluoroethylene (PTFE) substrates. Then, TiO2/ZnO thin films (TFs) were successfully grown by combining volumetric mixtures of TiO2 and ZnO at the ratios of 1:7, 1:3, 3:5, and 1:1 via the chemical bath deposition (CBD) method. The morphological, elemental, and topographical analyses of the grown TFs were investigated through SESEM, EDX, and AFM spectroscopy, respectively. XRD patterns illustrated the presence of the unified (002) peak of the Ti/ZnO hexagonal wurtzite structure in all prepared samples, with intensities indicating a very strong preferential crystallinity with increasing TiO2 ratios. Enhanced diffuse reflectance curves were obtained by UV–Vis spectroscopy, with allowed indirect energy bandgaps ranging from 3.17 eV to 3.23 eV. FTIR characterization revealed wider phonon vibration ranges indicating the presence of Ti–O and Zn–O bonds. Metal–semiconductor–metal (MSM) UV photodetectors were fabricated by thermally evaporating Ag electrodes on the grown nanocomposites. The volumetric ratio of TiO2/ZnO impacted the photodetector performance, where the responsivity, photosensitivity, gain, detectivity, rise time, and decay time of 0.495 AW−1, 247.14%, 3.47, 3.68 × 108 jones, 0.63 s, and 0.99 s, respectively, were recorded at a ratio of 1:1 (TiO2:ZnO). Based on the results, the heterostructure nanocomposites grown on PTFE substrates are believed to be highly promising TF for flexible electronics. Full article
Show Figures

Figure 1

11 pages, 1845 KiB  
Article
Improved Optoelectronic Characteristics of Ga-In co-Doped ZnO UV Photodetectors by Asymmetric Metal Contact Structure
by Chien-Yie Tsay, Hsuan-Meng Tsai and Yun-Chi Chen
Crystals 2022, 12(5), 746; https://doi.org/10.3390/cryst12050746 - 23 May 2022
Cited by 9 | Viewed by 2650
Abstract
Transparent Ga and In co-doped ZnO (ZnO:Ga-In) semiconductor thin films were deposited on Corning glass substrates by the sol-gel spin-coating process. The ZnO:Ga-In thin films were used as the sensing layer of metal–semiconductor–metal (MSM)-type ultraviolet (UV) photodetectors (PDs). In this study, the optoelectronic [...] Read more.
Transparent Ga and In co-doped ZnO (ZnO:Ga-In) semiconductor thin films were deposited on Corning glass substrates by the sol-gel spin-coating process. The ZnO:Ga-In thin films were used as the sensing layer of metal–semiconductor–metal (MSM)-type ultraviolet (UV) photodetectors (PDs). In this study, the optoelectronic characteristics of ZnO:Ga-In MSM PDs with symmetrical interdigital electrodes (Al–Al) and asymmetrical interdigital electrodes (Al–Au) were compared. The as-prepared ZnO:Ga-In thin films were polycrystalline, and they had a single-phase hexagonal wurtzite structure and high transparency (~88.4%) in the visible region. The MSM-PDs with asymmetric electrodes had significantly reduced dark current (9.6 × 10−5 A at 5 V) according to the current-voltage (I-V) characteristics and higher photoresponse properties than those of the MSM-PDs with symmetric electrodes, according to the current-time (I-t) characteristics. In addition, the Al–Au devices were self-powered without an applied bias voltage. The photocurrent was 6.0 × 10−5 A; the sensitivity and responsivity were 0.25 and 0.03 mA/W, respectively, under UV illumination. Full article
(This article belongs to the Special Issue Optoelectronics and Photonics in Crystals)
Show Figures

Figure 1

14 pages, 3696 KiB  
Article
Self-Powered Organometal Halide Perovskite Photodetector with Embedded Silver Nanowires
by Almaz R. Beisenbayev, Zhandos T. Sadirkhanov, Yerassyl Yerlanuly, Marat I. Kaikanov and Askhat N. Jumabekov
Nanomaterials 2022, 12(7), 1034; https://doi.org/10.3390/nano12071034 - 22 Mar 2022
Cited by 10 | Viewed by 3510
Abstract
Metal–semiconductor–metal (MSM) configuration of perovskite photodetectors (PPDs) suggests easy and low-cost manufacturing. However, the basic structures of MSM PPDs include vertical and lateral configurations, which require the use of expensive materials such as transparent conductive oxides or/and sophisticated fabrication techniques such as lithography. [...] Read more.
Metal–semiconductor–metal (MSM) configuration of perovskite photodetectors (PPDs) suggests easy and low-cost manufacturing. However, the basic structures of MSM PPDs include vertical and lateral configurations, which require the use of expensive materials such as transparent conductive oxides or/and sophisticated fabrication techniques such as lithography. Integrating metallic nanowire-based electrodes into the perovskite photo-absorber layer to form one-half of the MSM PPD structure could potentially resolve the key issues of both configurations. Here, a manufacturing of solution-processed and self-powered MSM PPDs with embedded silver nanowire electrodes is demonstrated. The embedding of silver nanowire electrode into the perovskite layer is achieved by treating the silver nanowire/perovskite double layer with a methylamine gas vapor. The evaporated gold layer is used as the second electrode to form MSM PPDs. The prepared MSM PPDs show a photoresponsivity of 4 × 10−5 AW−1 in the UV region and 2 × 10−5 AW−1 in the visible region. On average, the devices exhibit a photocurrent of 1.1 × 10−6 A under white light (75 mW cm−2) illumination with an ON/OFF ratio of 83.4. The results presented in this work open up a new method for development and fabrication of simple, solution-processable MSM self-powered PPDs. Full article
(This article belongs to the Topic Synthesis and Applications of Nanowires)
Show Figures

Figure 1

10 pages, 908 KiB  
Letter
Investigation of Ga2O3-Based Deep Ultraviolet Photodetectors Using Plasma-Enhanced Atomic Layer Deposition System
by Shao-Yu Chu, Meng-Xian Shen, Tsung-Han Yeh, Chia-Hsun Chen, Ching-Ting Lee and Hsin-Ying Lee
Sensors 2020, 20(21), 6159; https://doi.org/10.3390/s20216159 - 29 Oct 2020
Cited by 24 | Viewed by 4169
Abstract
In this work, Ga2O3 films were deposited on sapphire substrates using a plasma-enhanced atomic layer deposition system with trimethylgallium precursor and oxygen (O2) plasma. To improve the quality of Ga2O3 films, they were annealed in [...] Read more.
In this work, Ga2O3 films were deposited on sapphire substrates using a plasma-enhanced atomic layer deposition system with trimethylgallium precursor and oxygen (O2) plasma. To improve the quality of Ga2O3 films, they were annealed in an O2 ambient furnace system for 15 min at 700, 800, and 900 °C, respectively. The performance improvement was verified from the measurement results of X-ray diffraction, X-ray photoelectron spectroscopy, and photoluminescence spectroscopy. The optical bandgap energy of the Ga2O3 films decreased with an increase of annealing temperatures. Metal-semiconductor-metal ultraviolet C photodetectors (MSM UVC-PDs) with various Ga2O3 active layers were fabricated and studied in this work. The cut-off wavelength of the MSM UVC-PDs with the Ga2O3 active layers annealed at 800 °C was 250 nm. Compared with the performance of the MSM UVC-PDs with the as-grown Ga2O3 active layers, the MSM UVC-PDs with the 800 °C-annealed Ga2O3 active layers under a bias voltage of 5 V exhibited better performances including photoresponsivity of 22.19 A/W, UV/visible rejection ratio of 5.98 × 104, and detectivity of 8.74 × 1012 cmHz1/2W−1. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

12 pages, 3385 KiB  
Article
Fabrication of Ultraviolet Photodetectors Based on Fe-Doped ZnO Nanorod Structures
by Yen-Lin Chu, Sheng-Joue Young, Liang-Wen Ji, I-Tseng Tang and Tung-Te Chu
Sensors 2020, 20(14), 3861; https://doi.org/10.3390/s20143861 - 10 Jul 2020
Cited by 68 | Viewed by 4192
Abstract
In this paper, 100 nm-thick zinc oxide (ZnO) films were deposited as a seed layer on Corning glass substrates via a radio frequency (RF) magnetron sputtering technique, and vertical well-aligned Fe-doped ZnO (FZO) nanorod (NR) arrays were then grown on the seed layer-coated [...] Read more.
In this paper, 100 nm-thick zinc oxide (ZnO) films were deposited as a seed layer on Corning glass substrates via a radio frequency (RF) magnetron sputtering technique, and vertical well-aligned Fe-doped ZnO (FZO) nanorod (NR) arrays were then grown on the seed layer-coated substrates via a low-temperature solution method. FZO NR arrays were annealed at 600 °C and characterized by using field emission scanning microscopy (FE-SEM) and X-ray diffraction spectrum (XRD) analysis. FZO NRs grew along the preferred (002) orientation with good crystal quality and hexagonal wurtzite structure. The main ultraviolet (UV) peak of 378 nm exhibited a red-shifted phenomenon with Fe-doping by photoluminescence (PL) emission. Furthermore, FZO photodetectors (PDs) based on metal–semiconductor–metal (MSM) structure were successfully manufactured through a photolithography procedure for UV detection. Results revealed that compared with pure ZnO NRs, FZO NRs exhibited a remarkable photosensitivity for UV PD applications and a fast rise/decay time. The sensitivities of prepared pure ZnO and FZO PDs were 43.1, and 471.1 for a 3 V applied bias and 380 nm UV illumination, respectively. Full article
(This article belongs to the Special Issue Selected Papers from TIKI IEEE ICICE 2019& ICASI 2020)
Show Figures

Figure 1

14 pages, 2865 KiB  
Article
Solution-Processed Mg-Substituted ZnO Thin Films for Metal-Semiconductor-Metal Visible-Blind Photodetectors
by Chien-Yie Tsay, Shih-Ting Chen and Man-Ting Fan
Coatings 2019, 9(4), 277; https://doi.org/10.3390/coatings9040277 - 25 Apr 2019
Cited by 46 | Viewed by 5264
Abstract
The effects of Mg on the microstructural, optical, and electrical properties of sol-gel derived ZnO transparent semiconductor thin films and the photoelectrical properties of photodetectors based on MgxZn1−xO (where x = 0 to 0.3) thin films with the [...] Read more.
The effects of Mg on the microstructural, optical, and electrical properties of sol-gel derived ZnO transparent semiconductor thin films and the photoelectrical properties of photodetectors based on MgxZn1−xO (where x = 0 to 0.3) thin films with the metal-semiconductor-metal (MSM) configuration were investigated in this study. All the as-synthesized ZnO-based thin films had a single-phase wurtzite structure and showed high average transmittance of 91% in the visible wavelength region. The optical bandgap of MgxZn1−xO thin films increased from 3.25 to 3.56 eV and the electrical resistivity of the films rose from 6.1 × 102 to 1.4 × 104 Ω·cm with an increase in Mg content from x = 0 to x = 0.3. Compared with those of the pure ZnO thin film, the PL emission peaks of the MgZnO thin films showed an apparent blue-shift feature in the UV and visible regions. The photo-detection capability was investigated under visible, UVA, and UVC light illumination. Linear I-V characteristics were obtained in these ZnO-based photodetectors under dark and light illumination conditions, indicating an ohmic contact between the Au electrodes and ZnO-based thin films. It was found that the pure ZnO photodetector exhibited the best photoconductivity gain, percentage of sensitivity, and responsivity under UVA illumination. Under UVC illumination, the photoconductivity gain and percentage of sensitivity of the MgZnO photodetectors were better than those of the pure ZnO photodetector. Full article
Show Figures

Figure 1

8 pages, 2169 KiB  
Article
GaN-Based Ultraviolet Passive Pixel Sensor on Silicon (111) Substrate
by Chang-Ju Lee, Chul-Ho Won, Jung-Hee Lee, Sung-Ho Hahm and Hongsik Park
Sensors 2019, 19(5), 1051; https://doi.org/10.3390/s19051051 - 1 Mar 2019
Cited by 17 | Viewed by 4938
Abstract
The fabrication of a single pixel sensor, which is a fundamental element device for the fabrication of an array-type pixel sensor, requires an integration technique of a photodetector and transistor on a wafer. In conventional GaN-based ultraviolet (UV) imaging devices, a hybrid-type integration [...] Read more.
The fabrication of a single pixel sensor, which is a fundamental element device for the fabrication of an array-type pixel sensor, requires an integration technique of a photodetector and transistor on a wafer. In conventional GaN-based ultraviolet (UV) imaging devices, a hybrid-type integration process is typically utilized, which involves a backside substrate etching and a wafer-to-wafer bonding process. In this work, we developed a GaN-based UV passive pixel sensor (PPS) by integrating a GaN metal-semiconductor-metal (MSM) UV photodetector and a Schottky-barrier (SB) metal-oxide-semiconductor field-effect transistor (MOSFET) on an epitaxially grown GaN layer on silicon substrate. An MSM-type UV sensor had a low dark current density of 3.3 × 10−7 A/cm2 and a high UV/visible rejection ratio of 103. The GaN SB-MOSFET showed a normally-off operation and exhibited a maximum drain current of 0.5 mA/mm and a maximum transconductance of 30 μS/mm with a threshold voltage of 4.5 V. The UV PPS showed good UV response and a high dark-to-photo contrast ratio of 103 under irradiation of 365-nm UV. This integration technique will provide one possible way for a monolithic integration of the GaN-based optoelectronic devices. Full article
(This article belongs to the Special Issue Image Sensors)
Show Figures

Figure 1

7 pages, 1188 KiB  
Article
AlGaN Ultraviolet Metal–Semiconductor–Metal Photodetectors with Reduced Graphene Oxide Contacts
by Bhishma Pandit and Jaehee Cho
Appl. Sci. 2018, 8(11), 2098; https://doi.org/10.3390/app8112098 - 1 Nov 2018
Cited by 17 | Viewed by 4512
Abstract
AlGaN semiconductors are promising materials in the field of ultraviolet (UV) detection. We fabricated AlGaN/GaN UV metal–semiconductor–metal (MSM) photodiodes with two back-to-back interdigitated finger electrodes comprising reduced graphene oxide (rGO). The rGO showed high transparency below the wavelength of 380 nm, which is [...] Read more.
AlGaN semiconductors are promising materials in the field of ultraviolet (UV) detection. We fabricated AlGaN/GaN UV metal–semiconductor–metal (MSM) photodiodes with two back-to-back interdigitated finger electrodes comprising reduced graphene oxide (rGO). The rGO showed high transparency below the wavelength of 380 nm, which is necessary for a visible-blind photodetector, and showed outstanding Schottky behavior on AlGaN. As the photocurrent, dark current, photoresponsivity, detectivity, and cut-off wavelength were investigated with the rGO/AlGaN MSM photodiodes with various Al mole fractions, systematic variations in the device characteristics with the Al mole fraction were confirmed, proving the potential utility of the device architecture combining two-dimensional materials, rGO, and nitride semiconductors. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

12 pages, 10641 KiB  
Article
Comparative Studies on Ultraviolet-Light-Derived Photoresponse Properties of ZnO, AZO, and GZO Transparent Semiconductor Thin Films
by Chien-Yie Tsay and Wei-Tse Hsu
Materials 2017, 10(12), 1379; https://doi.org/10.3390/ma10121379 - 1 Dec 2017
Cited by 77 | Viewed by 6119
Abstract
ZnO, Al-doped ZnO (AZO), and Ga-doped ZnO (GZO) semiconductor thin films were deposited on glass substrates via a sol-gel spin-coating process for application in a photoconductive ultraviolet (UV) detector. The doping concentrations of Al and Ga were 1.0 at % in the precursor [...] Read more.
ZnO, Al-doped ZnO (AZO), and Ga-doped ZnO (GZO) semiconductor thin films were deposited on glass substrates via a sol-gel spin-coating process for application in a photoconductive ultraviolet (UV) detector. The doping concentrations of Al and Ga were 1.0 at % in the precursor solutions. In this study, the microstructural features and the optical and electrical properties of sol-gel-derived ZnO, AZO, and GZO thin films were compared, and the performance of ZnO-based UV photodetectors under ultraviolet A (UVA) light were measured. Experimental results confirmed the synthesis of single-phase nanocrystalline ZnO-based thin films and the successful substitution of Al and Ga into Zn sites in ZnO crystals. The results also demonstrated that the optical transmittance and electrical properties of ZnO thin films could be improved by Al and Ga doping. UV photodetectors based on ZnO-based thin films, having a metal-semiconductor-metal (MSM) configuration, were fabricated with Al inter-digitated electrodes. All photodetectors showed an ohmic nature between semiconductor and electrode contacts and exhibited a sharp increase in photocurrent under illumination with UVA light. We found that the MSM UV photodetector based on the GZO semiconductor thin film exhibited the best UV response (IUVA/Idark) of 73.3 and the highest photocurrent responsivity of 46.2 A/W under UVA light (power density ~0.825 mW/cm2) at 5 V bias. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

9 pages, 1696 KiB  
Article
Selectively Enhanced UV-A Photoresponsivity of a GaN MSM UV Photodetector with a Step-Graded AlxGa1−xN Buffer Layer
by Chang-Ju Lee, Chul-Ho Won, Jung-Hee Lee, Sung-Ho Hahm and Hongsik Park
Sensors 2017, 17(7), 1684; https://doi.org/10.3390/s17071684 - 21 Jul 2017
Cited by 26 | Viewed by 7480
Abstract
The UV-to-visible rejection ratio is one of the important figure of merits of GaN-based UV photodetectors. For cost-effectiveness and large-scale fabrication of GaN devices, we tried to grow a GaN epitaxial layer on silicon substrate with complicated buffer layers for a stress-release. It [...] Read more.
The UV-to-visible rejection ratio is one of the important figure of merits of GaN-based UV photodetectors. For cost-effectiveness and large-scale fabrication of GaN devices, we tried to grow a GaN epitaxial layer on silicon substrate with complicated buffer layers for a stress-release. It is known that the structure of the buffer layers affects the performance of devices fabricated on the GaN epitaxial layers. In this study, we show that the design of a buffer layer structure can make effect on the UV-to-visible rejection ratio of GaN UV photodetectors. The GaN photodetector fabricated on GaN-on-silicon substrate with a step-graded AlxGa−xN buffer layer has a highly-selective photoresponse at 365-nm wavelength. The UV-to-visible rejection ratio of the GaN UV photodetector with the step-graded AlxGa1−xN buffer layer was an order-of-magnitude higher than that of a photodetector with a conventional GaN/AlN multi buffer layer. The maximum photoresponsivity was as high as 5 × 102 A/W. This result implies that the design of buffer layer is important for photoresponse characteristics of GaN UV photodetectors as well as the crystal quality of the GaN epitaxial layers. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

6 pages, 1371 KiB  
Article
Synthesis of Ga-Doped ZnO Nanorods by Hydrothermal Method and Their Application to Ultraviolet Photodetector
by Sheng-Joue Young, Chia-Lin Chiou, Yi-Hsing Liu and Liang-Wen Ji
Inventions 2016, 1(1), 3; https://doi.org/10.3390/inventions1010003 - 16 Feb 2016
Cited by 19 | Viewed by 7710
Abstract
In this study, high-density single crystalline Ga-doped ZnO (GZO) nanorods were grown on glass substrate by the hydrothermal method. The structural and optoelectronic properties of Ga-doped ZnO nanorods were studied. The microstructure of the GZO was studied by scanning electrical microscope (SEM). The [...] Read more.
In this study, high-density single crystalline Ga-doped ZnO (GZO) nanorods were grown on glass substrate by the hydrothermal method. The structural and optoelectronic properties of Ga-doped ZnO nanorods were studied. The microstructure of the GZO was studied by scanning electrical microscope (SEM). The structural characteristics of the GZO were measured by X-ray diffraction (XRD). It was found that the peaks related to the wurtzite structure ZnO (100), (002), and (101) diffraction peaks. The (002) peak indicates that the nanorods were preferentially oriented in the c-axis direction. The existence of Ga was examined by energy diffraction spectra (EDS), indicating the Ga atom entered into the ZnO lattice. The optical properties of the GZO were measured by photoluminescence spectra. It was found that all GZO nanorod arrays showed two different emissions, including UV (ultraviolet) and green emissions. GZO nanorod metal-semiconductor-metal (MSM) ultraviolet (UV) photodetectors (PD) were also fabricated. The photo-current and dark-current constant ratio of the fabricated PD was approximately 15.2 when biased at 1 V. Full article
Show Figures

Graphical abstract

Back to TopTop