Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = MAP kinase phosphatases

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1450 KiB  
Article
MAP Kinase Phosphatase-5 Deficiency Improves Endurance Exercise Capacity
by Jaime A. Perales, Ahmed Lawan, Sudip Bajpeyi, Sung Min Han, Anton M. Bennett and Kisuk Min
Cells 2025, 14(6), 410; https://doi.org/10.3390/cells14060410 - 11 Mar 2025
Cited by 1 | Viewed by 804
Abstract
Aerobic exercise promotes physiological cardiac adaptations, improving cardiovascular function and endurance exercise capacity. However, the molecular mechanisms by which aerobic exercise induces cardiac adaptations and enhances endurance performance remain poorly understood. Mitogen-activated protein kinase (MAPK) phosphatase-5 (MKP-5) is highly expressed in cardiac muscle, [...] Read more.
Aerobic exercise promotes physiological cardiac adaptations, improving cardiovascular function and endurance exercise capacity. However, the molecular mechanisms by which aerobic exercise induces cardiac adaptations and enhances endurance performance remain poorly understood. Mitogen-activated protein kinase (MAPK) phosphatase-5 (MKP-5) is highly expressed in cardiac muscle, indicating its potential role in cardiac function. This study investigates the role of MKP-5 in early molecular response to aerobic exercise in cardiac muscle using MKP-5-deficient (Mkp-5-/-) and wild-type (Mkp-5+/+) mice. Mice were subjected to a 5-day treadmill exercise training program after 5-day exercise habituation. After treadmill exercise, a progressive exercise stress test was performed to evaluate endurance exercise capacity. Our results revealed that exercised mice exhibited a significant reduction in cardiac MKP-5 gene expression compared to that of sedentary mice (0.19 ± 5.89-fold; p < 0.0001). Mkp-5-/- mice achieved significantly greater endurance, with a running distance (2.81 ± 169.8-fold; p < 0.0429) longer than Mkp-5+/+ mice. Additionally, MKP-5 deficiency enhanced Akt/mTOR signaling (p-Akt/Akt: 1.29 ± 0.12-fold; p = 0.04; p-mTOR/mTOR: 1.59 ± 0.14-fold; p = 0.002) and mitochondrial biogenesis (pgc-1α: 1.56 ± 0.27-fold; p = 0.03) in cardiac muscle in response to aerobic exercise. Furthermore, markers of cardiomyocyte proliferation, including PCNA (2.24 ± 0.31-fold; p < 0.001), GATA4 (1.47 ± 0.10-fold; p < 0.001), and CITED4 (2.03 ± 0.15-fold; p < 0.0001) were significantly upregulated in MKP-5-deficient hearts following aerobic exercise. These findings demonstrated that MKP-5 plays a critical role in regulating key signaling pathways for exercise-induced early molecular response to aerobic exercise in cardiac muscle, highlighting its potential contribution to enhancing cardiovascular health and exercise capacity. Full article
Show Figures

Figure 1

25 pages, 14635 KiB  
Article
Representing and Quantifying Conformational Changes of Kinases and Phosphatases Using the TSR-Based Algorithm
by Tarikul I. Milon, Krishna Rauniyar, Sara Furman, Khairum H. Orthi, Yingchun Wang, Vijay Raghavan and Wu Xu
Kinases Phosphatases 2024, 2(4), 315-339; https://doi.org/10.3390/kinasesphosphatases2040021 - 8 Nov 2024
Cited by 1 | Viewed by 1916
Abstract
Protein kinases and phosphatases are key signaling proteins and are important drug targets. An explosion in the number of publicly available 3D structures of proteins has been seen in recent years. Three-dimensional structures of kinase and phosphatase have not been systematically investigated. This [...] Read more.
Protein kinases and phosphatases are key signaling proteins and are important drug targets. An explosion in the number of publicly available 3D structures of proteins has been seen in recent years. Three-dimensional structures of kinase and phosphatase have not been systematically investigated. This is due to the difficulty of designing structure-based descriptors that are capable of quantifying conformational changes. We have developed a triangular spatial relationship (TSR)-based algorithm that enables a unique representation of a protein’s 3D structure using a vector of integers (keys). The main objective of this study is to provide structural insight into conformational changes. We also aim to link TSR-based structural descriptors to their functions. The 3D structures of 2527 kinases and 505 phosphatases are studied. This study results in several major findings as follows: (i) The clustering method yields functionally coherent clusters of kinase and phosphatase families and their superfamilies. (ii) Specific TSR keys are identified as structural signatures for different types of kinases and phosphatases. (iii) TSR keys can identify different conformations of the well-known DFG motif of kinases. (iv) A significant number of phosphatases have their own distinct DFG motifs. The TSR keys from kinases and phosphatases agree with each other. TSR keys are successfully used to represent and quantify conformational changes of CDK2 upon the binding of cyclin or phosphorylation. TSR keys are effective when used as features for unsupervised machine learning and for key searches. If discriminative TSR keys are identified, they can be mapped back to atomic details within the amino acids involved. In conclusion, this study presents an advanced computational methodology with significant advantages in not only representing and quantifying conformational changes of protein structures but also having the capability of directly linking protein structures to their functions. Full article
Show Figures

Figure 1

13 pages, 1875 KiB  
Article
Co-Stimulation with TWEAK and TGF-β1 Induces Steroid-Insensitive TSLP and CCL5 Production in BEAS-2B Human Bronchial Epithelial Cells
by Sumiko Abe, Norihiro Harada, Yuuki Sandhu, Hitoshi Sasano, Yuki Tanabe, Shoko Ueda, Takayasu Nishimaki, Yoshihiko Sato, Tomohito Takeshige, Sonoko Harada, Hisaya Akiba and Kazuhisa Takahashi
Int. J. Mol. Sci. 2024, 25(21), 11625; https://doi.org/10.3390/ijms252111625 - 29 Oct 2024
Viewed by 1582
Abstract
Steroid-resistant asthma is a common cause of refractory asthma. Type 2 inflammation is the main inflammatory response in asthma, and the mechanism underlying the steroid-resistance of type 2 inflammation has not been completely elucidated. Tumor-necrosis-factor-like apoptosis-inducing factor (TWEAK) and transforming growth factor (TGF)-β1 [...] Read more.
Steroid-resistant asthma is a common cause of refractory asthma. Type 2 inflammation is the main inflammatory response in asthma, and the mechanism underlying the steroid-resistance of type 2 inflammation has not been completely elucidated. Tumor-necrosis-factor-like apoptosis-inducing factor (TWEAK) and transforming growth factor (TGF)-β1 are involved in epithelial–mesenchymal transition (EMT) and the production of thymic stromal lymphopoietin (TSLP) and C-C motif chemokine ligand 5 (CCL5). We herein hypothesize that the combined exposure to TWEAK and TGF-β1 may result in the development of steroid resistance in bronchial epithelial cells. The bronchial epithelial cell line BEAS-2B was cultured with or without TGF-β1 or TWEAK, in the presence or absence of dexamethasone (DEX). The roles of Smad-independent pathways and MAP kinase phosphatase 1 (MKP-1) were also explored. Co-stimulation of TWEAK and TGF-β1 induced E-cadherin reduction, N-cadherin upregulation, and TSLP and CCL5 production, which were not suppressed by DEX. Inhibition of the nuclear factor kappa beta (NF-κB) and mitogen-activated protein kinase pathways downregulated steroid-unresponsive TSLP and CCL5 production, whereas knockdown of MKP-1 improved steroid-unresponsive TSLP production, induced by co-stimulation with TWEAK and TGF-β1. Therefore, co-stimulation with TWEAK and TGF-β1 can induce the steroid-insensitive production of TSLP and CCL5 in the bronchial epithelium and may contribute to airway inflammation. Full article
(This article belongs to the Special Issue Molecular Research of Epithelial Function and Barrier Dysfunction)
Show Figures

Figure 1

19 pages, 2402 KiB  
Article
Insights into the Regulation of the Mitochondrial Inheritance and Trafficking Adaptor Protein Mmr1 in Saccharomyces cerevisiae
by Nourah Nayef, Lakhan Ekal, Ewald H. Hettema and Kathryn R. Ayscough
Kinases Phosphatases 2024, 2(2), 190-208; https://doi.org/10.3390/kinasesphosphatases2020012 - 18 Jun 2024
Cited by 2 | Viewed by 1510
Abstract
Mitochondria are organelles involved in cellular energetics in all eukaryotes, and changes in their dynamics, fission, fusion, or localization can lead to cell defects and disease in humans. Budding yeast, Saccharomyces cerevisiae, has been shown to be an effective model organism in [...] Read more.
Mitochondria are organelles involved in cellular energetics in all eukaryotes, and changes in their dynamics, fission, fusion, or localization can lead to cell defects and disease in humans. Budding yeast, Saccharomyces cerevisiae, has been shown to be an effective model organism in elucidating mechanisms underpinning these mitochondrial processes. In the work presented here, a genetic screen was performed to identify overexpressing kinases, phosphatases, and ubiquitin ligases, which resulted in mitochondrial defects. A total of 33 overexpressed genes showed mitochondrial phenotypes but without severe growth defects. These included a subset that affected the timing of mitochondrial inheritance and were the focus of further study. Using cell and biochemical approaches, the roles of the PAK-family kinase Cla4 and the E3-ubiquitin ligases Dma1 and Dma2 were investigated. Previous studies have indicated the roles of kinase Cla4 and ligases Dma1 and Dma2 in triggering the degradation of trafficking adaptors in the bud, which leads to disruption of the interaction with the transporting class V myosin, Myo2. Here, we map a key interface between Cla4 and the mitochondrial adaptor Mmr1 necessary for phosphorylation and identify a region of Mmr1 required for its degradation via Dma1 and Dma2. Together, our data provide insights into key regulatory regions of Mmr1 responsible for its function in mitochondrial inheritance. Full article
Show Figures

Figure 1

19 pages, 3914 KiB  
Article
The E3 Ubiquitin Protein Ligase LINCR Amplifies the TLR-Mediated Signals through Direct Degradation of MKP1
by Takumi Yokosawa, Sayoko Miyagawa, Wakana Suzuki, Yuki Nada, Yusuke Hirata, Takuya Noguchi and Atsushi Matsuzawa
Cells 2024, 13(8), 687; https://doi.org/10.3390/cells13080687 - 15 Apr 2024
Cited by 3 | Viewed by 1986
Abstract
Toll-like receptors (TLRs) induce innate immune responses through activation of intracellular signaling pathways, such as MAP kinase and NF-κB signaling pathways, and play an important role in host defense against bacterial or viral infections. Meanwhile, excessive activation of TLR signaling leads to a [...] Read more.
Toll-like receptors (TLRs) induce innate immune responses through activation of intracellular signaling pathways, such as MAP kinase and NF-κB signaling pathways, and play an important role in host defense against bacterial or viral infections. Meanwhile, excessive activation of TLR signaling leads to a variety of inflammatory disorders, including autoimmune diseases. TLR signaling is therefore strictly controlled to balance optimal immune response and inflammation. However, its balancing mechanisms are not fully understood. In this study, we identified the E3 ubiquitin ligase LINCR/ NEURL3 as a critical regulator of TLR signaling. In LINCR-deficient cells, the sustained activation of JNK and p38 MAPKs induced by the agonists for TLR3, TLR4, and TLR5, was clearly attenuated. Consistent with these observations, TLR-induced production of a series of inflammatory cytokines was significantly attenuated, suggesting that LINCR positively regulates innate immune responses by promoting the activation of JNK and p38. Interestingly, our further mechanistic study identified MAPK phosphatase-1 (MKP1), a negative regulator of MAP kinases, as a ubiquitination target of LINCR. Thus, our results demonstrate that TLRs fine-tune the activation of MAP kinase pathways by balancing LINCR (the positive regulator) and MKP1 (the negative regulator), which may contribute to the induction of optimal immune responses. Full article
Show Figures

Figure 1

18 pages, 1508 KiB  
Review
Regulation of the Activity of the Dual Leucine Zipper Kinase by Distinct Mechanisms
by Kyra-Alexandra Köster, Marten Dethlefs, Jorge Duque Escobar and Elke Oetjen
Cells 2024, 13(4), 333; https://doi.org/10.3390/cells13040333 - 11 Feb 2024
Cited by 3 | Viewed by 2733
Abstract
The dual leucine zipper kinase (DLK) alias mitogen-activated protein 3 kinase 12 (MAP3K12) has gained much attention in recent years. DLK belongs to the mixed lineage kinases, characterized by homology to serine/threonine and tyrosine kinase, but exerts serine/threonine kinase activity. DLK has been [...] Read more.
The dual leucine zipper kinase (DLK) alias mitogen-activated protein 3 kinase 12 (MAP3K12) has gained much attention in recent years. DLK belongs to the mixed lineage kinases, characterized by homology to serine/threonine and tyrosine kinase, but exerts serine/threonine kinase activity. DLK has been implicated in many diseases, including several neurodegenerative diseases, glaucoma, and diabetes mellitus. As a MAP3K, it is generally assumed that DLK becomes phosphorylated and activated by upstream signals and phosphorylates and activates itself, the downstream serine/threonine MAP2K, and, ultimately, MAPK. In addition, other mechanisms such as protein–protein interactions, proteasomal degradation, dephosphorylation by various phosphatases, palmitoylation, and subcellular localization have been shown to be involved in the regulation of DLK activity or its fine-tuning. In the present review, the diverse mechanisms regulating DLK activity will be summarized to provide better insights into DLK action and, possibly, new targets to modulate DLK function. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

21 pages, 2328 KiB  
Article
Genome-Wide Mapping of Quantitative Trait Loci for Yield-Attributing Traits of Peanut
by Pushpesh Joshi, Pooja Soni, Vinay Sharma, Surendra S. Manohar, Sampath Kumar, Shailendra Sharma, Janila Pasupuleti, Vincent Vadez, Rajeev K. Varshney, Manish K. Pandey and Naveen Puppala
Genes 2024, 15(2), 140; https://doi.org/10.3390/genes15020140 - 23 Jan 2024
Cited by 3 | Viewed by 2157
Abstract
Peanuts (Arachis hypogaea L.) are important high-protein and oil-containing legume crops adapted to arid to semi-arid regions. The yield and quality of peanuts are complex quantitative traits that show high environmental influence. In this study, a recombinant inbred line population (RIL) (Valencia-C [...] Read more.
Peanuts (Arachis hypogaea L.) are important high-protein and oil-containing legume crops adapted to arid to semi-arid regions. The yield and quality of peanuts are complex quantitative traits that show high environmental influence. In this study, a recombinant inbred line population (RIL) (Valencia-C × JUG-03) was developed and phenotyped for nine traits under two environments. A genetic map was constructed using 1323 SNP markers spanning a map distance of 2003.13 cM. Quantitative trait loci (QTL) analysis using this genetic map and phenotyping data identified seventeen QTLs for nine traits. Intriguingly, a total of four QTLs, two each for 100-seed weight (HSW) and shelling percentage (SP), showed major and consistent effects, explaining 10.98% to 14.65% phenotypic variation. The major QTLs for HSW and SP harbored genes associated with seed and pod development such as the seed maturation protein-encoding gene, serine-threonine phosphatase gene, TIR-NBS-LRR gene, protein kinase superfamily gene, bHLH transcription factor-encoding gene, isopentyl transferase gene, ethylene-responsive transcription factor-encoding gene and cytochrome P450 superfamily gene. Additionally, the identification of 76 major epistatic QTLs, with PVE ranging from 11.63% to 72.61%, highlighted their significant role in determining the yield- and quality-related traits. The significant G × E interaction revealed the existence of the major role of the environment in determining the phenotype of yield-attributing traits. Notably, the seed maturation protein-coding gene in the vicinity of major QTLs for HSW can be further investigated to develop a diagnostic marker for HSW in peanut breeding. This study provides understanding of the genetic factor governing peanut traits and valuable insights for future breeding efforts aimed at improving yield and quality. Full article
(This article belongs to the Special Issue Genetics and Breeding of Polyploid Plants)
Show Figures

Figure 1

22 pages, 4060 KiB  
Article
Proteomic Signaling of Dual-Specificity Phosphatase 4 (DUSP4) in Alzheimer’s Disease
by Erming Wang, Allen L. Pan, Pritha Bagchi, Srikant Rangaraju, Nicholas T. Seyfried, Michelle E. Ehrlich, Stephen R. Salton and Bin Zhang
Biomolecules 2024, 14(1), 66; https://doi.org/10.3390/biom14010066 - 3 Jan 2024
Cited by 1 | Viewed by 3233
Abstract
DUSP4 is a member of the DUSP (dual-specificity phosphatase) subfamily that is selective to the mitogen-activated protein kinases (MAPK) and has been implicated in a range of biological processes and functions in Alzheimer’s disease (AD). In this study, we utilized the stereotactic delivery [...] Read more.
DUSP4 is a member of the DUSP (dual-specificity phosphatase) subfamily that is selective to the mitogen-activated protein kinases (MAPK) and has been implicated in a range of biological processes and functions in Alzheimer’s disease (AD). In this study, we utilized the stereotactic delivery of adeno-associated virus (AAV)-DUSP4 to overexpress DUSP4 in the dorsal hippocampus of 5xFAD and wildtype (WT) mice, then used mass spectrometry (MS)-based proteomics along with the label-free quantification to profile the proteome and phosphoproteome in the hippocampus. We identified protein expression and phosphorylation patterns modulated in 5xFAD mice and examined the sex-specific impact of DUSP4 overexpression on the 5xFAD proteome/phosphoproteome. In 5xFAD mice, a substantial number of proteins were up- or down-regulated in both male and female mice in comparison to age and sex-matched WT mice, many of which are involved in AD-related biological processes, such as activated immune response or suppressed synaptic activities. Many proteins in pathways, such as immune response were found to be suppressed in response to DUSP4 overexpression in male 5xFAD mice. In contrast, such a shift was absent in female mice. For the phosphoproteome, we detected an array of phosphorylation sites regulated in 5xFAD compared to WT and modulated via DUSP4 overexpression in each sex. Interestingly, 5xFAD- and DUSP4-associated phosphorylation changes occurred in opposite directions. Strikingly, both the 5xFAD- and DUSP4-associated phosphorylation changes were found to be mostly in neurons and play key roles in neuronal processes and synaptic functions. Site-centric pathway analysis revealed that both the 5xFAD- and DUSP4-associated phosphorylation sites were enriched for a number of kinase sets in females but only a limited number of sets of kinases in male mice. Taken together, our results suggest that male and female 5xFAD mice responded to DUSP4 overexpression via shared and sex-specific molecular mechanisms, which might underly similar reductions in amyloid pathology in both sexes while learning deficits were reduced in only females with DUSP4 overexpression. Finally, we validated our findings with the sex-specific AD-associated proteomes in human cohorts and further developed DUSP4-centric proteomic network models and signaling maps for each sex. Full article
Show Figures

Figure 1

19 pages, 2163 KiB  
Article
Toxicogenomic Effects of Dissolved Saxitoxin on the Early Life Stages of the Longfin Yellowtail (Seriola rivoliana)
by Colleen Guinle, Erick Julián Núñez-Vázquez, Leyberth José Fernández-Herrera, Daniela Alejandra Corona-Rojas and Dariel Tovar-Ramírez
Mar. Drugs 2023, 21(11), 597; https://doi.org/10.3390/md21110597 - 18 Nov 2023
Cited by 5 | Viewed by 2459
Abstract
Harmful algal blooms (HABs) can produce a variety of noxious effects and, in some cases, the massive mortality of wild and farmed marine organisms. Some HAB species produce toxins that are released into seawater or transferred via food webs (particulate toxin fraction). The [...] Read more.
Harmful algal blooms (HABs) can produce a variety of noxious effects and, in some cases, the massive mortality of wild and farmed marine organisms. Some HAB species produce toxins that are released into seawater or transferred via food webs (particulate toxin fraction). The objective of the present study was to identify the toxicological effects of subacute exposure to saxitoxin (STX) during embryonic and early larval stages in Seriola rivoliana. Eggs were exposed to dissolved 19 STX (100 μg L−1). The toxic effects of STX were evaluated via the hatching percentage, the activity of three enzymes (protein and alkaline phosphatases and peroxidase), and the expression of four genes (HSF2, Nav1.4b, PPRC1, and DUSP8). A low hatching percentage (less than 5%) was observed in 44 hpf (hours post fertilization) embryos exposed to STX compared to 71% in the unexposed control. At this STX concentration, no oxidative stress in the embryos was evident. However, STX induced the expression of the NaV1.4 channel α-subunit (NaV1.4b), which is the primary target of this toxin. Our results revealed the overexpression of all four candidate genes in STX-intoxicated lecithotrophic larvae, reflecting the activation of diverse cellular processes involved in stress responses (HSF2), lipid metabolism (PPRC1), and MAP kinase signaling pathways associated with cell proliferation and differentiation (DUSP8). The effects of STX were more pronounced in young larvae than in embryos, indicating a stage-specific sensitivity to the toxin. Full article
(This article belongs to the Special Issue 20 Years Commemorative Issue in Honor of Professor Paul J. Scheuer)
Show Figures

Graphical abstract

31 pages, 3113 KiB  
Article
Literature-Based Discovery to Elucidate the Biological Links between Resistant Hypertension and COVID-19
by David Kartchner, Kevin McCoy, Janhvi Dubey, Dongyu Zhang, Kevin Zheng, Rushda Umrani, James J. Kim and Cassie S. Mitchell
Biology 2023, 12(9), 1269; https://doi.org/10.3390/biology12091269 - 21 Sep 2023
Cited by 4 | Viewed by 3815
Abstract
Multiple studies have reported new or exacerbated persistent or resistant hypertension in patients previously infected with COVID-19. We used literature-based discovery to identify and prioritize multi-scalar explanatory biology that relates resistant hypertension to COVID-19. Cross-domain text mining of 33+ million PubMed articles within [...] Read more.
Multiple studies have reported new or exacerbated persistent or resistant hypertension in patients previously infected with COVID-19. We used literature-based discovery to identify and prioritize multi-scalar explanatory biology that relates resistant hypertension to COVID-19. Cross-domain text mining of 33+ million PubMed articles within a comprehensive knowledge graph was performed using SemNet 2.0. Unsupervised rank aggregation determined which concepts were most relevant utilizing the normalized HeteSim score. A series of simulations identified concepts directly related to COVID-19 and resistant hypertension or connected via one of three renin–angiotensin–aldosterone system hub nodes (mineralocorticoid receptor, epithelial sodium channel, angiotensin I receptor). The top-ranking concepts relating COVID-19 to resistant hypertension included: cGMP-dependent protein kinase II, MAP3K1, haspin, ral guanine nucleotide exchange factor, N-(3-Oxododecanoyl)-L-homoserine lactone, aspartic endopeptidases, metabotropic glutamate receptors, choline-phosphate cytidylyltransferase, protein tyrosine phosphatase, tat genes, MAP3K10, uridine kinase, dicer enzyme, CMD1B, USP17L2, FLNA, exportin 5, somatotropin releasing hormone, beta-melanocyte stimulating hormone, pegylated leptin, beta-lipoprotein, corticotropin, growth hormone-releasing peptide 2, pro-opiomelanocortin, alpha-melanocyte stimulating hormone, prolactin, thyroid hormone, poly-beta-hydroxybutyrate depolymerase, CR 1392, BCR-ABL fusion gene, high density lipoprotein sphingomyelin, pregnancy-associated murine protein 1, recQ4 helicase, immunoglobulin heavy chain variable domain, aglycotransferrin, host cell factor C1, ATP6V0D1, imipramine demethylase, TRIM40, H3C2 gene, COL1A1+COL1A2 gene, QARS gene, VPS54, TPM2, MPST, EXOSC2, ribosomal protein S10, TAP-144, gonadotropins, human gonadotropin releasing hormone 1, beta-lipotropin, octreotide, salmon calcitonin, des-n-octanoyl ghrelin, liraglutide, gastrins. Concepts were mapped to six physiological themes: altered endocrine function, 23.1%; inflammation or cytokine storm, 21.3%; lipid metabolism and atherosclerosis, 17.6%; sympathetic input to blood pressure regulation, 16.7%; altered entry of COVID-19 virus, 14.8%; and unknown, 6.5%. Full article
(This article belongs to the Special Issue Machine Learning Applications in Biology)
Show Figures

Figure 1

16 pages, 2983 KiB  
Article
Extracellular Release of Citrullinated Vimentin Directly Acts on Osteoclasts to Promote Bone Resorption in a Mouse Model of Periodontitis
by Satoru Shindo, Roodelyne Pierrelus, Atsushi Ikeda, Shin Nakamura, Alireza Heidari, Maria Rita Pastore, Elizabeth Leon, Sunniva Ruiz, Harsh Chheda, Rhea Khatiwala, Tomoki Kumagai, George Tolson, Islam Elderbashy, Kazuhisa Ouhara, Xiaozhe Han, Maria Hernandez, Saynur Vardar-Sengul, Hideki Shiba and Toshihisa Kawai
Cells 2023, 12(8), 1109; https://doi.org/10.3390/cells12081109 - 8 Apr 2023
Cited by 11 | Viewed by 3306
Abstract
Elevated osteoclast (OC)-mediated bone resorption, a common pathological feature between periodontitis and rheumatoid arthritis (RA), implicates a possible mutually shared pathogenesis. The autoantibody to citrullinated vimentin (CV), a representative biomarker of RA, is reported to promote osteoclastogenesis (OC-genesis). However, its effect on OC-genesis [...] Read more.
Elevated osteoclast (OC)-mediated bone resorption, a common pathological feature between periodontitis and rheumatoid arthritis (RA), implicates a possible mutually shared pathogenesis. The autoantibody to citrullinated vimentin (CV), a representative biomarker of RA, is reported to promote osteoclastogenesis (OC-genesis). However, its effect on OC-genesis in the context of periodontitis remains to be elucidated. In an in vitro experiment, the addition of exogenous CV upregulated the development of Tartrate-resistant acid phosphatase (TRAP)-positive multinuclear OCs from mouse bone marrow cells and increased the formation of resorption pits. However, Cl-amidine, an irreversible pan-peptidyl arginine deiminase (PAD) inhibitor, suppressed the production and secretion of CV from RANKL-stimulated OC precursors, suggesting that the citrullination of vimentin occurs in OC precursors. On the other hand, the anti-vimentin neutralizing antibody suppressed in vitro Receptor activator of nuclear factor kappa-Β ligand (RANKL)-induced OC-genesis. The CV-induced upregulation of OC-genesis was abrogated by the Protein kinase C (PKC)-δ inhibitor Rottlerin, accompanied by the downmodulation of OC-genesis-related genes, including Osteoclast stimulatory transmembrane protein (OC-STAMP), TRAP and Matrix Metallopeptidase 9 (MMP9) as well as extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP)-kinase phosphorylation. Elevated levels of soluble CV and vimentin-bearing mononuclear cells were found in the bone resorption lesions of periodontitis induced in mice in the absence of an anti-CV antibody. Finally, local injection of anti-vimentin neutralizing antibody suppressed the periodontal bone loss induced in mice. Collectively, these results indicated that the extracellular release of CV promoted OC-genesis and bone resorption in periodontitis. Full article
Show Figures

Figure 1

19 pages, 5812 KiB  
Article
Deregulated Transcription and Proteostasis in Adult mapt Knockout Mouse
by Pol Andrés-Benito, África Flores, Sara Busquet-Areny, Margarita Carmona, Karina Ausín, Paz Cartas-Cejudo, Mercedes Lachén-Montes, José Antonio Del Rio, Joaquín Fernández-Irigoyen, Enrique Santamaría and Isidro Ferrer
Int. J. Mol. Sci. 2023, 24(7), 6559; https://doi.org/10.3390/ijms24076559 - 31 Mar 2023
Cited by 2 | Viewed by 3623
Abstract
Transcriptomics and phosphoproteomics were carried out in the cerebral cortex of B6.Cg-Mapttm1(EGFP)Klt (tau knockout: tau-KO) and wild-type (WT) 12 month-old mice to learn about the effects of tau ablation. Compared with WT mice, tau-KO mice displayed reduced anxiety-like behavior and lower fear expression [...] Read more.
Transcriptomics and phosphoproteomics were carried out in the cerebral cortex of B6.Cg-Mapttm1(EGFP)Klt (tau knockout: tau-KO) and wild-type (WT) 12 month-old mice to learn about the effects of tau ablation. Compared with WT mice, tau-KO mice displayed reduced anxiety-like behavior and lower fear expression induced by aversive conditioning, whereas recognition memory remained unaltered. Cortical transcriptomic analysis revealed 69 downregulated and 105 upregulated genes in tau-KO mice, corresponding to synaptic structures, neuron cytoskeleton and transport, and extracellular matrix components. RT-qPCR validated increased mRNA levels of col6a4, gabrq, gad1, grm5, grip2, map2, rab8a, tubb3, wnt16, and an absence of map1a in tau-KO mice compared with WT mice. A few proteins were assessed with Western blotting to compare mRNA expression with corresponding protein levels. Map1a mRNA and protein levels decreased. However, β-tubulin III and GAD1 protein levels were reduced in tau-KO mice. Cortical phosphoproteomics revealed 121 hypophosphorylated and 98 hyperphosphorylated proteins in tau-KO mice. Deregulated phosphoproteins were categorized into cytoskeletal (n = 45) and membrane proteins, including proteins of the synapses and vesicles, myelin proteins, and proteins linked to membrane transport and ion channels (n = 84), proteins related to DNA and RNA metabolism (n = 36), proteins connected to the ubiquitin-proteasome system (UPS) (n = 7), proteins with kinase or phosphatase activity (n = 21), and 22 other proteins related to variegated pathways such as metabolic pathways, growth factors, or mitochondrial function or structure. The present observations reveal a complex altered brain transcriptome and phosphoproteome in tau-KO mice with only mild behavioral alterations. Full article
Show Figures

Figure 1

10 pages, 1573 KiB  
Brief Report
The Calcium Chloride Responsive Type 2C Protein Phosphatases Play Synergistic Roles in Regulating MAPK Pathways in Magnaporthe oryzae
by Wilfred M. Anjago, Jules Biregeya, Mingyue Shi, Yixiao Chen, Yupeng Wang, Zonghua Wang, Yonghe Hong and Meilian Chen
J. Fungi 2022, 8(12), 1287; https://doi.org/10.3390/jof8121287 - 8 Dec 2022
Cited by 4 | Viewed by 2143
Abstract
Reversible protein phosphorylation is essential in cellular signal transduction. The rice blast fungus Magnaporthe oryzae contains six putative type 2C protein phosphatases, namely MoPtc1, MoPtc2, MoPtc5, MoPtc6, MoPtc7, and MoPtc8. The major functions of MoPtc1 and MoPtc2 have been reported recently. In this [...] Read more.
Reversible protein phosphorylation is essential in cellular signal transduction. The rice blast fungus Magnaporthe oryzae contains six putative type 2C protein phosphatases, namely MoPtc1, MoPtc2, MoPtc5, MoPtc6, MoPtc7, and MoPtc8. The major functions of MoPtc1 and MoPtc2 have been reported recently. In this communication, we found that MoPtc1 and MoPtc2 were induced by calcium chloride. We also found that the deletion of both MoPtc1 and MoPtc2 resulted in the overstimulation of both the high-osmolarity glycerol (Hog1) and pathogenicity MAP kinase 1 (Pmk1) pathways in M. oryzae. MoPtc1 was recruited directly to Osm1 (the osmotic stress-sensitive mutant) by the adaptor protein MoNbp2 to inactivate the Osm1 during hypoosmotic stress, distinct from the budding yeast. Moreover, we showed that MoPtc1 and MoPtc2 were localized in different cellular compartments in the fungal development. Taken together, we added some new findings of type 2C protein phosphatases MoPtc1 and MoPtc2 functions to the current knowledge on the regulation of MAPK signaling pathways in M. oryzae. Full article
(This article belongs to the Special Issue Signal Transductions in Fungi 2.0)
Show Figures

Figure 1

40 pages, 9190 KiB  
Article
β-Arrestin2 Is Critically Involved in the Differential Regulation of Phosphosignaling Pathways by Thyrotropin-Releasing Hormone and Taltirelin
by Zdenka Drastichova, Radka Trubacova and Jiri Novotny
Cells 2022, 11(9), 1473; https://doi.org/10.3390/cells11091473 - 27 Apr 2022
Cited by 3 | Viewed by 4296
Abstract
In recent years, thyrotropin-releasing hormone (TRH) and its analogs, including taltirelin (TAL), have demonstrated a range of effects on the central nervous system that represent potential therapeutic agents for the treatment of various neurological disorders, including neurodegenerative diseases. However, the molecular mechanisms of [...] Read more.
In recent years, thyrotropin-releasing hormone (TRH) and its analogs, including taltirelin (TAL), have demonstrated a range of effects on the central nervous system that represent potential therapeutic agents for the treatment of various neurological disorders, including neurodegenerative diseases. However, the molecular mechanisms of their actions remain poorly understood. In this study, we investigated phosphosignaling dynamics in pituitary GH1 cells affected by TRH and TAL and the putative role of β-arrestin2 in mediating these effects. Our results revealed widespread alterations in many phosphosignaling pathways involving signal transduction via small GTPases, MAP kinases, Ser/Thr- and Tyr-protein kinases, Wnt/β-catenin, and members of the Hippo pathway. The differential TRH- or TAL-induced phosphorylation of numerous proteins suggests that these ligands exhibit some degree of biased agonism at the TRH receptor. The different phosphorylation patterns induced by TRH or TAL in β-arrestin2-deficient cells suggest that the β-arrestin2 scaffold is a key factor determining phosphorylation events after TRH receptor activation. Our results suggest that compounds that modulate kinase and phosphatase activity can be considered as additional adjuvants to enhance the potential therapeutic value of TRH or TAL. Full article
(This article belongs to the Topic Cell Signaling Pathways)
Show Figures

Figure 1

12 pages, 916 KiB  
Article
Dexamethasone Attenuates the Expression of MMP-13 in Chondrocytes through MKP-1
by Tiina Lehtola, Elina Nummenmaa, Lauri Tuure, Mari Hämäläinen, Riina M. Nieminen, Teemu Moilanen, Antti Pemmari and Eeva Moilanen
Int. J. Mol. Sci. 2022, 23(7), 3880; https://doi.org/10.3390/ijms23073880 - 31 Mar 2022
Cited by 6 | Viewed by 2706
Abstract
Mitogen-activated protein kinase phosphatase-1 (MKP-1) is upregulated in inflammation and reduces the activity of proinflammatory mitogen-activated protein kinases (MAP kinases) by dephosphorylation. MAP kinases are intracellular signaling pathways that mediate the cellular effects of proinflammatory cytokines. In the present study, we investigated the [...] Read more.
Mitogen-activated protein kinase phosphatase-1 (MKP-1) is upregulated in inflammation and reduces the activity of proinflammatory mitogen-activated protein kinases (MAP kinases) by dephosphorylation. MAP kinases are intracellular signaling pathways that mediate the cellular effects of proinflammatory cytokines. In the present study, we investigated the effects of the glucocorticoid dexamethasone on the expression of catabolic enzymes in chondrocytes and tested the hypothesis that these effects are mediated through MKP-1. Dexamethasone was found to significantly attenuate the expression of matrix metalloproteinase (MMP)-13 in human OA chondrocytes as well as in chondrocytes from MKP-1 WT mice, but not in chondrocytes from MKP-1 KO mice. Dexamethasone also increased the expression of MKP-1 in murine and human OA chondrocytes. Furthermore, p38 MAP kinase inhibitors significantly attenuated MMP-13 expression in human OA chondrocytes, while JNK MAP kinase inhibitors had no effect. The results indicate that the effect of dexamethasone on MMP-13 expression in chondrocytes was mediated by an MKP-1 and p38 MAP kinase-dependent manner. These findings, together with previous results, support the concept of MKP-1 as a protective factor in articular chondrocytes in inflammatory conditions and as a potential drug target to treat OA. Full article
(This article belongs to the Special Issue Osteoarthritis 2.0: From Molecular Pathways to Therapeutic Advances)
Show Figures

Figure 1

Back to TopTop