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Abstract: Harmful algal blooms (HABs) can produce a variety of noxious effects and, in some cases,
the massive mortality of wild and farmed marine organisms. Some HAB species produce toxins that
are released into seawater or transferred via food webs (particulate toxin fraction). The objective of
the present study was to identify the toxicological effects of subacute exposure to saxitoxin (STX)
during embryonic and early larval stages in Seriola rivoliana. Eggs were exposed to dissolved 19 STX
(100 µg L−1). The toxic effects of STX were evaluated via the hatching percentage, the activity of
three enzymes (protein and alkaline phosphatases and peroxidase), and the expression of four genes
(HSF2, Nav1.4b, PPRC1, and DUSP8). A low hatching percentage (less than 5%) was observed in
44 hpf (hours post fertilization) embryos exposed to STX compared to 71% in the unexposed control.
At this STX concentration, no oxidative stress in the embryos was evident. However, STX induced
the expression of the NaV1.4 channel α-subunit (NaV1.4b), which is the primary target of this toxin.
Our results revealed the overexpression of all four candidate genes in STX-intoxicated lecithotrophic
larvae, reflecting the activation of diverse cellular processes involved in stress responses (HSF2), lipid
metabolism (PPRC1), and MAP kinase signaling pathways associated with cell proliferation and
differentiation (DUSP8). The effects of STX were more pronounced in young larvae than in embryos,
indicating a stage-specific sensitivity to the toxin.

Keywords: saxitoxin; paralytic shellfish toxins; toxicogenomic; gene expression; Seriola rivoliana;
harmful algal blooms; embryonic development; hatching percentage

1. Introduction

Harmful algal blooms (HABs) have become a major environmental problem in recent
decades due to their impacts on fisheries, aquaculture, wildlife, socioeconomic and recre-
ational activities, and human health [1]. Some HAB species produce marine toxins, which
are released into seawater or transferred through food webs (particulate toxin fraction).
The nature of these effects depends on the marine toxins produced by harmful microalgae
(e.g., dinoflagellates, diatoms, and raphidophytes), cyanobacteria, and bacteria. These
toxins are metabolic compounds that can accumulate in the tissues of marine organisms,
affecting both their physiology and behavior [2,3]. For example, HABs have been respon-
sible for mass mortality events in the Gulf of California of wild (e.g., mammals, birds,
fish, and invertebrates) and farmed (e.g., fish and crustaceans) marine species due to the
large quantities of toxins in contaminated prey [4,5]. In addition, many human poisonings
have been linked to the consumption of seafood products (filter-feeding bivalves and
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fish) contaminated by toxins and cases of respiratory tract irritation due to aerosolized
toxins [3,6,7].

Saxitoxin (STX) and its derivatives, which are commonly referred to as paralytic shell-
fish toxins (PSTs), are among the most studied marine toxins responsible for poisonings in
both humans and marine animals [8,9]. These toxins can induce neuromuscular symptoms
such as muscular paralysis, myalgia, and respiratory difficulty. In cases of severe intoxica-
tion, muscular paralysis or dyspnea may evolve into respiratory arrest and death [9,10].
Paralytic shellfish toxins act in the nervous systems of mammals by blocking voltage-gated
sodium channels (NaV) [11,12] and can also bind to voltage-gated calcium (CaV) and
potassium (KV) channels [13,14]. Although PSTs have been linked to the mass mortality
and intoxication of diverse marine organisms, including crustaceans, fish, sea birds, sea
turtles, and marine mammals, knowledge of the corresponding action mechanisms and
intoxication routes remains scarce [15].

The toxins released during HAB events accumulate in food webs. Thus, marine fish
are the primary group affected by these toxins. In fish, as in other vertebrates, embryonic
development is controlled by different signaling pathways in which specific molecules
play important roles in various processes, such as dorsal–ventral and anterior–posterior
positioning [14]. Marine toxins are capable of deregulating gene expression and can
disrupt embryonic development by affecting cellular metabolism [16,17] and inducing
developmental delays and macroscopic organ alterations or abnormalities [18–21]. Fish
embryos and larvae are susceptible to marine toxins because they have not yet developed
efficient detoxification systems and exhibit high metabolic growth rates [22]. Thus, these
toxins, which have lethal and sublethal effects during early life stages [4,19,20], threaten
fish recruitment, fishery yields, and aquaculture production [5,23,24]. Therefore, strategies
must be implemented to detect and understand the mechanisms by which marine toxins
affect fish and ultimately threaten human health.

The longfin yellowtail (Seriola rivoliana) is a carnivorous, benthopelagic marine fish
of the family Carangidae that is mainly found in subtropical reefs from the United States
of America (USA) to Peru in the Pacific [25] and from the United States to Argentina in
the Atlantic [26]. Seriola rivoliana is a top carnivore in reef-associated food webs and the
main vector of Ciguatera fish poisoning in the Atlantic (Macaronesian) Islands (Canarias
and Madeira archipelagos) and Azores [27–29]. As with other Seriola species, S. rivoliana
exhibits excellent potential for aquaculture production due to its worldwide distribution,
fast growth, and ability to adapt well to captivity [30]. Indeed, S. rivoliana has become one
of the most important marine fish species selected to diversify aquaculture production in
Japan, Australia, the United States, Spain, and Mexico [30,31]. However, information on
the early life stages of S. rivoliana is needed to elucidate the causes of early mortality and
develop strategies to increase egg viability and larval survival [30,32,33].

The objective of the present study was to identify the effects of saxitoxin, one of the
most toxic PSTs and one of the main PSTs present in Mexico. The use of marine fish embryos
and larvae as sentinels to detect the modes of action of marine toxins has been proposed in
many studies mostly conducted with Zebrafish (Danio rerio) [19,20]. Previous studies have
reported the negative effects of toxins on fish larvae [34,35]. In S. rivoliana, exposure to diar-
rhetic shellfish toxins (DSTs; okadaic acid [OA] and dinophysistoxin-1 [DTX-1]), PSTs, and
saxitoxin analogs (gonyautoxin 2–3 [GTX 2–3], decarbamoyl gonyautoxin 2–3 [dc-GTX2–3],
and C1–C2) has been recently shown to deregulate embryogenesis-related pathways, in-
hibit phosphatase activity, and induce metabolic responses in larvae by increasing gene
expression and lipid metabolism enzyme activity [36,37].

The impacts of STX exposure were also evaluated in larvae from hatching until 62 h
post fertilization (hpf; i.e., before mouth opening at 96 hpf) [38]. The embryotoxic effect
(hatching percentage) was quantified, and the regulation of genes and enzymes involved
in (i) stress responses (heat-shock proteins), (ii) ion transport (voltage-gated sodium channels),
(iii) lipid metabolism (peroxisome proliferator-activated receptors), (iv) digestion-related
pathways (alkaline phosphatases), (v) oxidative stress (peroxidase), and (vi) key enzyme
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regulation (protein phosphatases) was also assessed. The results of the present study provide
new information on the modes of action of PSTs during embryonic and larval development.

2. Results
2.1. Hatching Percentages

In the present study, S. rivoliana embryos and recently hatched larvae were used as
models to qualitatively and quantitatively assess the impacts of PSTs during the devel-
opment of early life stages. We hypothesized that PSTs would induce adverse effects on
the development of S. rivoliana embryos, which could be evaluated with biochemical and
molecular methods. To test this hypothesis, fish embryos were exposed to STX throughout
embryonic development (8 to 44 hpf). The cellular and molecular levels in S. rivoliana were
used to develop models with improved sensitivity to detect, quantify, and classify the modes
of action of these molecules. The hatching percentage was assessed at 44 hpf in the control and
STX treatment. The observed spawning volume (Figure S1), buoyancy, and shape indicated
good egg quality. This preliminary observation was confirmed by the relatively high hatching
percentage of eggs from the control group (71.16 ± 1.97%). Conversely, high mortality of
STX-exposed eggs was observed in the different replicates, and the hatching percentage was
14 times lower (4.92 ± 0.80%) compared to that of the control group, with the difference being
highly significant (Student’s t-test, p = 0.00018; Figure 1).
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Hatching percentages of Seriola rivoliana embryos. Control: embryos cultivated without toxins; STX: 
Figure 1. (A,B) Evaluation of hatching rate and larval viability at 44 hpf in the STX treatment.
(C) Hatching percentages of Seriola rivoliana embryos. Control: embryos cultivated without toxins;
STX: embryos exposed to saxitoxin standard solution (100 µg L−1 STX eq.). Asterisks (***) indicate
significantly different means between the control and STX treatment (Student’s t-test, p < 0.001). Bars
represent the mean ± standard error (n = 3).

2.2. Gene Expression Analyses

The expression of heat shock factor 2 (HSF2), sodium channel protein type 4 subunit
alpha B (NaV1.4b), peroxisome proliferator-activated receptor gamma coactivator-related
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protein 1 (PPRC1), and dual specificity phosphatase 8 (DUSP8) genes was detected in the
control from 8 to 62 hpf. The highest expression levels were observed at 50 hpf. For the
STX treatment, the expression of HSF2, PPRC1, and DUSP8 genes was detected from 26 to
62 hpf. In comparison, NaV1.4b gene expression was only detected between 50 and 62 hpf,
which corresponded to the lecithotrophic larval stage (i.e., depletion of the remaining yolk
reserves before mouth opening; Figure 2).
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Figure 2. Relative gene expression (A) of heat shock factor 2 (HSF2), (B) NaV1.4 channel α-subunit
(NaV1.4b), (C) PPRC1 relative gene expression, and (D) dual specificity phosphatase 8 (DUSP8)
genes from Seriola rivoliana embryos. Control: embryos cultivated without toxins; STX: embryos
exposed to saxitoxin standard solution (100 µg L−1 STX eq.). Asterisks (* or **) indicate significant
differences between treatments at 26, 50, and 62 hpf (Kruskal–Wallis p < 0.05 or p < 0.01, respectively).
Letters ab and AB indicate significant differences between times under the control and STX (saxitoxin)
treatments, respectively; (Kruskal–Wallis p < 0.05). Bars represent the mean ± standard error (n = 3).

A significant increase in HSF2 and DUSP8 gene expression was observed between
50 and 62 hpf in control embryos (p < 0.05) and between 44 and 50 hpf in STX-exposed
embryos (p < 0.05 for HSF2, p < 0.01 for DUSP8). NaV1.4b gene expression increased
significantly between 44 and 62 hpf in control embryos (p < 0.05). In exposed embryos,
NaV1.4b gene expression was not detected during embryo development (between 26 and
44 hpf) but significantly increased between 50 and 62 hpf in lecithotrophic larvae (p < 0.05).
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The expression level of the PPRC1 gene increased significantly between 50 and 62 hpf
in control embryos (p < 0.05). In exposed embryos, PPRC1 gene expression increased
significantly between 44 and 50 hpf (p < 0.05) and then decreased significantly between 50
and 62 hpf (p < 0.05).

At 26 hpf, the expression of the HSF2 and NaV1.4b genes was significantly lower in
STX-exposed embryos compared to the control (p < 0.05), but no significant change was
observed for the other genes (p > 0.05; Figure 2). At 44 hpf, only the expression of NaV1.4b
was significantly different between the two treatments (p < 0.05). At 50 hpf, the expression
levels of the four genes were significantly higher in STX-exposed larvae than in the control
(p < 0.05). At 62 hpf, a significant decrease in PPRC1 gene expression was observed in
intoxicated larvae compared to that of the control (p < 0.05). In contrast, no significant
changes were noted for the other genes (p > 0.05).

2.3. Enzyme Analyses

The specific activities of protein phosphatase (PP), alkaline phosphatase (ALP), and
peroxidase (PER) were detected from 8 to 62 hpf in the control and from 26 to 62 hpf in the STX
treatment (Figure 3). A significant decrease in the activity of both types of phosphatases was
observed between 44 and 50 hpf (i.e., just after larval hatching) in both treatments (p < 0.01).
PER activity was significantly higher at 26 hpf than at 50 hpf in the control (p < 0.05) and in
the STX-exposed embryos (p < 0.01). Nevertheless, the activity of this enzyme did not change
significantly (p > 0.05) between 26 and 44 hpf or between 44, 50, and 62 hpf (Figure 3C).
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Figure 3. Specific activity (A) of protein phosphatase (PP), (B) alkaline phosphatase (ALP), and (C) per-
oxidase (PER) in Seriola rivoliana embryos. Control: embryos cultivated without toxins; STX: embryos
exposed to standard saxitoxin solution (100 µg L−1 STX eq.). Results are expressed as units of enzyme per
milligrams of total proteins (U mg−1). Asterisk (*) indicates significant differences between treatments
at 26 hpf (Kruskal–Wallis p < 0.05). Letters ab, AB, c and C indicate significant differences in times under
the control and STX (saxitoxin) treatment, respectively (Kruskal–Wallis p < 0.05). Bars represent the
mean ± standard error (n = 3).
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At 26 hpf, PP activity was significantly lower in STX-exposed embryos compared to
control embryos (p < 0.05); however, at 44, 50, or 62 hpf (p > 0.05; Figure 3B), no significant
difference in the specific activities of the ALP and PER enzymes was observed in STX-
exposed embryos compared to those of the control (p > 0.05), regardless of the sampling
time (Figure 3A,C).

3. Discussion
3.1. Reduction of Hatching Percentage due to STX Exposure

The high hatching percentage (71.16 ± 1.97%) observed in the control indicates that
the majority of eggs were able to complete embryonic development and hatch into larvae.
In comparison, Brenta et al. [36] obtained a higher hatching percentage (78.3 ± 2.9%) in the
control, which suggests that the eggs in our experiment were of slightly lower quality.

A very low hatching percentage (4.92 ± 0.80%) was observed for embryos exposed
to the STX concentration of 100 µg L−1 (Figure 1C), which suggests a very high embryo
mortality rate (>90%). Indeed, large quantities of dead embryos were observed at 44 hpf in
the tanks with STX. Once again, these results differ from those of Brenta et al. [34], who
employed an equivalent dose (100 µg L−1 STX eq.) of gonyautoxin (GTX), an analog of
STX, and observed a 50% hatching rate of S. rivoliana eggs. Together with neosaxitoxin
(NeoSTX), STX exhibits the highest toxicity among paralytic shellfish toxins, while GTX
is less toxic (Table 1). This difference in toxicity explains why STX was able to lower the
egg-hatching rate to a greater extent than GTX.

Table 1. Molecular structure and toxic equivalency factor (TEF) of the paralytic shellfish toxins (PSTs).
Adapted from Leal and Cristiano [38] and Reis Costa et al. [39].
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Brenta [36] also highlighted that under equivalent concentrations (90 µg L−1 OA eq.
and 100 µg L−1 STX eq.), hatching was more affected by OA, which is responsible for
diarrhetic shellfish poisoning, than by STX, suggesting that S. rivoliana embryos are more
sensitive to OA than to GTX. Thus, it can be hypothesized that in embryos, toxicity depends
on the roles targeted substrates play in cellular mechanisms and their relative importance.
Within a given family of toxins, which exhibit the same modes of action with specific
substrates, the elevated toxicity of some members could be related to molecular structures
that increase binding affinity to certain molecular receptors [5,9].

Paralytic shellfish toxins have a common molecular structure and variable R1-4 func-
tional groups that influence their net charge and polarity, increasing the binding ability of
PSTs to ion channel sites [9]. At the R4 position, the carbamate moiety common to STX and
GTXs confers higher toxicity than the N-sulfocarbamoyl moiety present in C1 and C2 toxins
or the decarbamate moiety characteristic of dc-GTXs. On the other hand, the lower toxicity
of GTXs compared to that of STX is due to the presence of HOSO3 groups in positions R2
and R3, which decreases ion channel binding affinity and, consequently, the toxicity of the
molecule (Table 1). PSTs can be classified according to their relative toxicity with the toxic
equivalency factor (TEF): STX > GTX3 > GTX2 > C2 > C1 > dcGTX3 > dcGTX2. Given that
STX has a higher toxicity than its analogs, it seems clear that the embryo hatching rate was
more strongly impacted by STX exposure in this study than by GTX2-3, C1-2, or dcGTX2-3
exposure [36]. However, the hypothesis that high embryo sensitivity to STX results from
the ability of this toxin to cross the chorion and directly reach the embryo within the egg
must be confirmed in future studies. STX exposure increases the expression of various
apoptosis-related genes in bivalves [40,41] and fish [42]. Thus, the results suggest that the
exposure of embryos to STX, either by simple external contact or by incorporating the toxin
into the egg, activates cellular mechanisms related to apoptosis, triggering embryo death.
Nevertheless, other factors besides STX exposure, such as culture conditions or egg quality,
may also influence the sensitivity of fish embryos to toxins and help explain the drastic
embryo mortality observed in the present study (Table S1).

3.2. Heat Shock Protein Induction

HSF2 gene expression significantly increased between 50 and 62 hpf in control larvae
and 50 hpf in STX-exposed larvae (Figure 2A). These results suggest that STX exposure
resulted in the early induction of the HSF2 gene during larval development in S. rivoliana.
The HSF2 gene is a member of the heat shock factor (HSF) family, which are activators
of heat shock protein (HSP) transcription [43,44]. Heat shock proteins act as molecular
chaperones to assist misfolded proteins in stressed cells and are involved in the responses
to multiple environmental stressors, including heat shock [45] and exposure to contami-
nants [46] or toxins [47,48]. Thus, HSF2 induction could indicate the probable accumulation
of misfolded proteins within cells exposed to saxitoxin, as well as other processes involved
in morphogenetic changes. In this study, HSF2 induction occurred early during devel-
opment in STX-exposed larvae at 50 and 62 hpf. These gene expression results provide
evidence for STX-related stress response in S. rivoliana larvae and suggest high transcrip-
tion of HSP coding genes. Saxitoxin exposure has been reported to induce an increase in
HSPs in Medaka (Oryzias latipes) embryos, although during later embryonic-larval stages
(i.e., 16 days post-fertilization) [49] Figure S1. Similarly, in juvenile gilthead seabream
(Sparus aurata), notable induction of HSP70 proteins was observed with PST exposure and
warming [50].

In addition, HSF2 gene expression increased during embryo development in the
control (Figure 2A). This result highlights the multiple roles of HSP and HSF proteins
that are synthesized in response to environmental stress and during normal embryonic
development. Thus, HSF proteins and HSP play vital roles in providing protection from
multiple environmental stressors during the larval phase, one of the most vulnerable life
stages of fish development [51]. HSF2 has also been shown to be involved in the constitutive
transcription of HSP genes [52], which would explain its presence in both the control and
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STX-exposed embryos. Although the differences were not statistically significant, lower
HSF2 expression at 26 hpf and higher expression of the same at 62 hpf can be visually noted
in the exposed embryos compared to those in the control.

3.3. Regulation of Voltage-Gated Sodium Channels via Gene Expression

The primary mode of action of STX is to block voltage-gated sodium (NaV) channels
by binding to site 1 of the α-subunit that forms the channel pore [11]. To highlight the
impact of STX on NaV channels at the molecular level, we studied the expression of the
NaV1.4b gene, which encodes the α-subunit of the NaV1.4 isoform. This isoform promotes
electrogenesis in non-neuronal cells (e.g., skeletal muscle cells) and non-excitable cells
(e.g., endothelial cells and red blood cells) [53]. The results revealed an absence of NaV1.4b
gene expression between 26 and 44 hpf in STX-exposed embryos, followed by a 120-fold
increase in expression between 50 and 62 hpf in STX-exposed larvae compared to that of
the control (Figure 2B). These results suggest that the STX-associated stress response occurs
in two phases during embryo and larval development: (i) STX completely inhibits the
expression of the NaV1.4b gene at the embryo stage and (ii) an up-regulation of this gene
occurs during the larval stage in response to this inhibition.

By regulating Na+ flow across the cell membrane to initiate and propagate action
potentials, NaV channels are responsible for the electrical excitability of cells and play
crucial roles in ion regulation, neuromuscular communication, and digestion [54,55]. In
addition, NaV channels are involved in regulating the cellular K+ flux [56], which is required
for the continuous functioning of the sodium-potassium pump (Na+/K+ATPase). Therefore,
the inhibition of the NaV1.4b gene observed before and after hatching (26 and 44 hpf) may
be a way of preserving the ATP pool, given that pre- and post-hatching phases are critical
periods during fish development and are energetically costly [57]. In a broader context,
the over-expression of the NaV1.4b gene could protect the cellular machinery of young
larvae, as Na+ ions play key roles in many cellular mechanisms (e.g., neurotransmission,
osmoregulation, and immunity) [58,59]. It would be useful to study the adenylate energy
charge (AEC) by estimating the variation in energy content (in terms of ATP, ADP, and
AMP concentrations) throughout the development of STX-exposed embryos to assess the
impact of toxic stress on cellular metabolism, especially in these energy-related pathways.

To our knowledge, no study has identified the different NaV channel isoforms found
in Seriola species or, more generally, in fish of the family Carangidae. In the case of the
NaV1.4 isoform, which is primarily found in skeletal muscle cells, amino acid substitutions
in the alpha subunit have been reported to confer resistance to toxins with positively
charged guanidinium, including saxitoxin (STX), tetrodotoxin (TTX), and their derivatives.
In particular, these substitutions alter the pore structure of the channels and electrostatic
interactions between the toxin and pore, thus preventing the toxin from binding to the
channel. This phenomenon has been described in several pufferfish species, the blue-ringed
octopus (Hapalochlaena sp.), and soft-shell clam (Mya areneria) [60]. In the future, it would
be interesting to identify the different isoforms of the NaV channels in S. rivoliana, the way
they are related to ontogenetic development, and their distributions within tissues. The
sensitivity and resistance of the different NaV channels to guanidinium toxins should also
be assessed in this species.

3.4. No STX-Induced Oxidative Stress

Specific peroxidase activity was detected as early as 8 hpf and then significantly
decreased between 26 and 50 hpf in both control and STX-exposed embryos (Figure 3C).
Peroxidases are antioxidant enzymes capable of degrading hydrogen peroxide (H2O2), a
reactive oxygen species (ROS) that oxidizes lipids, DNA, and proteins. These enzymes are
integral to the antioxidant defense systems of aquatic organisms and protect cell membranes
and various molecules within cells [61]. In the present study, peroxidase (PER) activation
suggests the presence of H2O2 in both control and STX-exposed embryos. However, PER
activity was not significantly higher in exposed embryos than in the control. In adult fish,
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PSTs are known to induce oxidative stress, which can be observed in the modulation of
antioxidant enzymes such as catalase (CAT), glutathione peroxidase (GPX), and superoxide
dismutase (SOD) [49,62,63] Table S2. The results of PER activity do not suggest that
STX induced oxidative stress in fish embryos and larvae. The overproduction of ROS is
importantly related to cytotoxicity and cell apoptosis [64].

3.5. Activation of Lipid Metabolism and Digestion-Related Pathways

The regulation of lipid metabolism was assessed by measuring the expression of
the PPRC1 gene, which encodes the peroxisome proliferator-activated receptor gamma
(PPARγ) coactivator relative protein 1. PPRC1 gene expression was detected as early as
8 hpf in control embryos and significantly increased between 50 and 62 hpf in control
larvae (Figure 2C). PPARγ is not only a key component in adipogenesis and lipid stor-
age, biosynthesis, and metabolism but also helps regulate inflammatory responses, cell
differentiation, and cell proliferation [65–67]. Lipid metabolism, and, more specifically, the
β-oxidation of fatty acids, is an essential metabolic pathway for the consumption of yolk
reserves during embryo development and the development of lecithotrophic larvae, which
depend on lipid droplets because these are the only endogenous reserves available after
yolk sac depletion [68].

The results obtained in this study indicate a metabolic activation at 62 hpf (i.e., 26 h
old larvae) and provide evidence of the consumption of the remaining endogenous reserves
prior to mouth opening and the first exogenous feeding. Similarly, Brenta et al. [36] found an
increase in lipase activity in control larvae between 0 and 3 days post-hatching (i.e., before
the onset of exogenous feeding), which may be a mechanism to initiate the digestion of
exogenous food. Given that PPARγ is also involved in cell differentiation and proliferation,
the induction of the PPRC1 gene at 62 hpf may also indicate tissue development in young
lecithotrophic larvae. Thus, the PPRC1 gene expression results provide evidence that 26 h
old lecithotrophic larvae are metabolically more active than embryos.

The activation of digestion-related pathways was investigated using the activity of
ALP. In both the control and STX treatments, ALP activity was detected throughout embryo
development (from 8 to 44 hpf) and then dropped to near-zero levels at 50 and 62 hpf.
ALPs are intrinsic membrane proteins that are involved in digestion, membrane transport,
innate immunity, and bone mineralization [69–71]. Thus, the increase in ALP activity in
embryos may, in part, indicate the need to regulate the activity of enzymes involved in
these various mechanisms, including digestion. Indeed, although the digestive system
is not complete and functional at the embryonic stage, some digestive enzymes, such as
ALP and lipase, have been detected in fish embryos and could potentially play roles in the
absorption of lipids from maternal yolk [36,37]. In contrast, during the early larval stages
of both treatments, ALP activity was almost zero at 50 and 62 hpf, indicating that either
these enzymes exhibited little or no involvement in the lipid metabolism of lecithotrophic
S. rivoliana larvae or that they were inactivated via other phosphatases or degraded via
external stress.

STX exposure triggered an up-regulation of the PPRC1 gene at 50 hpf followed by
down-regulation at 62 hpf in STX-exposed larvae (Figure 2C). However, no significant
changes in ALP activity were observed between the control and STX treatments. The
present results of PPRC1 gene expression suggest that the response to STX exposure occurs
in two phases in lecithotrophic larvae. The first phase is characterized as active lipid
metabolism that results in the rapid consumption of yolk reserves, which reflects a short-
term stress response to meet energetic demands. During the second phase, the inhibition
of lipid metabolism indicates either an inability of larvae to maintain a high metabolic
rate when stress is prolonged or the total depletion of endogenous energy reserves at
62 hpf. Considering the results of the present study and those of Le Du et al. [37] and
Brenta et al. [36], the pathways involved in lipid metabolism and digestion in S. rivoliana
larvae are more affected by OA+DTX-1, followed by STX and GTX and their analogs.
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As a consequence of the inhibition of fatty acid β-oxidation, stress resistance, and
immune functions may be impaired in fish. However, to our knowledge, this hypothesis
has only been proposed in adult fish [72] but not in lecithotrophic larvae. This may be
because the innate immune response of stress resistance is not well developed at this larval
stage and only becomes active at the larval mouth opening. Lecithotrophic larvae are more
vulnerable than embryos to toxins because they do not have a protective envelope (chorion)
and are consequently more vulnerable to toxin exposure. Moreover, the mechanisms for
STX detoxification may not yet be developed in the early larval stages of S. rivoliana and
only become activated later in development. In the larval stages of marine fish, adaptive
mechanisms for detoxification or sequestration may have evolved as proposed for Pacific
herring (Clupea harengus pallasi) [73].

3.6. Regulation of Protein Phosphatases

Protein phosphatases (PPs) are phosphatases that reverse the action of protein kinases
by dephosphorylating amino acids in proteins, primarily serine (Ser), threonine (Thr), and
tyrosine (Tyr) residues. For example, protein Ser/Thr phosphatases remove phosphate
from Ser and Thr residues in proteins [74]. Protein phosphatases have been well studied
in ecotoxicology, especially PP1 and PP2A, which are known to be inhibited by marine
toxins such as OA and microcystin-LR (MC-LR) [75]. In the present study, PP activity was
detected in control embryos from 8 hpf onwards (i.e., before hatching; Figures 3A and 4),
which was also observed in a previous study of S. rivoliana embryos [35]. Similarly, Shi
et al. [76] found pre-hatching phosphatase activity in olive flounder (Paralichthys olivaceus)
embryos. In the present study, PP activity was detected throughout embryonic development
(from 8 to 44 hpf) and then drastically decreased to near-zero levels at 50 and 62 hpf during
the early larval stages. This inhibition of PP activity in both control and STX-exposed larvae
may result from the regulation of these enzymes via ontogenetic processes, which could be
genetically programmed, or oxidative stress-related processes in cells. To date, the inhibition
of PP by oxidative stress has never been described in marine organisms. On the other hand, in
some cell lines, it has been demonstrated that H2O2 is able to inhibit PP activity rapidly [77,78].
Although PP activity was significantly lower in exposed embryos than those in the control at
26 hpf, it is unlikely that STX inhibits the activity of PPs, as this inhibitory capacity is linked to
a particular molecular structure (i.e., an extended aliphatic chain with a circular component),
which is common to OA and MC-LR [72] but not to STX (Table S2).

Dual-specificity phosphatases (DUSPs) are protein phosphatases that can dephos-
phorylate many key signaling molecules, including mitogen-activated protein kinases
(MAPKs), which are associated with stress responses, immune responses, cell proliferation,
and differentiation [79,80]. Through their dephosphorylation activity, DUSP8 phosphatases
trigger the inactivation of stress-activated MAPK isoforms, c-Jun amino-terminal kinases
(JNKs 1–3), and p38 MAPKs. By regulating the activity of both classes of MAPKs, DUSP8
plays roles in innate and adaptive immunity [81,82]. Therefore, DUSP8 activity must be
properly controlled. The present results show that STX exposure during embryonic devel-
opment induced an early up-regulation of DUSP8 in the first larval stages, which could
indicate the need to regulate stress-activated MAPK activities or, alternatively, to release
additional inorganic phosphates to produce more energy.

Nevertheless, an uncontrolled up-regulation of DUSP8 can strongly impact stress-
activated MAPK signaling pathways and thus alter many key cellular processes. In the
present study, the expression level was 120-fold higher in STX-exposed larvae than in
control larvae at 50 hpf (p < 0.01), which may indicate the uncontrolled expression of the
DUSP8 gene due to STX exposure. Consequently, the MAPK signaling pathways may be
altered, leading to the inhibition of cell proliferation and differentiation. This is a likely
hypothesis because some studies have reported that STX can retard growth or induce
abnormal growth in fish embryos and larvae [20,49], reducing body weight and size in
adult fish [63]. The results of DUSP8 gene expression do not reflect those of PP enzymatic
activity. This discrepancy may be because the enzymatic assay employed in this study does
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not specifically target the activity of DUSP8 but measures all PPs, including PP1 and PP2A,
which are known to be more prominently represented in cells than DUSP8 [75].
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3.7. Implications of Other Factors in Embryonic and Larval Development

Although in vivo experiments are easier to implement and more reproducible than in
situ studies, they have the disadvantage of being less relevant from an ecological point of
view, as laboratory conditions cannot closely mimic natural conditions. The toxicity of STX
at a concentration of 100 µg L−1 induced very high mortality in embryos. This observation
is noteworthy because equivalent concentrations of PSTs may be present in the ecosystem
during HABs. If true, this is a major problem for larviculture and fish reared in marine
culture cages, as marine toxins can cause the massive mortality of larvae in hatcheries.
Water filtration systems can control PST-producing dinoflagellate and cyanobacterial cells,
but their toxins, which are dissolved in seawater due to their polar nature [83], cannot be
controlled. Paralytic shellfish toxins are also highly thermostable and difficult to degrade,
which results in notable bioaccumulation in tissues [84]. Although PSTs can be easily
excreted via renal processes in fish due to their hydrophilic nature, they cannot be excreted
in the same manner during early life stages when renal systems are not yet fully developed,
making eggs and larvae highly vulnerable to HAB toxins [51]. The spatiotemporal overlap
between fish spawning and HABs is critical to the success of fisheries recruitment and fish
rearing. Thus, the sublethal effects of marine toxins during embryonic and larval life stages
must be considered to improve the performance of fisheries and aquaculture programs.

Some authors, including Reis Costa et al. [39] and Roggatz et al. [85], have described a
global climate change scenario in which the concomitant decrease in pH and increase in
ocean temperatures elevate the bioavailability and toxicity of marine toxins, such as STX
and TTX, negatively affecting ecosystems and human and animal health. This scenario
has important implications for ecotoxicology and the chemical signals mediating interac-
tions among marine species, such as foraging, reproduction, predation, and defense, with
unknown consequences for ecosystem stability and vital ecosystem services [39].
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4. Materials and Methods
4.1. Acquisition, Extraction, and Quantification of Marine Toxins

An STX FDA Reference Standard was obtained from the US National Institute of
Standards and Technology (NIST, RM 8642). The reference material (RM) was saxitoxin
dihydrochloride (CAS No. 35554-08-6) in a solution containing hydrochloric acid at a
concentration of 5 mmol L−1 in 20% ethanol in water (volume fraction). The reference value
for saxitoxin dihydrochloride is 103 ± 2 µg g−1. The STX FDA standard was provided
by the Marine Toxins and Amino Acids Laboratory of CIBNOR (Centro de Investigaciones
Biológicas del Noroeste S.C.). Saxitoxin activity and toxicity were calculated via mouse
bioassay (MBA) following the recommendations described in the official protocol of the
Association of Official Analytical Chemists [86]. To prepare the toxin solution, the original
STX standard was concentrated via evaporation and then diluted in sterile saline solution
(0.9% NaCl), as described by Le Du et al. [37].

4.2. Assessment of Embryonic Development and Larval Viability
4.2.1. Experimental Protocol

Fertilized eggs were obtained from the natural spawning of Seriola rivoliana brood-
stock maintained in captivity under optimum conditions in collaboration with Ocean Era
(formally Kampachi Farms) in CIBNOR. Eggs were collected with a 300 µm mesh bag and
volumetrically counted to add ~15,200 eggs (i.e., 19 mL) to each 1 L glass jar (replicate).
We began with three replicates containing 330 mL of seawater with embryos exposed to
standard saxitoxin (100 µg L−1) and three controls containing 500 mL seawater without
toxins. This concentration was chosen based on previous work with S. rivoliana embryos
and larvae exposed to PSTs (GTX 2–3, dc-GTX 2–3, and C1–C2), demonstrating that this
concentration is sufficient to impact embryonic and larval development without resulting
in death [36]. This concentration was also chosen for its ecological relevance, as similar
concentrations naturally occur during HABs. The seawater (38‰ salinity) was previously
filtered (0.45 µm). All glass replicates were placed in a water bath (24.0 ± 0.4 ◦C) and
homogenized with strong airflow to oxygenate the eggs, which were constantly mixed
from top to bottom (Figure 4).

For each treatment (STX and control), two replicates were used to monitor embryonic
development. For this purpose, 500 µL of eggs per replicate were collected at 8, 26, and 44 hpf
and fixed in 500 µL of RNAlater® (Thermo Fisher Scientific, Carlsbad, CA, USA) solution for
gene expression analysis. Another 500 µL of eggs per replicate were collected at the same
time for enzymatic assays. The samples were stored in 2 mL Eppendorf tubes (Eppendorf®

Premium U410, New Brunswick, NJ, USA) at −80 ◦C for molecular or enzymatic assays.
To monitor larval viability, the eggs from three replicates per treatment were incubated

for 24 h and then distributed in three 2 L plastic tanks containing previously filtered
seawater with a 1 µm Gaff bag. At 12 and 24 h after incubation (i.e., 50 and 62 hpf), 500 µL
of larvae per replicate were collected to monitor viability with a light microscope coupled
to a digital camera.

4.2.2. Hatching Percentage

Given that hatching occurs at 36 hpf in S. rivoliana [38], the hatching percentage was
assessed at 44 hpf for the control and STX treatment once the majority of viable embryos
had hatched and after all embryonic developmental monitoring samples had been collected.
For this purpose, the remaining eggs and larvae in the different tanks were collected and
preserved in Davidson’s solution. The numbers of eggs and larvae contained in 1 mL
aliquots were determined and reported based on the total sample volume. The hatching
percentage (HP) was calculated using Equation (1):

HP =
NL−NE
NL + NE

× 100, (1)

where NL and NE are the number of larvae and eggs, respectively.
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4.3. Gene Expression
4.3.1. Primer Design

Oligonucleotides were designed in Primer 3 Plus v. 3.2.6 (https://dev.primer3plus.
com/index.html (accessed on 2 February 2022)) from the target sequences derived from
the transcriptome of S. rivoliana larvae [87]. Then, the self-complementarity of the selected
primers was checked with Oligo Calc (http://biotools.nubic.northwestern.edu/OligoCalc.
html (accessed on 2 February 2022)). The primers are listed in Table 2.

Table 2. Primer sequences used for quantitative real-time PCR analysis.

Gene Symbol Target Gene Primer Sequence (5′–3′)

18S 18S ribosomal RNA Forward
Reverse

CTGAACTGGGGCCATGATTAAGAG
GGTATCTGATCGTCGTCGAACCTC

HSF2 Heat shock factor
protein 2

Forward
Reverse

TTCATGGTGTTGGACGAGCA
TGCTTGAAGTAGGGGTGCTG

NaV1.4b Sodium channel protein
type 4 subunit alpha B

Forward
Reverse

TCCAGGACAACTCGAAAACC
CGAAGTTGATCCAGTGCAGA

PPRC1

Peroxisome
proliferator-activated

receptor gamma
coactivator-related

protein 1

Forward
Reverse

AACCCCAGCAAACACCTGAA
ACACTTCCCATCTGCTGACG

DUSP8 Dual specificity
phosphatase 8

Forward
Reverse

CCTCACAGACAGGACACAACA
GCTTTGGTGATGGTTTGACTG

4.3.2. RNA Extraction and cDNA Synthesis

TRizol® RNA Isolation Reagent (Thermo Fisher Scientific, Waltham, MA, USA) was
used according to the recommendations of the manufacturer to extract total RNA. Around
100 mg (103 ± 4 mg) of embryos or larvae were manually homogenized in 1 mL of TRizol
using pestles. The concentration and purity of RNA were measured using a NanoDrop
2000 spectrophotometer (Thermo Fisher Scientific). RNA quantity was then visualized via
electrophoresis in a 2.0% agarose gel with 1X Tris-Sodium Acetate EDTA (TAE) buffer to
confirm integrity. Finally, an Improm II kit (Promega, Madison, WI, USA) was used to
synthesize cDNA following the procedure provided by the manufacturer. The reaction was
conducted with 1 µg of total RNA in a thermal iCycler (Bio-Rad, Berkeley, CA, USA).

4.3.3. Real-Time PCR

To quantify the target genes in S. rivoliana embryos and larvae, a standard curve was
constructed to observe the dynamic range of primer detection, verify the amplification
efficiency (100% efficiency corresponds to a slope of −3.32), and select the dilution at which
the samples should be quantified (1:5 dilution for the NaV1.4b gene and 1:10 dilution for
the other genes). Once the dilution was set, the expression level of the target genes was
quantified using SsoFastTM EvaGreen® Supermix (Bio-Rad, Hercules, CA, USA). In each
well, 5 µL of sample was mixed with 10 µL of reaction mix (0.15 µL of forward and reverse
primers, 0.6 µL of MgCl2, 7.5 µL of SsoFast™ EvaGreen® Supermix (Bio-Rad, Hercules, CA,
USA) and 1.6 µL of water). Each assay measurement was performed in triplicate. The 18S
ribosomal RNA gene was chosen as a reference to normalize the quantification cycles (Cq),
which were analyzed according to CFX-Manager software algorithms (Bio-Rad, Hercules,
CA, USA).

4.4. Protein Determination and Enzymatic Assays

Around 100 mg (103 ± 9 mg) of embryos or larvae were homogenized with 500 µL
sterile deionized water in 2 mL Eppendorf PCR tubes containing grinding beads. Ho-
mogenization was performed using a FastPrep-24TM homogenizer 5G (MP Biochemicals,
Santa Ana, CA, USA). Total soluble protein content was measured in the homogenates
via photometry, as described by Bradford [88], using Bio-Rad Protein Assay dye reagent

https://dev.primer3plus.com/index.html
https://dev.primer3plus.com/index.html
http://biotools.nubic.northwestern.edu/OligoCalc.html
http://biotools.nubic.northwestern.edu/OligoCalc.html
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(Bio-Rad 500-0205) and bovine serum albumin (BSA, Sigma A7906, Madrid, Spain) as the
standard. Protein and alkaline phosphatase activities were measured using a fluorometric
method based on the protocol of Gee [89]. Enzyme kinetics were followed at a fluorescence
wavelength of 460 nm with an excitation wavelength of 335 nm for 30 min (60 reads, 30 s
each) at 30 ◦C. Peroxidase activity was measured via end-point spectrophotometry at
450 nm. Protein determination and enzyme activity were assessed using a 96-well plate
spectrophotometer (Varioskan™, Thermo Fisher Scientific). Samples were assayed in tripli-
cate in 96-flat bottom microplates and corrected with a blank (i.e., a sample was replaced
by deionized water in the reaction mix). The following reaction mixes were employed.

Protein phosphatase: 10 µL of sample diluted 1:3, 140 µL of reaction solution (50 mM
Tris-HCl, 11 mM MgCl2, 5 mM dithiothreitol, and 200 µg mL−1 serum albumin, pH = 7.0),
and 50 µL of substrate solution (6, 8-Difluoro-4-methylumbelliferyl phosphate [DiFMUP]
200 µM) purchased from Molecular Probes (Eugene, OR, USA).

Alkaline phosphatase: 10 µL of sample diluted 1:3, 140 µL of reaction solution (100 mM
Glycine, 1 mM MgCl2, and 1 mM ZnCl2, pH = 10.4), and 50 µL of substrate solution
(DiFMUP 200 µM).

Peroxidase: 20 µL of sample diluted 1:3, 100 µL of reaction solution (0.2 M dibasic
sodium phosphate, 0.1 M citric acid, one TMB [3,3′,5,5′-Tetramethylbenzidine, Sigma
T8665], and 2 µL hydrogen peroxide for 40 mL of solution), and 50 µL of stop solution
(40 mM sulfuric acid) added as soon as the mixture turned blue in the microplate wells.

4.5. Data Treatment and Statistical Analysis

Relative normalized gene expression data were obtained from CFX Manager™ v. 3.1
(Bio-Rad, Berkeley, CA, USA). Alkaline and protein phosphatase activities were calculated
based on the slope of the linear regression obtained from the Abs = f(t) curve. Total enzyme
activity was related to total soluble protein content to obtain the specific enzyme activity.
Peroxidase activity was calculated using the following formula:

Abs450 × 200
Proteins mg mL−1 (2)

The final values for enzyme activity and gene expression correspond to the average of
the experimental replicates. Considering the small sample size of each treatment (n = 2 or 3),
extreme values were only eliminated from analyses when necessary.

Data are presented as mean ± standard error (SE) of 2 or 3 replicates for each repre-
sentative treatment. The normality and homoscedasticity of the data were first checked
using the Shapiro–Wilk and Levene tests, respectively. A parametric Student’s t-test was
performed to compare the means of the hatching percentages between the control and
STX treatments. Most data sets of gene expression and enzyme activity results exhibited
non-normal distributions or significant differences in variance homogeneity. Thus, a non-
parametric Kruskal–Wallis test was used for the overall comparison of means between
groups, followed by Dunn’s post hoc test for multiple mean comparisons. The signifi-
cance level was set to α = 0.05 for all statistical tests. Statistical analyses and results were
performed and prepared in R v. 4.1.2 (R Core Team 2021).

5. Conclusions

The present study improves our understanding of the toxicological effects of STX
during the early life stages of S. rivoliana. An STX concentration of 100 µg L−1 induced very
high mortality in embryos and affected the expression of genes coding for NaV1.4b channels,
the main target of this toxin, as well as the expression and activity of enzymes involved in a
wide variety of cellular mechanisms—including stress responses (HSF2), lipid metabolism
(PPRC1), and digestion (ALP)—and signaling pathways associated with cell proliferation
and differentiation (dual-specificity MAP kinase phosphatases). No significant differences
in the specific activities of the ALP and PER enzymes were observed in STX-exposed
embryos compared to those in the control. For further studies, a proteomic approach in
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conjunction with transcriptomic analysis should be followed to determine which cellular
pathways are most affected by STX exposure and which responses are primed at the
molecular and cellular levels during different embryonic and larval development stages.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/md21110597/s1, Figure S1: Spawning volume obtained from S. rivoliana
broodstock reared by Kampachi Farms. Table S1: Summary of the research on the effects of exposure to
various concentrations of paralytic shellfish toxins (PSTs), including saxitoxin (STX) and gonyautoxin
(GTX), in different fish species. Table S2: Marine toxins, chemical structure, and main mode of action in
the intoxicated organism [23,36,49,62,63,73,90–93].
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