Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = Levitation Mass Method

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 10647 KiB  
Article
Speed Estimation Method of Active Magnetic Bearings Magnetic Levitation Motor Based on Adaptive Sliding Mode Observer
by Lei Gong, Yu Li, Wenjuan Luo, Jingwen Chen, Zhiguang Hua and Dali Dai
Energies 2025, 18(6), 1539; https://doi.org/10.3390/en18061539 - 20 Mar 2025
Viewed by 451
Abstract
The installation distance between the speed sensor of the traditional rolling or sliding bearing permanent magnet synchronous motor and the rotor was very close, and the rotor of the magnetic levitation motor supported by Active Magnetic Bearings (AMBs) was in suspension. When the [...] Read more.
The installation distance between the speed sensor of the traditional rolling or sliding bearing permanent magnet synchronous motor and the rotor was very close, and the rotor of the magnetic levitation motor supported by Active Magnetic Bearings (AMBs) was in suspension. When the motor was running at high speed, the radial trajectory of the rotor changed all the time. The same frequency vibration caused by the unbalanced mass of the rotor made it easy to cause mechanical collision between the sensor and the rotor, resulting in direct damage of the sensor. Therefore, the sensorless speed estimation method was needed for the rotor control system of the magnetic levitation motor (MLM) to achieve high performance closed-loop control of speed and position. More importantly, in order to control or compensate the unbalanced force of the electromagnetic bearing rotor system, the rotor rotation speed signal should be obtained as accurately as possible. Therefore, the principle of adaptive sliding mode observer (SMO) was analyzed in detail by taking the rotor system of MLM as an example. Then, the sliding mode surface was designed, the speed estimation algorithm based on adaptive SMO was derived, and the stability analysis was completed. Finally, in order to verify the anti-disturbance performance of the system and the static and dynamic tracking performance of the motor, the dynamic performance was verified by increasing and decreasing the speed and load. The results showed that the speed estimation method based on adaptive SMO could achieve accurate speed estimation and had good static and dynamic performance. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

13 pages, 4599 KiB  
Article
Accurate, Fast, and Non-Destructive Net Charge Measurement of Levitated Nanoresonators Based on Maxwell Speed Distribution Law
by Peng Chen, Nan Li, Tao Liang, Peitong He, Xingfan Chen, Dawei Wang and Huizhu Hu
Photonics 2024, 11(11), 1079; https://doi.org/10.3390/photonics11111079 - 17 Nov 2024
Cited by 1 | Viewed by 902
Abstract
Nanoscale resonant devices based on optical tweezers are widely used in the field of precision sensing. In the process of driving the nanoresonator based on the Coulomb force, the real-time, precise regulation of the charge carried by the charged resonator is essential for [...] Read more.
Nanoscale resonant devices based on optical tweezers are widely used in the field of precision sensing. In the process of driving the nanoresonator based on the Coulomb force, the real-time, precise regulation of the charge carried by the charged resonator is essential for continuous manipulation. However, the accuracy of the existing charge measurement methods for levitated particles is low, and these methods cannot meet the needs of precision sensing. In this study, a novel net charge measurement protocol for levitated particles based on spatial speed statistics is proposed. High-precision mass measurement based on Maxwell’s rate distribution law is the basis for improving the accuracy of charge measurement, and accurate measurement of net charge can be achieved by periodic electric field driving. The error of net charge measurement is less than 7.3% when the pressure is above 0.1 mbar, while it can be less than 0.76% at 10 mbar. This proposed method features real-time, high-precision, non-destructive, and in situ measurement of the net charge of particles in the medium vacuum, which provides new solutions for practical problems in the fields of high-precision sensing and nano-metrology based on levitated photodynamics. Full article
Show Figures

Figure 1

22 pages, 17448 KiB  
Article
Effect of Copper Particle Size on the Surface Structure and Catalytic Activity of Cu–CeO2 Nanocomposites Prepared by Mechanochemical Synthesis in the Preferential CO Oxidation in a H2-Rich Stream (CO-PROX)
by Olga M. Zhigalina, Olga S. Morozova, Dmitry N. Khmelenin, Alla A. Firsova, Olga V. Silchenkova, Galina A. Vorobieva, Andrey V. Bukhtiyarov, Evgeny N. Cherkovskiy and Victoria G. Basu
Catalysts 2024, 14(4), 222; https://doi.org/10.3390/catal14040222 - 27 Mar 2024
Cited by 2 | Viewed by 2141
Abstract
An effect of Cu powder dispersion and morphology on the surface structure and the physical–chemical and catalytic properties of Cu–CeO2 catalysts prepared by mechanochemical synthesis was studied in the preferential CO oxidation in a H2-rich stream (CO-PROX). Two catalysts, produced [...] Read more.
An effect of Cu powder dispersion and morphology on the surface structure and the physical–chemical and catalytic properties of Cu–CeO2 catalysts prepared by mechanochemical synthesis was studied in the preferential CO oxidation in a H2-rich stream (CO-PROX). Two catalysts, produced by 30 min ball-milling from CeO2 and 8 mass% of copper powders and with particle sizes of several tens (dendrite-like Cu) and 50–200 nm (spherical Cu obtained with levitation-jet method), respectively, were characterized by X-ray diffraction and electron microscopy methods, a temperature-programmed reduction with CO and H2, and with Fourier-transform infrared spectroscopy. The catalyst synthesized from the “large-scale” dendrite-like Cu powder, whose surface consisted of CuxO (Cu+) agglomerates located directly on the surface of facetted CeO2 crystals with a CeO2(111) and CeO2(100) crystal planes exposition, was approximately two times less active at 120–160 °C than the catalyst synthesized from the fine Cu powder, whose surface consisted of CuxO (Cu2+) clusters of 4–6 nm in size located on the steps of facetted CeO2 nanocrystals. Although a large part of CO2 reacted with a ceria surface to give carbonate-like species, no blockage of CO-activating centers was observed due to the surface architecture. The surface structure formed by the use of highly dispersed Cu powder is found to be a key factor responsible for the catalytic activity. Full article
(This article belongs to the Special Issue Catalysts and Photocatalysts Based on Mixed Metal Oxides)
Show Figures

Figure 1

24 pages, 13172 KiB  
Article
Design and Machining of a Spherical Shell Rotor for a Magnetically Levitated Momentum Ball
by Limei Ma, Yongheng Zhang, Yuli Niu, Yong Zhao, Shaoya Guan, Zijing Wang and Tuoda Wu
Aerospace 2024, 11(1), 61; https://doi.org/10.3390/aerospace11010061 - 9 Jan 2024
Cited by 1 | Viewed by 2014
Abstract
Ball-shell rotors with non-standard shapes, non-uniform conductive coatings, and eccentric masses machined by conventional processes constrain the improvement of levitation and torque accuracy of magnetically levitated momentum balls. This paper focuses on the machining method of multilayer ball-shell rotors to develop a ball-shell [...] Read more.
Ball-shell rotors with non-standard shapes, non-uniform conductive coatings, and eccentric masses machined by conventional processes constrain the improvement of levitation and torque accuracy of magnetically levitated momentum balls. This paper focuses on the machining method of multilayer ball-shell rotors to develop a ball-shell rotor with a standard shape and uniform conductive coating, which can improve the levitation and torque accuracy of magnetically levitated momentum balls. In this paper, a machining method for multi-coated ball-shell rotors is proposed. The machining process combining hemispherical surface and workpiece is adopted, and the whole sphere is assembled by threading, which effectively reduces the machining error. The influence of the cutting depth and feed rate of the tool on the cutting force of the ball shell was analyzed through the cutting force model. The effect of cutting force on the deformation of the ball shell was analyzed by the finite element method. The superiority of the machining method was verified by measuring the dimensions of the ball shell with a coordinate measuring machine. Compared with the traditional machining process and assembly method, the proposed ball-shell rotor machining method effectively improves the dimensional accuracy, reduces the center of mass to center of mass deviation, and ensures the levitation accuracy and output torque accuracy of the magnetically levitated momentum ball. Measurement results show that the diameter values of the pure iron ball shell are between 98.694 and 98.707 mm with a machining error of ±0.007 mm, and the diameter values of the spray-painted ball shell are between 99.490 and 99.510 mm with a machining error of ±0.01 mm. The machining static equilibrium of the pure iron ball shell and the spray-painted ball shell is good by the static equilibrium test method. Full article
Show Figures

Figure 1

13 pages, 3630 KiB  
Article
Experimental Study and Simulation of Pull-In Behavior in Hybrid Levitation Microactuator for Square-Shaped Proof Masses
by Emil R. Mamleyev, Chun Him Lee, Jan G. Korvink, Manfred Kohl and Kirill V. Poletkin
Actuators 2023, 12(2), 48; https://doi.org/10.3390/act12020048 - 20 Jan 2023
Cited by 4 | Viewed by 2379
Abstract
This paper presents the results of a comprehensive study of the pull-in phenomenon in the hybrid levitation microactuator (HLMA), in which square-shaped proof masses (PMs) of different sizes, namely, length sides of 2.8 and 3.2 mm and thicknesses of 25 and 10 μm [...] Read more.
This paper presents the results of a comprehensive study of the pull-in phenomenon in the hybrid levitation microactuator (HLMA), in which square-shaped proof masses (PMs) of different sizes, namely, length sides of 2.8 and 3.2 mm and thicknesses of 25 and 10 μm were electromagnetically levitated. The pull-in actuation of the square-shaped PMs was performed by the electrostatic force generated by the set of energized electrodes and acting on the bottom surface of the PMs along the vertical direction. The pull-in parameters, such as pull-in displacements and the corresponding applied pull-in voltages, were measured with the developed setup. The experimental measurements showed that the pull-in actuation is nonlinearly dependent on the size and mass of the PMs and a levitation height. In particular, it was found that PMs levitated within a height range from 140 to 170 μm can be stably displaced within a range of 30 μm. The results of measurements were extensively simulated with the developed analytical model by means of the quasi-FEM method. The direct comparison of the results of simulation and measurements showed a very good agreement between the theory and experiments. Full article
(This article belongs to the Special Issue Conventional and Micromachined Electromagnetic Levitation Actuators)
Show Figures

Figure 1

12 pages, 1261 KiB  
Review
The Present Issues of Control Automation for Levitation Metal Melting
by Aleksei Boikov and Vladimir Payor
Symmetry 2022, 14(10), 1968; https://doi.org/10.3390/sym14101968 - 21 Sep 2022
Cited by 22 | Viewed by 3056
Abstract
This article is a review of current scientific problems in the field of automation of the electromagnetic levitation melting process control of non-ferrous metals and potential solutions using modern digital technologies. The article describes the technological process of electromagnetic levitation melting as a [...] Read more.
This article is a review of current scientific problems in the field of automation of the electromagnetic levitation melting process control of non-ferrous metals and potential solutions using modern digital technologies. The article describes the technological process of electromagnetic levitation melting as a method of obtaining ultrapure metals and the main problems of the automation of this process taking into account domestic and international experience. Promising approaches to control the position of the melt in the inductor in real time on the basis of vision systems are considered. The main problems and factors preventing the mass introduction of levitation melting in the electromagnetic field to the industry are highlighted. The problem of passing the Curie point by the heated billet and the effect of the billet’s loss of magnetism on the vibrational circuit of the installation and the temperature of the inductor are also considered. The article also reflects key areas of research development in the field of levitation melting, including: optimization of energy costs, stabilization of the position of the melt in the inductor, predictive process control, and scaling of levitation melting units. The concept of a digital twin based on a numerical model as a component of an automatic process control system for the implementation of inductor control and prediction of process parameters of the melt is presented. The possibility of using vision for visual control of the melt position in the inductor based on video images for its further stabilization in the inductor and increasing the accuracy of numerical simulation results by specifying the real geometry of the melt in parallel with the calculation of the model itself is considered. Full article
Show Figures

Figure 1

10 pages, 3764 KiB  
Article
Oscillation Dynamics of Multiple Water Droplets Levitated in an Acoustic Field
by Koji Hasegawa and Manami Murata
Micromachines 2022, 13(9), 1373; https://doi.org/10.3390/mi13091373 - 23 Aug 2022
Cited by 14 | Viewed by 3933
Abstract
This study aimed to improve and investigate the oscillation dynamics and levitation stability of acoustically levitated water droplets. Contactless sample manipulation technology in mid-air has attracted significant attention in the fields of biochemistry and pharmaceutical science. Although one promising method is acoustic levitation, [...] Read more.
This study aimed to improve and investigate the oscillation dynamics and levitation stability of acoustically levitated water droplets. Contactless sample manipulation technology in mid-air has attracted significant attention in the fields of biochemistry and pharmaceutical science. Although one promising method is acoustic levitation, most studies have focused on a single sample. Therefore, it is important to determine the stability of multiple samples during acoustic levitation. Here, we aim to understand the effect of multiple-sample levitation on levitation stability in acoustic fields. We visualized the oscillatory motion of multiple levitated droplets using a high-speed video camera. To characterize the dynamics of multiple levitating droplets, the oscillation frequency and restoring force coefficients of the levitated samples, which were obtained from the experimental data, were analyzed to quantify the droplet–droplet interaction. The oscillation model of the spring-mass system was compared with the experimental results, and we found that the number of levitating droplets and their position played an important role in the levitation stability of the droplets. Our insights could help us understand the oscillatory behavior of levitated droplets to achieve more stable levitation. Full article
Show Figures

Figure 1

12 pages, 1276 KiB  
Article
Magnetic Levitation Patterns of Microfluidic-Generated Nanoparticle–Protein Complexes
by Luca Digiacomo, Erica Quagliarini, Benedetta Marmiroli, Barbara Sartori, Giordano Perini, Massimiliano Papi, Anna Laura Capriotti, Carmela Maria Montone, Andrea Cerrato, Giulio Caracciolo and Daniela Pozzi
Nanomaterials 2022, 12(14), 2376; https://doi.org/10.3390/nano12142376 - 11 Jul 2022
Cited by 9 | Viewed by 2561
Abstract
Magnetic levitation (MagLev) has recently emerged as a powerful method to develop diagnostic technologies based on the exploitation of the nanoparticle (NP)–protein corona. However, experimental procedures improving the robustness, reproducibility, and accuracy of this technology are largely unexplored. To contribute to filling this [...] Read more.
Magnetic levitation (MagLev) has recently emerged as a powerful method to develop diagnostic technologies based on the exploitation of the nanoparticle (NP)–protein corona. However, experimental procedures improving the robustness, reproducibility, and accuracy of this technology are largely unexplored. To contribute to filling this gap, here, we investigated the effect of total flow rate (TFR) and flow rate ratio (FRR) on the MagLev patterns of microfluidic-generated graphene oxide (GO)–protein complexes using bulk mixing of GO and human plasma (HP) as a reference. Levitating and precipitating fractions of GO-HP samples were characterized in terms of atomic force microscopy (AFM), bicinchoninic acid assay (BCA), and one-dimensional sodium dodecyl sulfate–polyacrylamide gel electrophoresis (1D SDS-PAGE), and nanoliquid chromatography–tandem mass spectrometry (nano-LC-MS/MS). We identified combinations of TFR and FRR (e.g., TFR = 35 μL/min and FRR (GO:HP) = 9:1 or TFR = 3.5 μL/min and FRR (GO:HP) = 19:1), leading to MagLev patterns dominated by levitating and precipitating fractions with bulk-like features. Since a typical MagLev experiment for disease detection is based on a sequence of optimization, exploration, and validation steps, this implies that the optimization (e.g., searching for optimal NP:HP ratios) and exploration (e.g., searching for MagLev signatures) steps can be performed using samples generated by bulk mixing. When these steps are completed, the validation step, which involves using human specimens that are often available in limited amounts, can be made by highly reproducible microfluidic mixing without any ex novo optimization process. The relevance of developing diagnostic technologies based on MagLev of coronated nanomaterials is also discussed. Full article
Show Figures

Figure 1

10 pages, 2906 KiB  
Article
Analysis and Suppression of Laser Intensity Fluctuation in a Dual-Beam Optical Levitation System
by Xia Wang, Qi Zhu, Mengzhu Hu, Wenqiang Li, Xingfan Chen, Nan Li, Xunmin Zhu and Huizhu Hu
Micromachines 2022, 13(7), 984; https://doi.org/10.3390/mi13070984 - 22 Jun 2022
Viewed by 2397
Abstract
Levitated micro-resonators in vacuums have attracted widespread attention due to their application potential in precision force sensing, acceleration sensing, mass measurement and gravitational wave sensing. The optically levitated microsphere in a counter-propagating dual-beam optical trap has been of particular interest because of its [...] Read more.
Levitated micro-resonators in vacuums have attracted widespread attention due to their application potential in precision force sensing, acceleration sensing, mass measurement and gravitational wave sensing. The optically levitated microsphere in a counter-propagating dual-beam optical trap has been of particular interest because of its large measurement range and flexible manipulation. In this system, laser intensity fluctuation directly influences the trap stability and measurement sensitivity, which makes it a crucial factor in improving trapping performance. In this paper, a time-varying optical force (TVOF) model is established to characterize the influence of laser intensity fluctuation in a dual-beam optical trap. The model describes the relationship between the laser intensity fluctuation, optical force and the dynamic motion of the micro-sized sphere. In addition, an external laser intensity control method is proposed, which achieved a 16.9 dB laser power stability control at the relaxation oscillation frequency. The long-term laser intensity fluctuation was suppressed from 3% to 0.4% in a one-hour period. Experiments showed that the particle’s position detection sensitivity and the stability of the relaxation oscillation could be improved by laser intensity fluctuation suppression. Full article
(This article belongs to the Special Issue State-of-the-Art in Optical Trapping and Manipulation)
Show Figures

Figure 1

19 pages, 4683 KiB  
Article
Development of an Electromagnetic Micromanipulator Levitation System for Metal Additive Manufacturing Applications
by Parichit Kumar, Saksham Malik, Ehsan Toyserkani and Mir Behrad Khamesee
Micromachines 2022, 13(4), 585; https://doi.org/10.3390/mi13040585 - 9 Apr 2022
Cited by 12 | Viewed by 4162
Abstract
Magnetism and magnetic levitation has found significant interest within the field of micromanipulation of objects. Additive manufacturing (AM), which is the computer-controlled process for creating 3D objects through the deposition of materials, has also been relevant within the academic environment. Despite the research [...] Read more.
Magnetism and magnetic levitation has found significant interest within the field of micromanipulation of objects. Additive manufacturing (AM), which is the computer-controlled process for creating 3D objects through the deposition of materials, has also been relevant within the academic environment. Despite the research conducted individually within the two fields, there has been minimal overlapping research. The non-contact nature of magnetic micromanipulator levitation systems makes it a prime candidate within AM environments. The feasibility of integrating magnetic micromanipulator levitation system, which includes two concentric coils embedded within a high permeability material and carrying currents in opposite directions, for additive manufacturing applications is presented in this article. The working principle, the optimization and relevant design decisions pertaining to the micromanipulator levitation system are discussed. The optimized dimensions of the system allow for 920 turns in the inner coil and 800 turns in the outer coil resulting in a Ninnercoil:Noutercoil ratio of 1.15. Use of principles of free levitation, which is production of levitation and restoration forces with the coils, to levitate non-magnetic conductive materials with compatibility and applications within the AM environment are discussed. The Magnetomotive Force (MMF) ratio of the coils are adjusted by incorporation of an resistor in parallel to the outer coil to facilitate sufficient levitation forces in the axial axis while producing satisfactory restoration forces in the lateral axes resulting in the levitation of an aluminum disc with a levitation height of 4.5 mm. An additional payload of up to 15.2 g (59% of mass of levitated disc) was added to a levitated aluminum disk of 26 g showing the system capability coping with payload variations, which is crucial in AM process to gradually deploy masses. The final envisioned system is expected to have positional stability within the tolerance range of a few μm. The system performance is verified through the use of simulations (ANSYS Maxwell) and experimental analyses. A novel method of using the ratio of conductivity (σ) of the material to density (ρ) of the material to determine the compatibility of the levitation ability of non-magnetic materials with magnetic levitation application is also formulated. The key advantage of this method is that it does not rely on experimental analyses to determine the levitation ability of materials. Full article
(This article belongs to the Special Issue Flexible Micromanipulators and Micromanipulation)
Show Figures

Figure 1

29 pages, 1035 KiB  
Article
Investigations on Dynamical Stability in 3D Quadrupole Ion Traps
by Bogdan M. Mihalcea and Stephen Lynch
Appl. Sci. 2021, 11(7), 2938; https://doi.org/10.3390/app11072938 - 25 Mar 2021
Cited by 14 | Viewed by 3531
Abstract
We firstly discuss classical stability for a dynamical system of two ions levitated in a 3D Radio-Frequency (RF) trap, assimilated with two coupled oscillators. We obtain the solutions of the coupled system of equations that characterizes the associated dynamics. In addition, we supply [...] Read more.
We firstly discuss classical stability for a dynamical system of two ions levitated in a 3D Radio-Frequency (RF) trap, assimilated with two coupled oscillators. We obtain the solutions of the coupled system of equations that characterizes the associated dynamics. In addition, we supply the modes of oscillation and demonstrate the weak coupling condition is inappropriate in practice, while for collective modes of motion (and strong coupling) only a peak of the mass can be detected. Phase portraits and power spectra are employed to illustrate how the trajectory executes quasiperiodic motion on the surface of torus, namely a Kolmogorov–Arnold–Moser (KAM) torus. In an attempt to better describe dynamical stability of the system, we introduce a model that characterizes dynamical stability and the critical points based on the Hessian matrix approach. The model is then applied to investigate quantum dynamics for many-body systems consisting of identical ions, levitated in 2D and 3D ion traps. Finally, the same model is applied to the case of a combined 3D Quadrupole Ion Trap (QIT) with axial symmetry, for which we obtain the associated Hamilton function. The ion distribution can be described by means of numerical modeling, based on the Hamilton function we assign to the system. The approach we introduce is effective to infer the parameters of distinct types of traps by applying a unitary and coherent method, and especially for identifying equilibrium configurations, of large interest for ion crystals or quantum logic. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

10 pages, 2708 KiB  
Letter
Method for Translation and Rotation Decoupling of Test Mass in Full-Maglev Vertical Superconducting Gravity Instruments
by Lulu Wang, Daiyong Chen, Xikai Liu, Liang Chen and Xiangdong Liu
Sensors 2020, 20(19), 5527; https://doi.org/10.3390/s20195527 - 27 Sep 2020
Cited by 2 | Viewed by 2165
Abstract
For full-maglev vertical superconducting gravity instruments, displacement control in the non-sensitive axis is a key technique to suppress cross-coupling noise in a dynamic environment. Motion decoupling of the test mass is crucial for the control design. In practice, when levitated, the test mass [...] Read more.
For full-maglev vertical superconducting gravity instruments, displacement control in the non-sensitive axis is a key technique to suppress cross-coupling noise in a dynamic environment. Motion decoupling of the test mass is crucial for the control design. In practice, when levitated, the test mass is always in tilt, and unknown parameters will be introduced to the scale factors of displacement detection, which makes motion decoupling work extremely difficult. This paper proposes a method for decoupling the translation and rotation of the test mass in the non-sensitive axis for full-maglev vertical superconducting gravity instruments. In the method, superconducting circuits at low temperature and adjustable gain amplifiers at room temperature are combined to measure the difference between the scale factors caused by the tilt of the test mass. With the measured difference of the scale factors, the translation and rotation are decoupled according to the theoretical model. This method was verified with a test of a home-made full-maglev vertical superconducting accelerometer in which the translation and rotation were decoupled. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

16 pages, 5445 KiB  
Article
A Space Inertial Sensor Ground Evaluation System for Non-Sensitive Axis Based on Torsion Pendulum
by Shaoxin Wang, Liheng Chen, Yukun Wang, Zhenping Zhou, Keqi Qi and Zhi Wang
Appl. Sci. 2020, 10(9), 3090; https://doi.org/10.3390/app10093090 - 29 Apr 2020
Cited by 7 | Viewed by 3409
Abstract
The inertial sensor is the key measurement payload of the technology verification satellite of China’s space gravitational wave detection mission-Taiji Project, which uses capacitive sensors to sense the acceleration disturbance of the test mass under the influence of non-conservative forces in the frequency [...] Read more.
The inertial sensor is the key measurement payload of the technology verification satellite of China’s space gravitational wave detection mission-Taiji Project, which uses capacitive sensors to sense the acceleration disturbance of the test mass under the influence of non-conservative forces in the frequency range of 10 mHz~1 Hz. It is necessary to perform a ground performance evaluation and estimate the working state of the payload in orbit. However, due to the influence of the earth’s gravity and seismic noise, it is impossible to directly evaluate the resolution level of the non-sensitive axis when testing with high-voltage levitation, which leads to incomplete evaluation of the performance of the inertial sensor. In order to implement this part of the test, the sensitive structure is designed and a torsion pendulum facility for performance testing is developed. The experimental results show that the measurement resolution of the non-sensitive axis of the inertial sensor can reach 9.5 × 10−7 m/s2/Hz1/2 under the existing ground environmental conditions and is mainly influenced by the seismic noise during the system measurement. If the inertial sensor enters orbit, the measurement resolution can achieve 3.96 × 10−9 m/s2/Hz1/2, which meets the requirements of the technology verification satellite for a non-sensitive axis. This proposed system also provides a reasonable method for the comprehensive evaluation of inertial sensors in the future. Full article
(This article belongs to the Special Issue Experimental Mechanics, Instrumentation and Metrology)
Show Figures

Figure 1

17 pages, 6557 KiB  
Article
Study on Unbalanced Magnetic Pulling Analysis and Its Control Method for Primary Helium Circulator of High-Temperature Gas-Cooled Reactor
by Yangbo Zheng, Ni Mo, Zhe Sun, Yan Zhou and Zhengang Shi
Energies 2019, 12(19), 3682; https://doi.org/10.3390/en12193682 - 26 Sep 2019
Cited by 4 | Viewed by 2401
Abstract
In addition to providing an extremely clean environment for primary loop of high-temperature gas-cooled reactor (HTR), the primary helium circulator (PHC) using electromagnetic levitation technology also provides an effective means for vibration control. Besides synchronous vibration produced by mass imbalance and sensor runout, [...] Read more.
In addition to providing an extremely clean environment for primary loop of high-temperature gas-cooled reactor (HTR), the primary helium circulator (PHC) using electromagnetic levitation technology also provides an effective means for vibration control. Besides synchronous vibration produced by mass imbalance and sensor runout, double-frequency vibration produced by unbalanced magnetic pull (UMP) is serious in PHC engineering prototype (PHC-EP). In this paper, we firstly analyzed the mechanism of UMP and the multi-frequency vibration characteristics in combination with the PHC-EP. Then we put forward a distributed iterative learning control (ILC) algorithm and a parallel control scheme to suppress the periodic vibrations. Finally, we verified the methods by carrying out experimental researches on the active magnetic bearing (AMB) bench of PHC-EP. The results show that the methods put forward in this paper have significant control effect on the double-frequency vibration generated by UMP of the PHC-EP and provide theoretical and practical references for the PHC safe operation in HTR. Full article
Show Figures

Graphical abstract

15 pages, 2350 KiB  
Article
Real-Time Adaptive Control of a Magnetic Levitation System with a Large Range of Load Disturbance
by Zhizhou Zhang and Xiaolong Li
Sensors 2018, 18(5), 1512; https://doi.org/10.3390/s18051512 - 11 May 2018
Cited by 30 | Viewed by 4740
Abstract
In an idle light-load or a full-load condition, the change of the load mass of a suspension system is very significant. If the control parameters of conventional control methods remain unchanged, the suspension performance of the control system deteriorates rapidly or even loses [...] Read more.
In an idle light-load or a full-load condition, the change of the load mass of a suspension system is very significant. If the control parameters of conventional control methods remain unchanged, the suspension performance of the control system deteriorates rapidly or even loses stability when the load mass changes in a large range. In this paper, a real-time adaptive control method for a magnetic levitation system with large range of mass changes is proposed. First, the suspension control system model of the maglev train is built up, and the stability of the closed-loop system is analyzed. Then, a fast inner current-loop is used to simplify the design of the suspension control system, and an adaptive control method is put forward to ensure that the system is still in a stable state when the load mass varies in a wide range. Simulations and experiments show that when the load mass of the maglev system varies greatly, the adaptive control method is effective to suspend the system stably with a given displacement. Full article
(This article belongs to the Section State-of-the-Art Sensors Technologies)
Show Figures

Graphical abstract

Back to TopTop