Experimental Study and Simulation of Pull-In Behavior in Hybrid Levitation Microactuator for Square-Shaped Proof Masses
Abstract
:1. Introduction
2. Hybrid Levitation Microactuators
3. Experimental Setup and Measurements
4. Simulation
4.1. Eddy Current Calculation
4.2. Pull-In Modeling
4.3. Square-Shapef Proof Mass with Side Length of 2.8 mm and Thickness of 10 μm
4.4. Square-Shapes Proof Mass with Side Length of 2.8 mm and Thickness of 25 μm
4.5. Square-Shaped Proof Mass with Side Length of 3.2 mm and Thickness of 10 μm
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PM | Proof Mass |
ELMA | Electric Levitation Microactuator |
MLMA | Magnetic Levitation Microactuator |
ILMA | Inductive Levitation Microactuator |
HLMA | Hybrid Levitation Microactuator |
Quasi-FEM | Quasi-Finite Element Method |
UV lithography | Ultraviolet Lithography |
DRIE | Deep Reactive Ion Etching |
PCB | Printed Circuit Board |
SOI | Silicon on Insulator |
References
- Poletkin, K.V.; Asadollahbaik, A.; Kampmann, R.; Korvink, J.G. Levitating Microactuators: A Review. Actuators 2018, 7, 17. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.; Yih, T.C.; Higuchi, T.; Jeon, J.U. Direct electrostatic levitation and propulsion of silicon wafer. IEEE Trans. Ind. Appl. 1998, 34, 975–984. [Google Scholar] [CrossRef]
- Murakoshi, T.; Endo, Y.; Fukatsu, K.; Nakamura, S.; Esashi, M. Electrostatically levitated ring-shaped rotational gyro/accelerometer. Jpn. J. Appl. Phys 2003, 42, 2468–2472. [Google Scholar] [CrossRef]
- Han, F.; Liu, Y.; Wang, L.; Ma, G. Micromachined electrostatically suspended gyroscope with a spinning ring-shaped rotor. J. Micromech. Microeng. 2012, 22, 105032. [Google Scholar] [CrossRef]
- Han, F.; Sun, B.; Li, L.; Wu, Q. Performance of a sensitive micromachined accelerometer with an electrostatically suspended proof mass. IEEE Sens. J. 2015, 15, 209–217. [Google Scholar]
- Coombs, T.; Samad, I.; Ruiz-Alonso, D.; Tadinada, K. Superconducting microbearings. Appl. Supercond. IEEE Trans. 2005, 15, 2312–2315. [Google Scholar] [CrossRef]
- Lu, Z.; Poletkin, K.; den Hartogh, B.; Wallrabe, U.; Badilita, V. 3D micromachined inductive contactless suspension: Testing and Modeling. Sens. Actuators A Phys. 2014, 220, 134–143. [Google Scholar] [CrossRef]
- Poletkin, K.; Moazenzadeh, A.G.; Mariappan, S.; Lu, Z.; Wallrabe, U.; G. Korvink, J.; Badilita, V. Polymer Magnetic Composite Core Boosts Performance of 3D Micromachined Inductive Contactless Suspension. IEEE Magn. Lett. 2016, 7, 1–3. [Google Scholar] [CrossRef]
- Shearwood, C. Electro-magnetically levitated microdiscs. In Proceedings of the IEE Colloquium on Microengineering Applications in Optoelectronics, London, UK, 27 February 1996. [Google Scholar] [CrossRef]
- Shearwood, C.; Ho, K.; Williams, C.; Gong, H. Development of a levitated micromotor for application as a gyroscope. Sens. Actuators A Phys. 2000, 83, 85–92. [Google Scholar] [CrossRef]
- Su, Y.; Xiao, Z.; Ye, Z.; Takahata, K. Micromachined Graphite Rotor Based on Diamagnetic Levitation. IEEE Electron Device Lett. 2015, 36, 393–395. [Google Scholar] [CrossRef]
- Garmire, D.; Choo, H.; Kant, R.; Govindjee, S.; Sequin, C.; Muller, R.; Demmel, J. Diamagnetically levitated MEMS accelerometers. In Proceedings of the Solid-State Sensors, Actuators and Microsystems Conference, Anchorage, Alaska, 21–25 June 2007; pp. 1203–1206. [Google Scholar]
- Dieppedale, C.; Desloges, B.; Rostaing, H.; Delamare, J.; Cugat, O.; Meunier-Carus, J. Magnetic bistable microactuator with integrated permanent magnets. Sensors 2004, 1, 493–496. [Google Scholar]
- Abadie, J.; Piat, E.; Oster, S.; Boukallel, M. Modeling and experimentation of a passive low frequency nanoforce sensor based on diamagnetic levitation. Sens. Actuators A Phys. 2012, 173, 227–237. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Jiang, Q.; Yang, K.; Zhou, J.; Guo, Q. A novel ultra-high-resolution inclination sensor based on diamagnetic levitation. Sens. Actuators Phys. 2022, 343, 113686. [Google Scholar] [CrossRef]
- Zhang, K.; Su, Y.; Ding, J.; Gong, Q.; Duan, Z. Design and Analysis of a Gas Flowmeter Using Diamagnetic Levitation. IEEE Sens. J. 2018, 18, 6978–6985. [Google Scholar] [CrossRef]
- Hsu, A.; Chu, W.; Cowan, C.; McCoy, B.; Wong-Foy, A.; Pelrine, R.; Lake, J.; Ballard, J.; Randall, J. Diamagnetically levitated milli-robots for heterogeneous 3D assembly. J. microBio Robot. 2018, 14, 1–16. [Google Scholar] [CrossRef]
- Zhang, K.; Su, Y.; Ding, J.; Gong, Q.; Duan, Z. An airflow energy harvester using diamagnetic levitation structure. Energy Procedia 2019, 158, 595–600. [Google Scholar] [CrossRef]
- Chen, X.; Keskekler, A.; Alijani, F.; Steeneken, P.G. Rigid body dynamics of diamagnetically levitating graphite resonators. Appl. Phys. Lett. 2020, 116, 243505. [Google Scholar] [CrossRef]
- Liu, W.; Chen, W.Y.; Zhang, W.P.; Huang, X.G.; Zhang, Z.R. Variable-capacitance micromotor with levitated diamagnetic rotor. Electron. Lett. 2008, 44, 681–683. [Google Scholar] [CrossRef]
- Xu, Y.; Cui, Q.; Kan, R.; Bleuler, H.; Zhou, J. Realization of a diamagnetically levitating rotor driven by electrostatic field. IEEE/ASME Trans. Mechatronics 2017, 22, 2387–2391. [Google Scholar] [CrossRef]
- Xiao, Q.; Kraft, M.; Luo, Z.; Chen, J.; Wang, J. Design of contactless electromagnetic levitation and electrostatic driven rotation control system for a micro mirror. In Proceedings of the 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore, 18–21 November 2018; pp. 1176–1179. [Google Scholar]
- Sari, I.; Kraft, M. A MEMS Linear Accelerator for Levitated microobjects. Sens. Actuators A Phys. 2015, 222, 15–23. [Google Scholar] [CrossRef]
- Poletkin, K.; Lu, Z.; Wallrabe, U.; Badilita, V. A New Hybrid Micromachined Contactless Suspension with Linear and Angular Positioning and Adjustable Dynamics. J. Microelectromech. Syst. 2015, 24, 1248–1250. [Google Scholar] [CrossRef]
- Poletkin, K.V. A novel hybrid contactless cuspension with adjustable spring constant. In Proceedings of the 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 18–22 June 2017; pp. 934–937. [Google Scholar] [CrossRef]
- Poletkin, K.V.; Korvink, J.G. Modeling a Pull-In Instability in microMachined Hybrid Contactless Suspension. Actuators 2018, 7, 11. [Google Scholar] [CrossRef] [Green Version]
- Ciric, I. Electromagnetic levitation in axially symmetric systems. Rev. Roum. Sci. Tech. Ser. Electrotech. Energy 1970, 15, 35–73. [Google Scholar]
- Williams, C.; Shearwood, C.; Mellor, P.; Yates, R. Modelling and testing of a frictionless levitated micromotor. Sens. Actuators A Phys. 1997, 61, 469–473. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, W.; Zhao, X.; Wu, X.; Liu, W.; Huang, X.; Shao, S. The study of an electromagnetic levitating micromotor for application in a rotating gyroscope. Sens. Actuators A Phys. 2006, 132, 651–657. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, W.; Liu, W.; Chen, W.; Li, K.; Cui, F.; Li, S. An innovative microdiamagnetic levitation system with coils applied in microgyroscope. Microsyst. Technol. 2010, 16, 431. [Google Scholar] [CrossRef]
- Lu, Z.; Jia, F.; Korvink, J.; Wallrabe, U.; Badilita, V. Design optimization of an electromagnetic microlevitation system based on copper wirebonded coils. In Proceedings of the 2012 Power MEMS, Salt Lake City, UT, USA, 12–15 December 2012; pp. 363–366. [Google Scholar]
- Laithwaite, E. Electromagnetic levitation. Electr. Eng. Proc. Inst. Eng. 1965, 112, 2361–2375. [Google Scholar] [CrossRef]
- Levich, B.G. Theoretical Physics. An Advanced Text. Volume 2: Statistical Physics. Electromagnetic Processes in Matter; North-Holland Publishing: Amsterdam, The Netherlands; London, UK, 1971. [Google Scholar]
- Okress, E.; Wroughton, D.; Comenetz, G.; Brace, P.; Kelly, J. Electromagnetic levitation of solid and molten metals. J. Appl. Phys. 1952, 23, 545–552. [Google Scholar] [CrossRef]
- Poletkin, K.; Chernomorsky, A.I.; Shearwood, C.; Wallrabe, U. An analytical model of micromachined electromagnetic inductive contactless suspension. In Proceedings of the ASME 2013 International Mechanical Engineering Congress & Exposition, San Diego, CA, USA, 15–21 November 2013; ASME: San Diego, CA, USA, 2013; p. V010T11A072. [Google Scholar] [CrossRef]
- Poletkin, K.; Chernomorsky, A.; Shearwood, C.; Wallrabe, U. A qualitative analysis of designs of micromachined electromagnetic inductive contactless suspension. Int. J. Mech. Sci. 2014, 82, 110–121. [Google Scholar] [CrossRef]
- Skubov, D.; Popov, I.; Udalov, P. Induction Suspension of Conductive Microring and Its Gyroscopic Stabilization. 2021. Available online: https://www.researchsquare.com/article/rs-171012/latest.pdf (accessed on 3 January 2023).
- Udalov, P.; Lukin, A.; Popov, I.; Skubov, D. Analysis of the Equilibrium of a Magnetic Contactless Suspension. In Microactuators, Microsensors and Micromechanisms; Pandey, A.K., Pal, P., Nagahanumaiah, Zentner, L., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2023; pp. 183–190. [Google Scholar]
- Poletkin, K.V.; Chernomorsky, A.I.; Shearwood, C. A Proposal for Micromachined Accelerometer, based on a Contactless Suspension with Zero Spring Constant. IEEE Sens. J. 2012, 12, 2407–2413. [Google Scholar] [CrossRef]
- Poletkin, K. On the Static Pull-In of Tilting Actuation in Electromagnetically Levitating Hybrid Microactuator: Theory and Experiment. Actuators 2021, 10, 256. [Google Scholar] [CrossRef]
- Poletkin, K.; Lu, Z.; Wallrabe, U.; Korvink, J.; Badilita, V. Stable dynamics of micromachined inductive contactless suspensions. Int. J. Mech. Sci. 2017, 131–132, 753–766. [Google Scholar] [CrossRef] [Green Version]
- Babic, S.; Sirois, F.; Akyel, C.; Girardi, C. Mutual Inductance Calculation Between Circular Filaments Arbitrarily Positioned in Space: Alternative to Grover’s Formula. IEEE Trans. Magn. 2010, 46, 3591–3600. [Google Scholar] [CrossRef]
- Poletkin, K.V.; Korvink, J.G. Efficient calculation of the mutual inductance of arbitrarily oriented circular filaments via a generalisation of the Kalantarov-Zeitlin method. J. Magn. Magn. Mater. 2019, 483, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Poletkin, K.V.; Babic, S.; Kumar, S.S.; Mamleyev, E.R. Calculation of Mutual Inductance between Circular and Arbitrarily Shaped Filaments via Segmentation Method. arXiv 2022, arXiv:2209.00464. [Google Scholar]
- Babic, S.; Akyel, C. Magnetic force between inclined circular filaments placed in any desired position. IEEE Trans. Magn. 2012, 48, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Poletkin, K.V. Calculation of magnetic force and torque between two arbitrarily oriented circular filaments using Kalantarov–Zeitlin’s method. Int. J. Mech. Sci. 2022, 220, 107159. [Google Scholar] [CrossRef]
- Poletkin, K.; Babic, S. Magnetic stiffness calculation for the corresponding force between two current-carrying circular filaments arbitrarily oriented in the space. J. Magn. Magn. Mater. 2023, 568, 170067. [Google Scholar] [CrossRef]
- Poletkin, K. Static pull-in behavior of hybrid levitation microactuators: Simulation, modeling and experimental study. IEEE/ASME Trans. Mechatronics 2020, 26, 753–764. [Google Scholar] [CrossRef]
- Vlnieska, V.; Voigt, A.; Wadhwa, S.; Korvink, J.; Kohl, M.; Poletkin, K. Development of Control Circuit for Inductive Levitation Microactuators. Proceedings 2020, 64, 39. [Google Scholar] [CrossRef]
- Lee, C.H.; Kumar, S.S.; Mamleyev, E.; Poletkin, K. Characterisation of Static Pull-In Effect of Hybrid Levitation Microactuators for Square-Shaped Proof Masses. In Proceedings of the ACTUATOR 2022; International Conference and Exhibition on New Actuator Systems and Applications, Mannheim, Germany, 29–30 June 2022; pp. 1–4. [Google Scholar]
- Poletkin, K.; Lu, Z.; Wallrabe, U.; Badilita, V. Hybrid electromagnetic and electrostatic micromachined suspension with adjustable dynamics. J. Phys. Conf. Ser. 2015, 660, 012005. [Google Scholar] [CrossRef]
- Wittenburg, J. Dynamics of Multibody Systems; Springer: Berlin/Heidelberg, Germany, 2020; p. 223. [Google Scholar] [CrossRef]
Measured parameter | Side length of PM | 2.8 mm | 2.8 mm | 3.2 mm |
Thickness of PM | 10 μm | 25 μm | 10 μm | |
Levitation height, | 175 μm | 150 μm | 174 μm | |
Spacing, h | 95 μm | 70 μm | 94 μm | |
Calculated parameter | 6.25 | 5.3571 | 5.4375 | |
0.5429 | 0.4667 | 0.5402 | ||
Measured pull-in | Displacement | 30 μm | 23 μm | 30 μm |
parameters | Voltage | 40 V | 30.0 V | 45 V |
Pull-in parameters | Displacement | 34 μm | 25 μm | 35 μm |
simulated by Equation (11) | Voltage | 39 V | 30 V | 46 V |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mamleyev, E.R.; Lee, C.H.; Korvink, J.G.; Kohl, M.; Poletkin, K.V. Experimental Study and Simulation of Pull-In Behavior in Hybrid Levitation Microactuator for Square-Shaped Proof Masses. Actuators 2023, 12, 48. https://doi.org/10.3390/act12020048
Mamleyev ER, Lee CH, Korvink JG, Kohl M, Poletkin KV. Experimental Study and Simulation of Pull-In Behavior in Hybrid Levitation Microactuator for Square-Shaped Proof Masses. Actuators. 2023; 12(2):48. https://doi.org/10.3390/act12020048
Chicago/Turabian StyleMamleyev, Emil R., Chun Him Lee, Jan G. Korvink, Manfred Kohl, and Kirill V. Poletkin. 2023. "Experimental Study and Simulation of Pull-In Behavior in Hybrid Levitation Microactuator for Square-Shaped Proof Masses" Actuators 12, no. 2: 48. https://doi.org/10.3390/act12020048
APA StyleMamleyev, E. R., Lee, C. H., Korvink, J. G., Kohl, M., & Poletkin, K. V. (2023). Experimental Study and Simulation of Pull-In Behavior in Hybrid Levitation Microactuator for Square-Shaped Proof Masses. Actuators, 12(2), 48. https://doi.org/10.3390/act12020048