Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (125)

Search Parameters:
Keywords = Laboratory astrophysics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3794 KB  
Article
Spectral Performance of Single-Channel Plastic and GAGG Scintillator Bars of the CUbesat Solar Polarimeter (CUSP)
by Nicolas De Angelis, Abhay Kumar, Sergio Fabiani, Ettore Del Monte, Enrico Costa, Giovanni Lombardi, Alda Rubini, Paolo Soffitta, Andrea Alimenti, Riccardo Campana, Mauro Centrone, Giovanni De Cesare, Sergio Di Cosimo, Giuseppe Di Persio, Alessandro Lacerenza, Pasqualino Loffredo, Gabriele Minervini, Fabio Muleri, Paolo Romano, Emanuele Scalise, Enrico Silva, Davide Albanesi, Ilaria Baffo, Daniele Brienza, Valerio Campomaggiore, Giovanni Cucinella, Andrea Curatolo, Giulia de Iulis, Andrea Del Re, Vito Di Bari, Simone Di Filippo, Immacolata Donnarumma, Pierluigi Fanelli, Nicolas Gagliardi, Paolo Leonetti, Matteo Mergè, Dario Modenini, Andrea Negri, Daniele Pecorella, Massimo Perelli, Alice Ponti, Francesca Sbop, Paolo Tortora, Alessandro Turchi, Valerio Vagelli, Emanuele Zaccagnino, Alessandro Zambardi and Costantino Zazzaadd Show full author list remove Hide full author list
Particles 2026, 9(1), 4; https://doi.org/10.3390/particles9010004 - 13 Jan 2026
Viewed by 188
Abstract
Our Sun is the closest X-ray astrophysical source to Earth. As such, it makes for a strong case study to better understand astrophysical processes. Solar flares are particularly interesting as they are linked to coronal mass ejections as well as magnetic field reconnection [...] Read more.
Our Sun is the closest X-ray astrophysical source to Earth. As such, it makes for a strong case study to better understand astrophysical processes. Solar flares are particularly interesting as they are linked to coronal mass ejections as well as magnetic field reconnection sites in the solar atmosphere. Flares can therefore provide insightful information on the physical processes at play on their production sites but also on the emission and acceleration of energetic charged particles towards our planet, making it an excellent forecasting tool for space weather. While solar flares are critical to understanding magnetic reconnection and particle acceleration, their hard X-ray polarization—key to distinguishing between competing theoretical models—remains poorly constrained by existing observations. To address this, we present the CUbesat Solar Polarimeter (CUSP), a mission under development to perform solar flare polarimetry in the 25–100 keV energy range. CUSP consists of a 6U-XL platform hosting a dual-phase Compton polarimeter. The polarimeter is made of a central assembly of four 4 × 4 arrays of plastic scintillators, each coupled to multi-anode photomultiplier tubes, surrounded by four strips of eight elongated GAGG scintillator bars coupled to avalanche photodiodes. Both types of sensors from Hamamatsu are, respectively, read out by the MAROC-3A and SKIROC-2A ASICs from Weeroc. In this manuscript, we present the preliminary spectral performances of single plastic and GAGG channels measured in a laboratory using development boards of the ASICs foreseen for the flight model. Full article
Show Figures

Figure 1

23 pages, 3022 KB  
Article
Single-Point Search for eV-Scale Axion-like Particles with Variable-Angle Three-Beam-Stimulated Resonant Photon Collider
by Takumi Hasada, Kensuke Homma, Airi Kodama, Haruhiko Nishizaki, Yuri Kirita, Shin-ichiro Masuno, Shigeki Tokita, Masaki Hashida and ᵗSAPPHIRES Collaboration
Universe 2026, 12(1), 17; https://doi.org/10.3390/universe12010017 - 5 Jan 2026
Viewed by 230
Abstract
We report a laboratory search for axion-like particles (ALPs) in the eV mass range using a variable-angle three-beam-stimulated resonant photon collider. The scheme independently focuses and collides three laser beams, providing a cosmology- and astrophysics-independent test. By varying the angles of incidence, the [...] Read more.
We report a laboratory search for axion-like particles (ALPs) in the eV mass range using a variable-angle three-beam-stimulated resonant photon collider. The scheme independently focuses and collides three laser beams, providing a cosmology- and astrophysics-independent test. By varying the angles of incidence, the center-of-mass energy can be scanned continuously across the eV range. In this work, we operated the collider in a vacuum chamber at a large-angle configuration, verified the spacetime overlap of the three short pulses, and performed a first search centered at ma2.27eV. No excess was observed. Thus, we set a 95% C.L. upper limit on the pseudoscalar two-photon coupling, with a minimum sensitivity of g/M4.2×1010GeV1 at ma=2.27eV. This provides the first model-independent upper limit on the coupling that reaches the KSVZ benchmark in the eV regime and demonstrates the feasibility of eV-scale mass scans in the near future. Full article
Show Figures

Figure 1

13 pages, 1217 KB  
Article
Photodissociation Processes Involving the SiH+ Molecular Ion: New Datasets for Modeling
by V. A. Srećković, H. Delibašić-Marković, L. M. Ignjatović, V. Petrović and V. Vujčić
Data 2025, 10(11), 185; https://doi.org/10.3390/data10110185 - 7 Nov 2025
Viewed by 697
Abstract
This paper investigates the photodissociation of the SiH+ molecular ion, a non-symmetric diatomic species composed of silicon and hydrogen. We provide calculated molecular data and characterize electronic states, deriving cross-sections and spectral absorption rate coefficients as functions of temperature (1000–10,000 [...] Read more.
This paper investigates the photodissociation of the SiH+ molecular ion, a non-symmetric diatomic species composed of silicon and hydrogen. We provide calculated molecular data and characterize electronic states, deriving cross-sections and spectral absorption rate coefficients as functions of temperature (1000–10,000 K) and EUV and UV wavelength. The calculations are performed within a quantum–mechanical framework of bound–free radiative transitions, using ab initio electronic potentials and dipole transition functions as inputs. In addition, we present a straightforward fitting formula that enables practical interpolation of photodissociation cross-sections and spectral rate coefficients, providing a novel closed-form representation of the dataset for modeling purposes. The resulting dataset provides a consistent and accessible reference for advanced photochemical modeling in laboratory plasmas and astrophysical environments. Full article
Show Figures

Figure 1

23 pages, 1021 KB  
Article
Probing Jet Compositions with Extreme Mass Ratio Binary Black Holes
by Hung-Yi Pu
Universe 2025, 11(11), 370; https://doi.org/10.3390/universe11110370 - 7 Nov 2025
Viewed by 408
Abstract
Determining whether black hole jets are dominated by leptonic or baryonic matter remains an open question in high-energy astrophysics. We propose that extreme mass ratio binary (EMRB) black holes, where an intermediate mass secondary black hole (a “miniquasar”) periodically interacts with the accretion [...] Read more.
Determining whether black hole jets are dominated by leptonic or baryonic matter remains an open question in high-energy astrophysics. We propose that extreme mass ratio binary (EMRB) black holes, where an intermediate mass secondary black hole (a “miniquasar”) periodically interacts with the accretion flow of a supermassive black hole (SMBH), offer a natural laboratory to probe jet composition. In an EMRB, the miniquasar jet is launched episodically after each disk-crossing event, triggered by the onset of super-Eddington accretion. The resulting emissions exhibit temporal evolution as the jet interacts with the SMBH accretion disk. Depending on whether the jet is leptonic or hadronic in composition, the radiative signatures differ substantially. Notably, a baryonic jet produces a more pronounced gamma-ray output than a purely leptonic jet. By modeling the evolution of the multifrequency characteristic features, it is suggested that the gamma-ray-to-UV emissions may serve as a diagnostic tool capable of distinguishing between leptonic and baryonic scenarios. The resulting electromagnetic signals, when combined with multi-messenger observations, offer a powerful means to constrain the physical nature of relativistic jets from black holes. Full article
(This article belongs to the Special Issue Studying Astrophysics with High-Energy Cosmic Particles)
Show Figures

Figure 1

25 pages, 767 KB  
Article
Astrotourism as Social Innovation for Peripheral Territories: Pathways for Sustainable Development Under Dark Skies
by Elieber Mateus dos Santos, Quésia Postigo Kamimura, Ademir Pereira dos Santos and Wagner José Corradi Barbosa
Sustainability 2025, 17(21), 9853; https://doi.org/10.3390/su17219853 - 5 Nov 2025
Viewed by 986
Abstract
Astrotourism is gaining international recognition as a practice that integrates science, culture and sustainability, addressing global challenges such as light pollution and fostering inclusive local development. Although its environmental and economic impacts are widely acknowledged, its potential as a driver of social innovation [...] Read more.
Astrotourism is gaining international recognition as a practice that integrates science, culture and sustainability, addressing global challenges such as light pollution and fostering inclusive local development. Although its environmental and economic impacts are widely acknowledged, its potential as a driver of social innovation remains underexplored. This study addresses this gap by examining how astrotourism activates social innovation across multiple governance scales. The objective is to identify the mechanisms, enabling conditions, and territorial arrangements through which astrotourism operates as social innovation in peripheral contexts. The research adopts a qualitative and exploratory approach, based on documentary and bibliographic analysis of four international cases: Alfa Aldea in Chile, Dark Sky Alqueva in Portugal, the Jasper Dark Sky Festival in Canada, and the National Astrotourism Strategy in South Africa. A comparative framework was applied to identify three recurrent dimensions of social innovation—social capital, redistribution of power, and collaborative responses to crises—drawing on both classical and contemporary literature. Findings show that, despite institutional and territorial differences, all four cases demonstrate the capacity of astrotourism to build trust networks, strengthen community protagonism, and generate adaptive responses to socioeconomic vulnerabilities. The study proposes an interpretive matrix that outlines pathways of social innovation, offering policymakers tools to design multi-scalar strategies that connect community initiatives with national frameworks to achieve the Sustainable Development Goals. Beyond astrotourism, the framework also provides insights for other sustainable tourism modalities based on natural and cultural heritage. Full article
Show Figures

Figure 1

15 pages, 90200 KB  
Review
Optical Diagnostics Applications to Laboratory Astrophysical Research
by Wei Sun, Dawei Yuan, Zhe Zhang, Jiayong Zhong and Gang Zhao
Lights 2025, 1(1), 3; https://doi.org/10.3390/lights1010003 - 31 Oct 2025
Viewed by 473
Abstract
Laboratory astrophysics is an emerging interdisciplinary field bridging high-energy-density plasma physics and astrophysics. Optical diagnostic techniques offer high spatiotemporal resolution and the unique capability for simultaneous multi-field measurements. These attributes make them indispensable for deciphering extreme plasma dynamics in laboratory astrophysics. This review [...] Read more.
Laboratory astrophysics is an emerging interdisciplinary field bridging high-energy-density plasma physics and astrophysics. Optical diagnostic techniques offer high spatiotemporal resolution and the unique capability for simultaneous multi-field measurements. These attributes make them indispensable for deciphering extreme plasma dynamics in laboratory astrophysics. This review systematically elaborates on the physical principles and inversion methodologies of key optical diagnostics, including Nomarski interferometry, shadowgraphy, and Faraday rotation. Highlighting frontier progress by our team, we showcase the application of these techniques in analyzing jet collimation mechanisms, turbulent magnetic reconnection, collisionless shocks, and particle acceleration. Future trajectories for optical diagnostic development are also discussed. Full article
Show Figures

Figure 1

12 pages, 1196 KB  
Article
The Opacity Project: R-Matrix Calculations for Opacities of High-Energy-Density Astrophysical and Laboratory Plasmas
by Anil K. Pradhan and Sultana N. Nahar
Atoms 2025, 13(10), 85; https://doi.org/10.3390/atoms13100085 - 20 Oct 2025
Cited by 1 | Viewed by 598
Abstract
Accurate determination of opacity is critical for understanding radiation transport in both astrophysical and laboratory plasmas. We employ atomic data from R-Matrix calculations to investigate radiative properties in high-energy-density (HED) plasma sources, focusing on opacity variations under extreme plasma conditions. Specifically, we analyze [...] Read more.
Accurate determination of opacity is critical for understanding radiation transport in both astrophysical and laboratory plasmas. We employ atomic data from R-Matrix calculations to investigate radiative properties in high-energy-density (HED) plasma sources, focusing on opacity variations under extreme plasma conditions. Specifically, we analyze environments such as the base of the convective zone (BCZ) of the Sun (2×106 K, Ne=1023/cc), and radiative opacity data collected using the inertial confinement fusion (ICF) devices at the Sandia Z facility (2.11×106 K, Ne=3.16×1022/cc) and the Lawrence Livermore National Laboratory National Ignition Facility. We calculate Rosseland Mean Opacities (RMO) within a range of temperatures and densities and analyze how they vary under different plasma conditions. A significant factor influencing opacity in these environments is line and resonance broadening due to plasma effects. Both radiative and collisional broadening modify line shapes, impacting the absorption and emission profiles that determine the RMO. In this study, we specifically focus on electron collisional and Stark ion microfield broadening effects, which play a dominant role in HED plasmas. We assume a Lorentzian profile factor to model combined broadening and investigate its impact on spectral line shapes, resonance behavior, and overall opacity values. Our results are relevant to astrophysical models, particularly in the context of the solar opacity problem, and provide insights into discrepancies between theoretical calculations and experimental measurements. In addition, we investigate the equation-of-state (EOS) and its impact on opacities. In particular, we examine the “chemical picture” Mihalas–Hummer–Däppen EOS with respect to level populations of excited levels included in the extensive R-matrix calculations. This study should contribute to improving opacity models of HED sources such as stellar interiors and laboratory plasma experiments. Full article
(This article belongs to the Special Issue Electronic, Photonic and Ionic Interactions with Atoms and Molecules)
Show Figures

Figure 1

22 pages, 76128 KB  
Article
Nonlinear Wave Structures, Multistability, and Chaotic Behavior of Quantum Dust-Acoustic Shocks in Dusty Plasma with Size Distribution Effects
by Huanbin Xue and Lei Zhang
Mathematics 2025, 13(19), 3101; https://doi.org/10.3390/math13193101 - 27 Sep 2025
Viewed by 450
Abstract
This paper presents a detailed study of the (3+1)-dimensional Zakharov–Kuznetsov–Burgers equation to investigate shock-wave phenomena in dusty plasmas with quantum effects. The model provides significant physical insight into nonlinear dispersive and dissipative structures arising in charged-dust–ion environments, corresponding [...] Read more.
This paper presents a detailed study of the (3+1)-dimensional Zakharov–Kuznetsov–Burgers equation to investigate shock-wave phenomena in dusty plasmas with quantum effects. The model provides significant physical insight into nonlinear dispersive and dissipative structures arising in charged-dust–ion environments, corresponding to both laboratory and astrophysical plasmas. We then perform a qualitative, numerically assisted dynamical analysis using bifurcation diagrams, multistability checks, return maps, Poincaré sections, and phase portraits. For both the unperturbed and a perturbed system, we identify chaotic, quasi-periodic, and periodic regimes from these numerical diagnostics; accordingly, our dynamical conclusions are qualitative. We also examine frequency-response and time-delay sensitivity, providing a qualitative classification of nonlinear behavior across a broad parameter range. After establishing the global dynamical picture, traveling-wave solutions are obtained using the Paul–Painlevé approach. These solutions represent shock and solitary structures in the plasma system, thereby bridging the analytical and dynamical perspectives. The significance of this study lies in combining a detailed dynamical framework with exact traveling-wave solutions, allowing a deeper understanding of nonlinear shock dynamics in quantum dusty plasmas. These results not only advance theoretical plasma modeling but also hold potential applications in plasma-based devices, wave propagation in optical fibers, and astrophysical plasma environments. Full article
Show Figures

Figure 1

11 pages, 1743 KB  
Article
Probing Cold Supersonic Jets with Optical Frequency Combs
by Romain Dubroeucq, Quentin Le Mignon, Julien Lecomte, Nicolas Suas-David, Robert Georges and Lucile Rutkowski
Molecules 2025, 30(19), 3863; https://doi.org/10.3390/molecules30193863 - 24 Sep 2025
Viewed by 640
Abstract
We report high-resolution, cavity-enhanced direct frequency comb Fourier transform spectroscopy of cold acetylene (C2H2) molecules in a planar supersonic jet expansion. The experiment is based on a near-infrared frequency comb with a 300 MHz effective repetition rate, matched to [...] Read more.
We report high-resolution, cavity-enhanced direct frequency comb Fourier transform spectroscopy of cold acetylene (C2H2) molecules in a planar supersonic jet expansion. The experiment is based on a near-infrared frequency comb with a 300 MHz effective repetition rate, matched to a high-finesse enhancement cavity traversing the jet. The rotational and translational cooling of acetylene was achieved via expansion in argon carrier gas through a slit nozzle. By interleaving successive mode-resolved spectra measured at different comb repetition rates, we retrieved full absorption line profiles. Spectroscopic analysis reveals sharp, Doppler-limited transitions corresponding to a jet core rotational temperature below 7 K. Frequency comb and cavity stabilization were achieved through active Pound–Drever–Hall locking and mechanical vibration damping, enabling a spectral precision better than 2 MHz, limited by the vibrations induced by the pumping system. The demonstrated sensitivity reaches a minimum detectable absorption of 7.8 × 10−7 cm−1 over an 18 m effective path length in the jet core. This work illustrates the potential of cavity-enhanced direct frequency comb spectroscopy for precise spectroscopic characterization of cold supersonic expansions, with implications for studies in molecular dynamics, reaction kinetics, and laboratory astrophysics. Full article
(This article belongs to the Special Issue Molecular Spectroscopy and Molecular Structure in Europe)
Show Figures

Graphical abstract

75 pages, 17108 KB  
Article
A Catalog of 73 B-Type Stars and Their Brightness Variation from K2 Campaign 13–18
by Bergerson V. H. V. da Silva, Jéssica M. Eidam, Alan W. Pereira, M. Cristina Rabello-Soares, Eduardo Janot-Pacheco, Laerte Andrade and Marcelo Emilio
Universe 2025, 11(9), 301; https://doi.org/10.3390/universe11090301 - 3 Sep 2025
Viewed by 1104
Abstract
The variability of B-type stars offers valuable insights into the interiors of stars and the processes that drive pulsation and rotation in massive stars. In this study, we present the classification of the variability of 197 B-type stars observed in various Kepler/K2 [...] Read more.
The variability of B-type stars offers valuable insights into the interiors of stars and the processes that drive pulsation and rotation in massive stars. In this study, we present the classification of the variability of 197 B-type stars observed in various Kepler/K2 campaigns, including 73 newly classified stars from Campaigns 13–18. For these stars, we derived atmospheric and evolutionary parameters using space-based photometry and ground-based spectroscopy. We obtained spectroscopic data for 34 targets with high-resolution instruments at OPD/LNA, which were supplemented by archival LAMOST spectra. After correcting for instrumental systematics, we analyzed the light curves using Fourier transforms and wavelet decomposition to identify both periodic and stochastic signals. The identified variability types included SPB stars, β Cephei/SPB hybrids, fast-rotating pulsators, stochastic low-frequency variables, eclipsing binaries, and rotational variables. We also revised classifications of misidentified stars using Gaia astrometry, confirming the main-sequence nature of objects once considered subdwarfs. Our results indicate that hot-star variability exists along a continuum shaped by mass, rotation, and internal mixing rather than distinct instability domains. This study enhances our understanding of B-type star variability and supports future asteroseismic modeling with missions like PLATO. Full article
Show Figures

Figure 1

11 pages, 223 KB  
Essay
Beyond Space and Time: Quantum Superposition as a Real-Mental State About Choices
by Antoine Suarez
Condens. Matter 2025, 10(3), 43; https://doi.org/10.3390/condmat10030043 - 6 Aug 2025
Viewed by 3583
Abstract
This contribution aims to honour Guido Barbiellini’s profound interest in the interpretation and impact of quantum mechanics by examining the implications of the so-called before–before Experiment on quantum entanglement. This experiment was inspired by talks and discussions with John Bell at CERN. This [...] Read more.
This contribution aims to honour Guido Barbiellini’s profound interest in the interpretation and impact of quantum mechanics by examining the implications of the so-called before–before Experiment on quantum entanglement. This experiment was inspired by talks and discussions with John Bell at CERN. This was during the years when John and Guido co-worked, promoting the mission of the laboratory: “to advance the boundaries of human knowledge”. As the experiment uses measuring devices in motion, it can be considered a complement to entanglement experiments using stationary measuring devices, which have meanwhile been awarded the 2022 Nobel Prize in Physics. The before–before Experiment supports the idea that the quantum realm exists beyond space and time and that the quantum state is a real mental entity concerning choices. As it also leads us to a better understanding of the ‘quantum collapse’ and the measurement process, we pay homage to Guido’s work on detectors, such as his collaborations on the DELPHI experiment at CERN, on cosmic ray detection at the International Space Station, and gamma-ray astrophysics during a large NASA space mission. Full article
17 pages, 327 KB  
Review
Renormalization Group and Effective Field Theories in Magnetohydrodynamics
by Amir Jafari
Fluids 2025, 10(8), 188; https://doi.org/10.3390/fluids10080188 - 23 Jul 2025
Viewed by 1231
Abstract
We briefly review the recent developments in magnetohydrodynamics, which in particular deal with the evolution of magnetic fields in turbulent plasmas. We especially emphasize (i) the necessity and utility of renormalizing equations of motion in turbulence where velocity and magnetic fields become Hölder [...] Read more.
We briefly review the recent developments in magnetohydrodynamics, which in particular deal with the evolution of magnetic fields in turbulent plasmas. We especially emphasize (i) the necessity and utility of renormalizing equations of motion in turbulence where velocity and magnetic fields become Hölder singular; (ii) the breakdown of Laplacian determinism of classical physics (spontaneous stochasticity or super chaos) in turbulence; and (iii) the possibility of eliminating the notion of magnetic field lines in magnetized plasmas, using instead magnetic path lines as trajectories of Alfvénic wave packets. These methodologies are then exemplified with their application to the problem of magnetic reconnection—rapid change in magnetic field pattern that accelerates plasma—a ubiquitous phenomenon in astrophysics and laboratory plasmas. Renormalizing rough velocity and magnetic fields on any finite scale l in turbulence inertial range, to remove singularities, implies that magnetohydrodynamic equations should be regarded as effective field theories with running parameters depending upon the scale l. A high wave-number cut-off should also be introduced in fluctuating equations of motion, e.g., Navier–Stokes, which makes them effective, low-wave-number field theories rather than stochastic differential equations. Full article
(This article belongs to the Special Issue Feature Reviews for Fluids 2025–2026)
30 pages, 25151 KB  
Article
Prospects for Multimessenger Observations of the Shapley Supercluster
by Valentyna Babur, Olexandr Gugnin and Bohdan Hnatyk
Universe 2025, 11(7), 239; https://doi.org/10.3390/universe11070239 - 21 Jul 2025
Cited by 1 | Viewed by 1165
Abstract
The Shapley Supercluster, one of the largest and most massive structures in the nearby (redshift z0.1) Universe, located approximately 200 Mpc away, is a unique laboratory for high-energy astrophysics. Galaxy clusters that comprise it are promising targets for multimessenger study [...] Read more.
The Shapley Supercluster, one of the largest and most massive structures in the nearby (redshift z0.1) Universe, located approximately 200 Mpc away, is a unique laboratory for high-energy astrophysics. Galaxy clusters that comprise it are promising targets for multimessenger study due to the presence in the intracluster medium of the necessary conditions for the acceleration of cosmic rays up to ultra-high energies and the generation by them of non-thermal electromagnetic and neutrino emission. Using the Shapley Supercluster’s observational data from the recent eROSITA-DE Data Release, we recover the physical parameters of 45 X-ray luminous galaxy clusters and calculate the expected multiwavelength—from radio to very-high-energy γ-ray as well as neutrino emission, with a particular focus on hadronic interactions of accelerated cosmic ray nuclei with the nuclei of the intracluster medium. The results obtained allow verification of cluster models based on multimessenger observations of clusters, especially in γ-ray (Fermi-LAT, H.E.S.S., CTAO-South for the Shapley Supercluster case), and neutrino (Ice Cube, KM3NeT). We also estimate the ability of the Shapley Supercluster to manifest as cosmic Zevatrons and show that it can contribute to the PAO Hot Spot in the Cen A region at UHECR energies over 50 EeV. Full article
(This article belongs to the Special Issue Ultra-High-Energy Cosmic Rays)
Show Figures

Figure 1

29 pages, 22860 KB  
Article
Laboratory Magnetoplasmas as Stellar-like Environment for 7Be β-Decay Investigations Within the PANDORA Project
by Eugenia Naselli, Bharat Mishra, Angelo Pidatella, Alessio Galatà, Giorgio S. Mauro, Domenico Santonocito, Giuseppe Torrisi and David Mascali
Universe 2025, 11(6), 195; https://doi.org/10.3390/universe11060195 - 18 Jun 2025
Viewed by 875
Abstract
Laboratory magnetoplasmas can become an intriguing experimental environment for fundamental studies relevant to nuclear astrophysics processes. Theoretical predictions indicate that the ionization state of isotopes within the plasma can significantly alter their lifetimes, potentially due to nuclear and atomic mechanisms such as bound-state [...] Read more.
Laboratory magnetoplasmas can become an intriguing experimental environment for fundamental studies relevant to nuclear astrophysics processes. Theoretical predictions indicate that the ionization state of isotopes within the plasma can significantly alter their lifetimes, potentially due to nuclear and atomic mechanisms such as bound-state β-decay. However, only limited experimental evidence on this phenomenon has been collected. PANDORA (Plasmas for Astrophysics, Nuclear Decay Observations, and Radiation for Archaeometry) is a novel facility which proposes to investigate nuclear decays in high-energy-density plasmas mimicking some properties of stellar nucleosynthesis sites (Big Bang Nucleosynthesis, s-process nucleosynthesis, role of CosmoChronometers, etc.). This paper focuses on the case of 7Be electron capture (EC) decay into 7Li, since its in-plasma decay rate has garnered considerable attention, particularly concerning the unresolved Cosmological Lithium Problem and solar neutrino physics. Numerical simulations were conducted to assess the feasibility of this possible lifetime measurement in the plasma of PANDORA. Both the ionization and atomic excitation of the 7Be isotopes in a He buffer Electron Cyclotron Resonance (ECR) plasma within PANDORA were explored via numerical modelling in a kind of “virtual experiment” providing the expected in-plasma EC decay rate. Since the decay of 7Be provides γ-rays at 477.6 keV from the 7Li excited state, Monte-Carlo GEANT4 simulations were performed to determine the γ-detection efficiency by the HPGe detectors array of the PANDORA setup. Finally, the sensitivity of the measurement was evaluated through a virtual experimental run, starting from the simulated plasma-dependent γ-rate maps. These results indicate that laboratory ECR plasmas in compact traps provide suitable environments for β-decay studies of 7Be, with the estimated duration of experimental runs required to reach 3σ significance level being few hours, which prospectively makes PANDORA a powerful tool to investigate the decay rate under different thermodynamic conditions and related charge state distributions. Full article
(This article belongs to the Special Issue Recent Outcomes and Future Challenges in Nuclear Astrophysics)
Show Figures

Figure 1

11 pages, 6957 KB  
Article
UK APAP R-Matrix Electron-Impact Excitation Cross-Sections for Modelling Laboratory and Astrophysical Plasma
by Giulio Del Zanna, Guiyun Liang, Junjie Mao and Nigel R. Badnell
Atoms 2025, 13(5), 44; https://doi.org/10.3390/atoms13050044 - 14 May 2025
Cited by 4 | Viewed by 1074
Abstract
Systematic R-matrix calculations of electron-impact excitation for ions of astrophysical interest have been performed since 2007 for many iso-electronic sequences as part of the UK Atomic Process for Astrophysical Plasma (APAP) network. Rate coefficients for Maxwellian electron distributions have been provided and used [...] Read more.
Systematic R-matrix calculations of electron-impact excitation for ions of astrophysical interest have been performed since 2007 for many iso-electronic sequences as part of the UK Atomic Process for Astrophysical Plasma (APAP) network. Rate coefficients for Maxwellian electron distributions have been provided and used extensively in the literature and many databases for astrophysics. Here, we provide averaged collision strengths to be used to model plasma where electrons are non-Maxwellian, which often occurs in laboratory and astrophysical plasma. We also provide many new Maxwellian-averaged collision strengths, which include important corrections to the published values. Recently, we made available the H- and He-like collision strengths. Here, we provide data for ions of the Li-, Be-, B-, C-, N-, O-, Ne-, Na-, and Mg-like sequences. Full article
Show Figures

Figure 1

Back to TopTop