Influence of Y/Zn Ratio on Secondary Phase Strengthening of Mg-Y-Zn Alloy
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructure
3.2. Performance
3.2.1. Microhardness
3.2.2. Mechanical Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, D.K.; Tang, W.N.; Liu, L.; Xu, Y.B.; Han, E.H. Effect of Y concentration on the microstructure and mechanical properties of as-cast Mg-Zn-Y-Zr alloys. J. Alloys Compd. 2007, 432, 129–134. [Google Scholar]
- Chen, J.; Tan, L.; Yu, X.; Yang, K. Effect of minor content of Gd on the mechanical and degradable properties of as-cast Mg-2Zn-xGd-0.5Zr alloys. Mater. Sci. Technol. Engl. Version 2019, 35, 503–511. [Google Scholar]
- Zhang, T.X.; Zhao, X.T.; Liu, J.H.; Zhang, R.J.; Wang, X.F.; Yuan, Y.; Li, Z.Q.; Han, Z.Q. The microstructure, fracture mechanism and their correlation with the mechanical properties of as-cast Mg-Nd-Zn-Zr alloy under the effect of cooling rate. Mater. Sci. Eng. A 2021, 801, 140382. [Google Scholar]
- Zeng, Z.; Pan, H.; Pan, Z.; Wang, S.; Huang, Y.; Tang, W.; Yang, C.; Ren, Y.; Qin, G. Effect of Sm and Ce content on microstructure and mechanical property of newly developed Mg-Sm-Ce-Mn based alloy. Mater. Charact. 2023, 206, 113420. [Google Scholar]
- Yuan, M.; He, C.; Dong, Z.; Jiang, B.; Song, B.; Guo, N.; Liu, T.; Guo, S.; Pan, F. Effect of Sm addition on the microstructure and mechanical properties of Mg-xSm-0.4Zr alloys. J. Mater. Res. Technol. 2023, 23, 4814–4827. [Google Scholar]
- Abe, E.; Kawamura, Y.; Hayashi, K.; Inoue, A. Long-period ordered structure in a high-strength nanocrystalline Mg-1at%Zn-2at%Y alloy studied by atomic-resolution Z-contrast STEM. Acta Mater. 2002, 50, 3845–3857. [Google Scholar]
- Li, J.; He, Z.; Fu, P.; Wu, Y.; Peng, L.; Ding, W. Heat treatment and mechanical properties of a high-strength cast Mg-Gd-Zn alloy. Mater. Sci. Eng. A 2016, 651, 745–752. [Google Scholar]
- Liu, J.F.; Yang, Z.Q.; Ye, H.Q. Solid-state formation of icosahedral quasicrystals at Zn3Mg3Y2/Mg interfaces in a Mg-Zn-Y alloy. J. Alloys Compd. 2015, 650, 65–69. [Google Scholar]
- Liang, J.R.; Cao, F.R. Research Progress on the Effects of Alloying Elements on the Microstructure and Mechanical Properties of Mg-Y-Zn Alloys Containing LPSO Phase. Spec. Cast. Nonferrous Alloys 2021, 41, 932–937. [Google Scholar]
- Zhang, Z.; Liu, X.; Wang, Z.; Le, Q.; Hu, W.; Bao, L.; Cui, J. Effects of Phase Composition and Content on the Microstructures and Mechanical Properties of High Strength Mg-Y-Zn-Zr Alloys. Mater. Des. 2015, 88, 915–923. [Google Scholar]
- Luo, S.-Q.; Tang, A.-T.; Pan, F.-S.; Song, K.; Wang, W.-Q. Effect of Mole Ratio of Y to Zn on Phase Constituent of Mg-Zn-Zr-Y Alloys. Trans. Nonferrous Met. Soc. China 2011, 21, 795–800. [Google Scholar]
- Bai, Y.; Ye, B.; Guo, J.; Wang, L.; Kong, X.; Ding, W. Mechanical Properties and Yield Asymmetry of Mg-Y-Zn Alloys: Competitive Behavior of Second Phases. Mater. Charact. 2020, 164, 110301. [Google Scholar]
- Chen, X.; Liu, L.; Liu, J.; Pan, F. Microstructure, electromagnetic shielding effectiveness and mechanical properties of Mg-Zn-Y-Zr alloys. Mater. Des. 2015, 65, 360–369. [Google Scholar]
- Mehrabi-Mehdiabadi, M.; Mahmudi, R. Effects of yttrium addition on microstructural stability and elevated-temperature mechanical properties of a cast Mg-Zn alloy. J. Alloys Compd. 2020, 820, 153083. [Google Scholar]
- Wang, J.; Song, P.; Gao, S.; Huang, X.; Shi, Z.; Pan, F. Effects of Zn on the microstructure, mechanical properties, and damping capacity of Mg-Zn-Y-Zr alloys. Mater. Sci. Eng. A 2011, 528, 5914–5920. [Google Scholar]
- Shao, X.H.; Yang, Z.Q.; Ma, X.L. Strengthening and toughening mechanisms in Mg-Zn-Y alloy with a long period stacking ordered structure. Acta Mater. 2010, 58, 4760–4771. [Google Scholar]
- Gröbner, J.; Kozlov, A.; Fang, X.Y.; Zhu, S.; Nie, J.F.; Gibson, M.A.; Schmid-Fetzer, R. Phase equilibria and transformations in ternary Mg-Gd-Zn alloys. Acta Mater. 2012, 60, 5948–5962. [Google Scholar]
- Fang, X.; Wu, S.; Lü, S.; Wang, J.; Yang, X. Microstructure evolution and mechanical properties of quasicrystal-reinforced Mg-Zn-Y alloy subjected to ultrasonic vibration. Mater. Sci. Eng. A Struct. Mater. Prop. Misrostructure Process. 2017, 679, 372–378. [Google Scholar]
- Xu, C.J.; Tian, J.; Chen, L.P.; Zhang, J.X.; Zhang, Z.M. Research progress of long-period stacking ordered (LPSO) structures and formation mechanisms in magnesium alloys. Ordnance Mater. Sci. Eng. 2015, 38, 131–135. [Google Scholar]
- Zhu, Y.M.; Weyland, M.; Morton, A.J.; Oh-Ishi, K.; Hono, K.; Nie, J.F. The building block of long-period structures in Mg-RE-Zn alloys. Scr. Mater. 2009, 60, 980–983. [Google Scholar]
- Zhu, Y.M.; Morton, A.J.; Nie, J.F. The 18R and 14H long-period stacking ordered structures in Mg-Y-Zn alloys. Acta Mater. 2010, 58, 2936–2947. [Google Scholar]
- Lv, B.J. Effects of the Second Phase on the Dynamic Recrystallization Evolution and Hot Workability of Mg-Zn-Zr-Y Magnesium Alloy. Ph.D. Thesis, Chongqing University, Chongqing, China, 2014. [Google Scholar]
- Ghassemali, E.; Riestra, M.; Bogdanoff, T.; Kumar, B.S.; Seifeddine, S. Hall-Petch equation in a hypoeutectic Al-Si cast alloy: Grain size vs. secondary dendrite arm spacing. Int. Conf. Technol. Plast. 2017, 207, 19–24. [Google Scholar]
- Caceres, C.H.; Mann, G.E.; Griffiths, J.R. Grain Size Hardening in Mg and Mg-Zn Solid Solutions. Metall. Mater. Trans. A 2011, 42, 1950–1959. [Google Scholar]
- Fang, X.; Lü, S.; Wang, J.; Yang, X.; Wu, S. Effects of Ce/La misch metal content on microstructure evolution and mechanical properties of Mg-Zn-Y alloy. Mater. Sci. Eng. A Struct. Mater. Prop. Misrostruct. Process. 2017, 699, 1–9. [Google Scholar]
- Yasi, J.A.; Hector, L.G.; Trinkle, D.R., Jr. First-principles data for solid-solution strengthening of magnesium: From geometry and chemistry to properties. Acta Mater. 2010, 58, 5704–5713. [Google Scholar]
- Ma, K.; Wen, H.; Hu, T.; Topping, T.D.; Isheim, D.; Seidman, D.N.; Lavernia, E.J.; Schoenung, J.M. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater. 2014, 62, 141–155. [Google Scholar]
- Gao, L.; Chen, R.; Han, E. Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys. J. Alloys Compd. 2009, 481, 379–384. [Google Scholar]
- Li, Z.; Fu, P.; Peng, L.; Wang, Y.; Jiang, H. Strengthening mechanisms in solution treated Mg-yNd-zZn-xZr alloy. J. Mater. Sci. 2013, 48, 6367–6376. [Google Scholar]
- Fan, M.; Zhang, Z.; Cui, Y.; Liu, L.; Liu, Y.; Liaw, P.K. Achieving strength and ductility synergy via a nanoscale superlattice precipitate in a cast Mg-Y-Zn-Er alloy. Int. J. Plast. 2023, 163, 103558. [Google Scholar]
- Yang, Q.; Bu, F.; Qiu, X.; Li, Y.; Li, W.; Sun, W.; Liu, X.; Meng, J. Strengthening effect of nano-scale precipitates in a die-cast Mg-4Al-5.6Sm-0.3Mn alloy. J. Alloys Compd. 2016, 665, 240–250. [Google Scholar]
- Cai, H.; Zhao, Z.; Wang, Q.; Zhang, N.; Lei, C. Study on solution and aging heat treatment of a super high strength cast Mg-7.8Gd-2.7Y-2.0Ag-0.4Zr alloy. Mater. Sci. Eng. A 2022, 849, 143523. [Google Scholar]
Alloy Composition | Y | Zn | Y + Zn (wt.%) | Y/Zn (wt.%) |
---|---|---|---|---|
Mg-1Y-6.5Zn | 1.10 | 6.09 | 7.19 | 0.15 |
Mg-2.5Y-5Zn | 2.57 | 4.35 | 6.92 | 0.5 |
Mg-3.8Y-3.7Zn | 4.12 | 3.23 | 7.35 | 1 |
Mg-4.5Y-3Zn | 5.06 | 2.70 | 7.76 | 1.5 |
Mg-5.5Y-2Zn | 5.81 | 1.76 | 7.57 | 2.75 |
Alloy | Position | Element | Possible Phases | ||
---|---|---|---|---|---|
Mg | Zn | Y | |||
Mg-1Y-6.5Zn | A1 | 99.2 | 0.77 | 0.03 | α-Mg |
A2 | 54.0 | 37.3 | 8.7 | Mg3YZn6 [11] | |
A3 | 36.4 | 53.5 | 10.1 | Mg3YZn6 | |
Mg-2.5Y-5Zn | B1 | 99.2 | 0.6 | 0.2 | α-Mg |
B2 | 45.6 | 34.4 | 20.0 | Mg3Y2Zn3 [10] | |
B3 | 41.0 | 49.3 | 9.7 | Mg3YZn6 | |
Mg-3.8Y-3.7Zn | C1 | 99.5 | 0.2 | 0.3 | α-Mg |
C2 | 53.1 | 28.9 | 18.0 | Mg3Y2Zn3 | |
C3 | 86.9 | 5.8 | 7.3 | Mg12YZn [12] | |
Mg-4.5Y-3Zn | D1 | 99.4 | 0.2 | 0.4 | α-Mg |
D2 | 85.7 | 6.7 | 7.6 | Mg12YZn | |
D3 | 65.5 | 21.5 | 13.1 | Mg3Y2Zn3 | |
Mg-5.5Y-2Zn | E1 | 99.2 | 0.2 | 0.5 | α-Mg |
E2 | 88.0 | 4.7 | 7.3 | Mg12YZn | |
E3 | 87.9 | 4.8 | 7.3 | Mg12YZn |
Alloy | ) | ) | ) | |||
---|---|---|---|---|---|---|
dgs/μm | /MPa | CY/at.% | CZn/at.% | /MPa | /MPa | |
Mg-1Y-6.5Zn | 483.0 ± 30 | 21.0 | 0.03 | 0.7 | 34.6 | 2.8 |
Mg-2.5Y-5Zn | 465.4 ± 30 | 21.2 | 0.10 | 0.6 | 35.0 | 14.1 |
Mg-3.8Y-3.7Zn | 361.8 ± 30 | 22.6 | 0.30 | 0.4 | 38.8 | 42.9 |
Mg-4.5Y-3Zn | 425.0 ± 30 | 21.7 | 0.40 | 0.3 | 40.6 | 43.3 |
Mg-5.5Y-2Zn | 456.2 ± 30 | 21.3 | 0.50 | 0.2 | 42.3 | 40.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Wu, J.; Liu, X.; Zhao, D.; Liang, L.; Peng, J. Influence of Y/Zn Ratio on Secondary Phase Strengthening of Mg-Y-Zn Alloy. Metals 2025, 15, 359. https://doi.org/10.3390/met15040359
Hu J, Wu J, Liu X, Zhao D, Liang L, Peng J. Influence of Y/Zn Ratio on Secondary Phase Strengthening of Mg-Y-Zn Alloy. Metals. 2025; 15(4):359. https://doi.org/10.3390/met15040359
Chicago/Turabian StyleHu, Jie, Jiageng Wu, Xiangquan Liu, Dong Zhao, Liang Liang, and Jian Peng. 2025. "Influence of Y/Zn Ratio on Secondary Phase Strengthening of Mg-Y-Zn Alloy" Metals 15, no. 4: 359. https://doi.org/10.3390/met15040359
APA StyleHu, J., Wu, J., Liu, X., Zhao, D., Liang, L., & Peng, J. (2025). Influence of Y/Zn Ratio on Secondary Phase Strengthening of Mg-Y-Zn Alloy. Metals, 15(4), 359. https://doi.org/10.3390/met15040359