Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (436)

Search Parameters:
Keywords = LINN1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1052 KB  
Article
Effects of Artesunate on the Growth and Chlorophyll Fluorescence of the Cyanobacterium Microcystis aeruginosa
by Huan Wang, Wenyu Ning, Wenxia Wang, Yue Hu and Aoao Yang
Phycology 2025, 5(4), 63; https://doi.org/10.3390/phycology5040063 - 20 Oct 2025
Viewed by 223
Abstract
Microcystis aeruginosa, a kind of cyanobacterium, can lead to water blooms under specific conditions and it is harmful to human and ecological security due to the toxins produced by certain strains. Artemisinin, which is derived from Artemisia annua Linn, has a strong [...] Read more.
Microcystis aeruginosa, a kind of cyanobacterium, can lead to water blooms under specific conditions and it is harmful to human and ecological security due to the toxins produced by certain strains. Artemisinin, which is derived from Artemisia annua Linn, has a strong allelopathic effect on algae. Artesunate is a water-soluble derivative of artemisinin. We investigated the effect of artesunate on M. aeruginosa, including growth and key photosynthetic parameters (Fv/Fm, φPSII). Our findings demonstrate that artesunate inhibits the growth of M. aeruginosa by damaging the photosynthetic center of photosystem II (PS II), and this inhibitory effect is enhanced with increasing concentration. At the concentration of 200 mol/L, the maximum inhibition rate was 41.62% for FACHB-315 and 43.19% for FACHB-927 after 96 h. After 24 h of exposure, the φPSII of the two strains decreased significantly (p < 0.01). These results could inform further studies on the use of artesunate to control cyanobacterial growth in water bodies and provide theoretical support for the application of artemisinin derivatives in treating water blooms. Full article
(This article belongs to the Collection Harmful Microalgae)
Show Figures

Figure 1

24 pages, 5246 KB  
Review
Chemical Constituents and Pharmacological Effects of Camellia oleifera Fruits: A Review
by Bing Xu, A-Nan Du, Tian-Zhi Liu, Ping-Hui Wei, Bo-Rong Zhu, Kai Chen and Lin Shi
Molecules 2025, 30(19), 3965; https://doi.org/10.3390/molecules30193965 - 2 Oct 2025
Viewed by 706
Abstract
Camellia oleifera, a member of the Theaceae family and belonging to the Camellia Linn species, is a plant utilized for edible oil production and medicinal value. Its fruit is abundant in various bioactive compounds, including triterpene saponins, flavonoids, lignans, fatty acids, sterols, [...] Read more.
Camellia oleifera, a member of the Theaceae family and belonging to the Camellia Linn species, is a plant utilized for edible oil production and medicinal value. Its fruit is abundant in various bioactive compounds, including triterpene saponins, flavonoids, lignans, fatty acids, sterols, polysaccharides, and numerous other chemical constituents. Among these, triterpene saponins and flavonoids serve as the primary active ingredients. The pharmacological effects of C. oleifera fruits are diverse, encompassing anti-tumor properties, cardiovascular and cerebrovascular protection, anti-inflammatory, antioxidant activity, lipid-lowering capability, anti-fungal property, and neuroprotective function. In recent years, this area has garnered significant attention from scholars both domestically and internationally. This article reviews the chemical constituents and pharmacological effects of C. oleifera fruits, aiming to provide a comprehensive reference for further research and development. Additionally, it offers a scientific foundation and innovative insights for clinical applications and the identification of relevant bioactive components. Full article
Show Figures

Figure 1

22 pages, 3346 KB  
Brief Report
Effects of Water Stress on Growth and Leaf Water Physiology of Major Plants in the Qaidam Basin
by Mei Dong, Han Luo and Qingning Wang
Diversity 2025, 17(9), 652; https://doi.org/10.3390/d17090652 - 17 Sep 2025
Viewed by 798
Abstract
Water stress represents one of the most critical limiting factors affecting plant distribution, growth rate, biomass accumulation, and crop yield across diverse growth stages. Variations in species’ drought tolerance fundamentally shape global biodiversity patterns by influencing survival rates, distribution ranges, and community composition [...] Read more.
Water stress represents one of the most critical limiting factors affecting plant distribution, growth rate, biomass accumulation, and crop yield across diverse growth stages. Variations in species’ drought tolerance fundamentally shape global biodiversity patterns by influencing survival rates, distribution ranges, and community composition under changing environmental conditions. This study investigated the physiological responses of six plant species (Haloxylon ammodendron (H.A.), Nitraria tangutorum Bobr. (N.T.B.), Sympegma regelii Bge. (S.R.B.), Tamarix chinensis (T.C.), Potentilla fruticosa (P.F.R.), and Sabina chinensis (Linn.) Ant. (S.C.A.)) to varying water stress levels through controlled water gradient experiments. Four treatment levels were established: W1 (full water supply, >70% field water holding capacity); W2 (mild stress, 50–55%); W3 (moderate stress, 35–40%); and W4 (severe stress, 20–25%). Height growth and leaf mass per area decreased significantly with increasing water stress across all species. S.C.A. consistently exhibited the highest leaf mass per area among the six species, while H.A. showed the lowest values across all treatments. Leaf water content declined progressively with intensifying water stress, with T.C. and P.F.R. showing the most pronounced reductions (T.C.: 16.53%, 18.07%, and 33.37% under W2, W3, and W4, respectively; P.F.R.: 19.45%, 28.52%, and 36.08%), whereas N.T.B. and H.A. demonstrated superior water retention capacity (N.T.B.: 2.44%, 6.64%, and 9.76%; H.A.: 1.44%, 4.39%, and 5.52%). Water saturation deficit increased correspondingly with declining soil moisture. Diurnal leaf water potential patterns exhibited a characteristic V-shaped curve under well-watered (W1) and mildly stressed (W2) conditions, transitioning to a double-valley pattern with unstable fluctuations under moderate (W3) and severe (W4) stress. Leaf water potential showed linear relationships with air temperature and relative humidity, and a quadratic relationship with atmospheric water potential. For all six species, the relationship between pre-dawn leaf water potential and soil water content followed the curve equation y = a + b/x. Under water-deficient conditions, S.C.A. exhibited the greatest water physiological changes, followed by P.F.R. Both logarithmic and power function relationships between leaf and soil water potentials were highly significant (all F > 55.275, all p < 0.01). T.C. leaf water potential was the most sensitive to soil water potential changes, followed by S.C.A., while H.A. demonstrated the least sensitivity. These findings provide essential theoretical foundations for selecting drought-resistant plant species in arid regions of the Qaidam Basin. This study elucidates the response mechanisms of six distinct drought-tolerant plant species under water stress. It provides critical theoretical support for selecting drought-tolerant species, designing community configurations, and implementing water management strategies in vegetation restoration projects within the arid Qaidam Basin. Furthermore, it contributes empirical data at the plant physiological level to understanding the mechanisms sustaining species diversity in arid ecosystems. Full article
(This article belongs to the Special Issue Ecology and Diversity of Plants in Arid and Semi-Arid Ecosystems)
Show Figures

Figure 1

23 pages, 992 KB  
Review
Pharmacological and Therapeutic Potential of Chrysopogon zizanioides (Vetiver): A Comprehensive Review of Its Medicinal Applications and Future Prospects
by Conjeevaram J. Gunasekar, Amin F. Majdalawieh, Imad A. Abu-Yousef and Sham A. Al Refaai
Biomolecules 2025, 15(9), 1312; https://doi.org/10.3390/biom15091312 - 12 Sep 2025
Cited by 1 | Viewed by 1186
Abstract
Chrysopogon zizanioides (Linn.) Nash, commonly known as vetiver, has been an integral component of traditional medicinal systems across India and Asia for centuries. The roots and essential oils of this aromatic grass have been widely utilized for their anti-inflammatory, analgesic, anticancer, antioxidant, antimicrobial, [...] Read more.
Chrysopogon zizanioides (Linn.) Nash, commonly known as vetiver, has been an integral component of traditional medicinal systems across India and Asia for centuries. The roots and essential oils of this aromatic grass have been widely utilized for their anti-inflammatory, analgesic, anticancer, antioxidant, antimicrobial, and wound-healing properties. Recent scientific investigations have provided substantial evidence supporting these traditional claims, revealing a diverse array of bioactive phytochemicals with significant pharmacological potential. Preclinical studies have demonstrated the efficacy of C. zizanioides extracts in mitigating inflammation, alleviating pain, combating microbial infections, and even exhibiting anticancer and antidiabetic effects. This review provides a comprehensive analysis of the current literature on the therapeutic properties of C. zizanioides, summarizing findings from in vitro assays, cell line studies, animal models, and available clinical studies. The bioactive constituents responsible for these pharmacological effects, including essential oil components and isolated fractions, are discussed, along with their proposed mechanisms of action. These mechanisms involve modulation of oxidative stress, inflammatory pathways, microbial proliferation, and pain perception. Additionally, current research limitations, gaps in knowledge, and future directions for investigating medicinal applications of C. zizanioides are explored. Emerging scientific evidence increasingly validates traditional claims regarding the healing properties of this versatile medicinal grass. Full article
(This article belongs to the Special Issue Natural Bioactives as Leading Molecules for Drug Development)
Show Figures

Figure 1

15 pages, 2867 KB  
Article
Phenolic-Rich Indian Almond (Terminalia catappa Linn) Leaf Extract Ameliorates Lipid Metabolism and Inflammation in High-Fat Diet (HFD)-Induced Obese Mice
by Opeyemi O. Deji-Oloruntoba, Ji Eun Kim, Hee Jin Song, Ayun Seol, Dae Youn Hwang and Miran Jang
Metabolites 2025, 15(9), 594; https://doi.org/10.3390/metabo15090594 - 8 Sep 2025
Viewed by 805
Abstract
Background: Obesity is a global health issue closely associated with dysregulated lipid metabolism and chronic inflammation. Effective strategies targeting both lipogenesis and inflammation are essential for managing obesity and its related metabolic disorders. Methods: This study evaluated the effects of Terminalia catappa Linn. [...] Read more.
Background: Obesity is a global health issue closely associated with dysregulated lipid metabolism and chronic inflammation. Effective strategies targeting both lipogenesis and inflammation are essential for managing obesity and its related metabolic disorders. Methods: This study evaluated the effects of Terminalia catappa Linn. leaf extract (TCE) on lipogenic and lipolytic pathways in high-fat diet (HFD)-induced obese mice. UPLC-QTOF-MS analysis was conducted to identify and quantify the major phenolic compounds in TCE. Mice were administered low and high doses of TCE, and various metabolic parameters, including lipid profiles, liver function markers, adipokine levels, and gene/protein expressions related to lipid metabolism and inflammation, were assessed. Results: UPLC-QTOF-MS analysis identified four major phenolic compounds in TCE—gallic acid, orientin, vitexin, and ellagic acid—with respective contents of 112.5, 163.3, 184.7, and 295.7 mg/g extract. TCE administration significantly reduced liver and adipose tissue weights, along with hepatic and adipose lipid accumulation. Both low and high doses of TCE markedly lowered serum lipid levels. Liver function was improved, as indicated by reduced levels of AST, ALT, and ALP, while BUN levels remained unchanged. On the molecular level, TCE downregulated adipogenic and lipogenic genes (PPARγ, PPARα, C/EBPα, aP2) and upregulated metabolic regulators, including leptin, adiponectin, p-HSL/HSL, and p-perilipin/perilipin, without affecting ATGL expression. TCE also suppressed pro-inflammatory cytokines such as IL-6, IL-1β, TNF-α, and TGFβ-1. Conclusions: These findings highlight the therapeutic potential of TCE in managing obesity by inhibiting lipogenesis, enhancing lipolysis, and reducing inflammation. Full article
(This article belongs to the Section Pharmacology and Drug Metabolism)
Show Figures

Graphical abstract

15 pages, 1658 KB  
Article
Emerging Resistance in Klebsiella pneumoniae: CTX-M Prevalence, Biofilm Formation, and Efficacy of Platanus orientalis Extract
by Ahmed Najm Abed and Basma Mnif
Microbiol. Res. 2025, 16(9), 203; https://doi.org/10.3390/microbiolres16090203 - 7 Sep 2025
Viewed by 1282
Abstract
CTX-M beta-lactamases have become the predominant extended-spectrum beta-lactamases (ESBLs) globally, contributing to increased patient morbidity, mortality, and healthcare costs. This study investigated the prevalence of biofilm formation and CTX-M genes in Klebsiella pneumoniae strains isolated from Baghdad hospitals, aiming to better understand antimicrobial [...] Read more.
CTX-M beta-lactamases have become the predominant extended-spectrum beta-lactamases (ESBLs) globally, contributing to increased patient morbidity, mortality, and healthcare costs. This study investigated the prevalence of biofilm formation and CTX-M genes in Klebsiella pneumoniae strains isolated from Baghdad hospitals, aiming to better understand antimicrobial resistance mechanisms and support the development of targeted interventions. A total of 300 samples were collected from various clinical and hospital sources, and antibiotic susceptibility testing was performed using the Kirby–Bauer disc diffusion method. ESBL production was also confirmed using specifically designed primers. Platanus orientalis Linn extract was evaluated for its antimicrobial and antibiofilm activity against K. pneumoniae isolates. The results showed significant resistance to the majority of antibiotics, including cefotaxime, gentamicin, levofloxacin, ceftazidime, and ceftriaxone. A high prevalence of the CTX-M gene (100%) was detected in the isolates, with the most frequent alleles being blaCTX-M-15 (65.2%) and blaCTX-M-1 (30%). Furthermore, 95.6% of the isolates were capable of forming biofilms. However, when treated with P. orientalis Linn extract, most isolates exhibited reduced biofilm production, becoming weak biofilm producers. Phytochemical analysis of P. orientalis Linn revealed significant amounts of phenolic compounds, tannins, and glycosides, as well as the presence of alkaloids and carbohydrates. Overall, this study demonstrates a correlation between CTX-M production and biofilm-forming ability in K. pneumoniae and highlights the potential role of P. orientalis Linn extract in combating antibiotic-resistant infections. Full article
Show Figures

Figure 1

17 pages, 10067 KB  
Article
An Extensive Analysis of Artemisia integrifolia Linn. on T2DM: Investigating Glycolipid Metabolism, Metabolic Profiling, and Molecular Docking for Potential Functional Food Applications
by Meng Liu, Fazhi Su, Yujia He, Minghao Sun, Chenxi Bai, Wensen Zhang, Biao Li, Yanping Sun, Qiuhong Wang and Haixue Kuang
Foods 2025, 14(17), 2945; https://doi.org/10.3390/foods14172945 - 24 Aug 2025
Viewed by 668
Abstract
Type II diabetes mellitus (T2DM) is characterized by chronic glycolipid metabolic dysregulation. This study aimed to investigate the effects and mechanisms of Artemisia integrifolia Linn. (LH) as a functional food in a T2DM rat model. The UPLC-Q-TOF-MS/MS technique was used to identify the [...] Read more.
Type II diabetes mellitus (T2DM) is characterized by chronic glycolipid metabolic dysregulation. This study aimed to investigate the effects and mechanisms of Artemisia integrifolia Linn. (LH) as a functional food in a T2DM rat model. The UPLC-Q-TOF-MS/MS technique was used to identify the components of LH. T2DM was induced in rats via a high-fat/high-sugar diet combined with streptozotocin (STZ, 35 mg/kg, i.p.). The rats were subsequently treated with LH (90 mg/kg, 180 mg/kg) for 15 days. A total of 66 compounds were identified in both positive and negative ions. LH treatment resulted in an increase in body weight while reducing FBG levels. It also improved insulin resistance, blood lipid levels, liver pathology, function, and lipid accumulation. Furthermore, 18 metabolites and 5 metabolic pathways were identified in the liver. Mechanistically, LH may improve T2DM through modulation of the S1P and PI3K/AKT signaling pathway. Caffeic acid, coumarin, trifolin, and apigetrin were identified as the likely active components. In conclusion, LH may mitigate glycolipid metabolism disorders in T2DM rats by modulating metabolic profiling, S1P, and the PI3K/AKT signaling pathway, supporting its potential as a functional food. Full article
Show Figures

Figure 1

20 pages, 2822 KB  
Article
Antioxidant Activity of Paederia foetida Linn. Leaf Extract and Its Effect on Bovine Sperm Quality
by Sasitorn Phankhieo, Jiraporn Laoung-on, Ranida Quiggins, Pimchanok Nuchniyom and Paiwan Sudwan
Vet. Sci. 2025, 12(8), 775; https://doi.org/10.3390/vetsci12080775 - 19 Aug 2025
Viewed by 1202
Abstract
Paederia foetida Linn. (P. foetida) is a wild vegetable native to both temperate and tropical regions of Asia, including Thailand. Traditionally, its leaves are believed to offer various health benefits, including promoting longevity and enhancing sexual performance. The purpose of the [...] Read more.
Paederia foetida Linn. (P. foetida) is a wild vegetable native to both temperate and tropical regions of Asia, including Thailand. Traditionally, its leaves are believed to offer various health benefits, including promoting longevity and enhancing sexual performance. The purpose of the present study is to examine the phytochemical constituents and antioxidant efficacy and determine the influence on bovine sperm quality of aqueous leaf extracts. The powder of leaves was extracted with distilled water at 80 °C and analyzed for phytochemicals using HPLC for antioxidant properties and effects on sperm. Sperm samples were divided into five groups and treated with extract concentrations of 0.1375, 0.275, 0.55, 1.10, and 2.20 mg/mL and compared with a control (Krebs solution). The extract contained phenolic compounds and flavonoids. It exhibited potent scavenging efficacy against DPPH and ABTS radicals and inhibited LPO but showed low reduction of Fe (III) to Fe (II) and low inhibition of AOPP formation. No significant changes in sperm quality were observed with 0.1375, 0.275, 0.55, and 1.10 mg/mL, while 2.20 mg/mL caused a significant increase in abnormal sperm. In conclusion, P. foetida leaf extract has antioxidant potential and at concentrations up to 1.10 mg/mL is not detrimental to sperm quality. Full article
Show Figures

Figure 1

21 pages, 337 KB  
Article
Materially Dispossessing the Troubled Theologian
by John C. McDowell
Religions 2025, 16(8), 1076; https://doi.org/10.3390/rel16081076 - 19 Aug 2025
Viewed by 553
Abstract
Linn Tonstad’s paper, ‘(Un)wise Theologians’, identifies a theological approach that puts pressure on its ability to handle its materiality sufficiently in a number of ways. However, following the trajectory of Tonstad’s discovery of “the deformations to which theology is susceptible in the university” [...] Read more.
Linn Tonstad’s paper, ‘(Un)wise Theologians’, identifies a theological approach that puts pressure on its ability to handle its materiality sufficiently in a number of ways. However, following the trajectory of Tonstad’s discovery of “the deformations to which theology is susceptible in the university” and elsewhere, a supplementation is required to specify where its thesis needs more rigorous development. Firstly, the paper’s argument locates what Tonstad describes as “self-securitization and self-assertion” in a form of a subjectivity characterisable as a docility making possessive form of divine givenness, and it draws the papal encyclical Fides et Ratio into Tonstad’s critique of the theology of John Webster to make this case. Secondly, Tonstad’s appeal to the reparative mode of contextualisation necessitates a differentiation to be made between modes of what is commonly called ‘contextual theology’ since there are forms that shelter under this umbrella term that echo the subjectivity of that which Tonstad uncompromisingly critiques. Thirdly, while ‘(Un)wise Theologians’ only lightly indexes a reparative direction properly “chastened” theology, a kenotically interrogative sensibility may prove to be sufficiently capacious for the critical conduct of “theological therapy”. If so, then it can function to constantly trouble the theological in an appropriate manner without flight into a premature dematerialised fixation point. Full article
(This article belongs to the Special Issue Nature, Functions and Contexts of Christian Doctrine)
18 pages, 3229 KB  
Article
AMPK-Targeting Effects of (−)-Epicatechin Gallate from Hibiscus sabdariffa Linne Leaves on Dual Modulation of Hepatic Lipid Accumulation and Glycogen Synthesis in an In Vitro Oleic Acid Model
by Hui-Hsuan Lin, Pei-Tzu Wu, Yu-Hsuan Liang, Ming-Shih Lee and Jing-Hsien Chen
Int. J. Mol. Sci. 2025, 26(15), 7612; https://doi.org/10.3390/ijms26157612 - 6 Aug 2025
Viewed by 805
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) begins with hepatic lipid accumulation and triggers insulin resistance. Hibiscus leaf extract exhibits antioxidant and anti-atherosclerotic activities, and is rich in (−)-epicatechin gallate (ECG). Despite ECG’s well-known pharmacological activities and its total antioxidant capacity being stronger than [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD) begins with hepatic lipid accumulation and triggers insulin resistance. Hibiscus leaf extract exhibits antioxidant and anti-atherosclerotic activities, and is rich in (−)-epicatechin gallate (ECG). Despite ECG’s well-known pharmacological activities and its total antioxidant capacity being stronger than that of other catechins, its regulatory effects on MASLD have not been fully described previously. Therefore, this study attempted to evaluate the anti-MASLD potential of ECG isolated from Hibiscus leaves on abnormal lipid and glucose metabolism in hepatocytes. First, oleic acid (OA) was used as an experimental model to induce lipid dysmetabolism in human primary hepatocytes. Treatment with ECG can significantly (p < 0.05) reduce the OA-induced cellular lipid accumulation. Nile red staining revealed, compared to the OA group, the inhibition percentages of 29, 61, and 82% at the tested doses of ECG, respectively. The beneficial effects of ECG were associated with the downregulation of SREBPs/HMGCR and upregulation of PPARα/CPT1 through targeting AMPK. Also, ECG at 0.4 µM produced a significant (p < 0.01) decrease in oxidative stress by 83%, and a marked (p < 0.05) increase in glycogen synthesis by 145% on the OA-exposed hepatocytes with insulin signaling blockade. Mechanistic assays indicated lipid and glucose metabolic homeostasis of ECG might be mediated via regulation of lipogenesis, fatty acid β-oxidation, and insulin resistance, as confirmed by an AMPK inhibitor. These results suggest ECG is a dual modulator of lipid and carbohydrate dysmetabolism in hepatocytes. Full article
Show Figures

Figure 1

30 pages, 3316 KB  
Systematic Review
Preclinical Evidence of Curcuma longa Linn. as a Functional Food in the Management of Metabolic Syndrome: A Systematic Review and Meta-Analysis of Rodent Studies
by Samuel Abiodun Kehinde, Zahid Naeem Qaisrani, Rinrada Pattanayaiying, Wai Phyo Lin, Bo Bo Lay, Khin Yadanar Phyo, Myat Mon San, Nurulhusna Awaeloh, Sasithon Aunsorn, Ran Kitkangplu and Sasitorn Chusri
Biomedicines 2025, 13(8), 1911; https://doi.org/10.3390/biomedicines13081911 - 5 Aug 2025
Viewed by 864
Abstract
Background/Objectives: Metabolic syndrome (MetS) is a multifactorial condition characterized by abdominal obesity, dyslipidemia, insulin resistance, hypertension, and chronic inflammation. As its global prevalence rises, there is increasing interest in natural, multi-targeted approaches to manage MetS. Curcuma longa Linn. (turmeric), especially its active [...] Read more.
Background/Objectives: Metabolic syndrome (MetS) is a multifactorial condition characterized by abdominal obesity, dyslipidemia, insulin resistance, hypertension, and chronic inflammation. As its global prevalence rises, there is increasing interest in natural, multi-targeted approaches to manage MetS. Curcuma longa Linn. (turmeric), especially its active compound curcumin, has shown therapeutic promise in preclinical studies. This systematic review and meta-analysis evaluated the effects of Curcuma longa and its derivatives on MetS-related outcomes in rodent models. Methods: A comprehensive search was conducted across six databases (PubMed, Scopus, AMED, LILACS, MDPI, and Google Scholar), yielding 47 eligible in vivo studies. Data were extracted on key metabolic, inflammatory, and oxidative stress markers and analyzed using random-effects models. Results were presented as mean differences (MD) with 95% confidence intervals (CI). Results: Meta-analysis showed that curcumin significantly reduced body weight (rats: MD = −42.10; mice: MD = −2.91), blood glucose (rats: MD = −55.59; mice: MD = −28.69), triglycerides (rats: MD = −70.17; mice: MD = −24.57), total cholesterol (rats: MD = −35.77; mice: MD = −52.61), and LDL cholesterol (rats: MD = −69.34; mice: MD = −42.93). HDL cholesterol increased significantly in rats but not in mice. Inflammatory cytokines were markedly reduced, while oxidative stress improved via decreased malondialdehyde (MDA) and elevated superoxide dismutase (SOD) and catalase (CAT) levels. Heterogeneity was moderate to high, primarily due to variations in curcumin dosage (ranging from 10 to 500 mg/kg) and treatment duration (2 to 16 weeks) across studies. Conclusions: This preclinical evidence supports Curcuma longa as a promising functional food component for preventing and managing MetS. Its multi-faceted effects warrant further clinical studies to validate its translational potential. Full article
(This article belongs to the Special Issue The Role of Cytokines in Health and Disease: 3rd Edition)
Show Figures

Graphical abstract

21 pages, 20797 KB  
Article
The Urate-Lowering Effects and Renal Protective Activity of Iridoid Glycosides from Paederia foetida in Rats with Hyperuricemia-Induced Kidney Injury: A Pharmacological and Molecular Docking Study
by Haifeng Zhou, Xinyi Yue, Longhai Shen, Lifeng Wu, Xiaobo Li and Tong Wu
Molecules 2025, 30(15), 3098; https://doi.org/10.3390/molecules30153098 - 24 Jul 2025
Viewed by 706
Abstract
(1) Background: The urate-lowering effects of three iridoid glycosides, which are paederosidic acid, paederosidic acid methyl ester, and paederoside, isolated from Paederia foetida and the protection they provide against hyperuricemia-induced kidney injury were investigated in a rat model. (2) Methods: A hyperuricemia (HUA) [...] Read more.
(1) Background: The urate-lowering effects of three iridoid glycosides, which are paederosidic acid, paederosidic acid methyl ester, and paederoside, isolated from Paederia foetida and the protection they provide against hyperuricemia-induced kidney injury were investigated in a rat model. (2) Methods: A hyperuricemia (HUA) rat model was established in Sprague-Dawley (SD) rats through intraperitoneal potassium oxonate (PO) and intragastrical adenine for 2 weeks. Subsequently, rats in the pharmaceutical intervention groups received corresponding drug treatments at a concentration of 40 mg/kg/day, maintained consistently for 7 days. (3) Results: The results showed that three compounds reduced serum urate (SU), creatinine (CRE), and blood urea nitrogen (BUN) levels and that the urinary excretion levels of uric acid, urine urea nitrogen, and creatinine increased. Furthermore, the administration of three iridoid glycosides enhanced renal filtration capacity, as demonstrated by the elevated 24 h creatinine clearance rate (CCR) and 24 h uric acid clearance rate (CUA); improved the fraction excretion of uric acid (FEUA); and attenuated renal damage. Finally, three iridoid glycosides promoted uric acid excretion in HUA rats by downregulating URAT1 and GLUT9 and upregulating ABCG2, OAT1, and OAT3. Moreover, the molecular docking results further corroborated the finding that the three compounds can bind to multiple sites of the uric acid transporter via hydrogen, P-π, and hydrophobic bonds. (4) Conclusions: The three iridoid glycosides were found to lower SU levels by increasing uric acid excretion. They are promising natural products for the prevention of HUA and HUA-induced kidney injury. Full article
Show Figures

Figure 1

24 pages, 2213 KB  
Article
Triple-Loaded Nanoemulsions Incorporating Coffee Extract for the Photoprotection of Curcumin and Capsaicin: Experimental and Computational Evaluation
by Nuttapol Boonrueang, Siripat Chaichit, Wipawadee Yooin, Siriporn Okonogi, Kanokwan Kiattisin and Chadarat Ampasavate
Pharmaceutics 2025, 17(7), 926; https://doi.org/10.3390/pharmaceutics17070926 - 17 Jul 2025
Viewed by 907
Abstract
Background/Objectives: This study aims to present a strategic approach to enhancing the photostability and antioxidative resilience of curcumin and capsaicin by integrating selected natural stabilizers within a nanoemulsion-based delivery system. Methods: Coffee extract (Coffea arabica Linn.), along with its active [...] Read more.
Background/Objectives: This study aims to present a strategic approach to enhancing the photostability and antioxidative resilience of curcumin and capsaicin by integrating selected natural stabilizers within a nanoemulsion-based delivery system. Methods: Coffee extract (Coffea arabica Linn.), along with its active components and vitamin E-containing natural oils, was assessed in terms of improving the photostabilizing and antioxidative retention abilities of curcumin and capsaicin. An optimized ratio of the active mixture was then loaded into a nanoformulation. Results: The analysis of active contents with validated high-performance liquid chromatography (HPLC), ferric reducing antioxidant power (FRAP), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays confirmed the stabilization enhancement after irradiation with UV and white light for 72,000–84,000 lux hours. The optimized combination of coffee extract with turmeric and chili mixtures loaded into the optimized nanoemulsion enhanced the half-lives (T1/2) of curcumin and capsaicin by 416% and 390%, respectively. The interactions of curcumin and capsaicin with caffeine and chlorogenic acid were elucidated using computational calculations. Interaction energies (Eint), HOMO-LUMO energy gap (HLG) analysis, and global reactivity descriptors revealed hydrogen bonding interactions be-tween capsaicin and chlorogenic acid, as well as between curcumin and caffeine. Conclusions: By leveraging the synergistic antioxidative properties of coffee extract and vitamin E within a nanoemulsion matrix, this study overcomes the intrinsic stability limitations of curcumin and capsaicin, offering a robust platform for future pharmaceutical and nutraceutical applications. Full article
Show Figures

Graphical abstract

16 pages, 1978 KB  
Article
Comparative Analysis of Anti-Inflammatory Flavones in Chrysanthemum indicum Capitula Using Primary Cultured Rat Hepatocytes
by Keita Minamisaka, Airi Fujii, Cheng Li, Yuto Nishidono, Saki Shirako, Teruhisa Kawamura, Yukinobu Ikeya and Mikio Nishizawa
Molecules 2025, 30(14), 2996; https://doi.org/10.3390/molecules30142996 - 16 Jul 2025
Viewed by 931
Abstract
The capitula of Chrysanthemum indicum Linné or C. morifolium Ramatuelle (Kikuka in Japanese) are included in several formulae of Kampo medicines (traditional Japanese medicines), such as Chotosan, which is used for headache and dizziness. Luteolin, the principal constituent of C. indicum [...] Read more.
The capitula of Chrysanthemum indicum Linné or C. morifolium Ramatuelle (Kikuka in Japanese) are included in several formulae of Kampo medicines (traditional Japanese medicines), such as Chotosan, which is used for headache and dizziness. Luteolin, the principal constituent of C. indicum, has antioxidant and anti-inflammatory activities. However, the effects of other flavonoids on this crude drug have not yet been thoroughly investigated. To evaluate and compare anti-inflammatory effects, we used primary cultured rat hepatocytes, which produce proinflammatory mediators, such as nitric oxide (NO) and proinflammatory cytokines, in response to interleukin (IL)-1β. Eight derivatives of 5,7-dihydroxyflavone were purified and identified in the ethyl acetate-soluble fraction of a C. indicum capitulum extract: luteolin (Compound 1), apigenin (2), diosmetin (3), 5,7-dihydroxy-3′,4′,5′-trimethoxyflavone (4), acacetin (5), eupatilin (6), jaceosidin (7), and 6-methoxytricin (8). Luteolin is the most abundant compound in this fraction. All compounds significantly suppressed NO production in hepatocytes, with apigenin and acacetin showing the greatest efficacy. The comparison of the IC50 values of the inhibition of NO production suggests that substitutions by hydroxyl and methoxy groups at the C-3′ and C-4′ positions of 5,7-dihydroxyflavone may be at least essential for the suppression of NO production. In hepatocytes, acacetin and luteolin decreased the levels of mRNAs encoding inducible nitric oxide synthase (iNOS), proinflammatory cytokines, including tumor necrosis factor, IL-6, and type 1 IL-1 receptor, which regulates inflammatory responses. Based on the comparison of the IC50 values and the content, luteolin, jaceosidin, and diosmetin may be responsible for the anti-inflammatory effects of C. indicum capitula. Full article
Show Figures

Graphical abstract

21 pages, 1484 KB  
Review
White Mulberry Plant Extracts in Cardiovascular Prevention: An Update
by Valentina Trimarco, Paola Gallo, Seyedali Ghazihosseini, Alessia Izzo, Paola Ida Rozza, Alessandra Spinelli, Stefano Cristiano, Carlo De Rosa, Felicia Rozza and Carmine Morisco
Nutrients 2025, 17(14), 2262; https://doi.org/10.3390/nu17142262 - 9 Jul 2025
Cited by 2 | Viewed by 3250
Abstract
This review examines the principal preclinical and clinical findings assessing the effects of White Mulberry (Morus Alba Linn) plant extract supplementation currently available. Since it is one of the most cultivated species of mulberry tree, it has caught the eye of [...] Read more.
This review examines the principal preclinical and clinical findings assessing the effects of White Mulberry (Morus Alba Linn) plant extract supplementation currently available. Since it is one of the most cultivated species of mulberry tree, it has caught the eye of researchers for its rich phytochemical profile as well as multi-purpose usages. The leaves, fruits, and other parts of the White Mulberry plant take on the role of valuable sources of bioactive compounds, including flavonoids, phenolic acids, terpenoids, and alkaloids. These secondary metabolites have a wide range of health benefits, such as antioxidant, anti-inflammatory, and antidiabetic properties. Commonly used as dietary supplements, White Mulberry plant extracts have shown their great capacity in improving metabolic profile, decreasing the cardiovascular risk, and supporting overall health. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

Back to TopTop