Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (64)

Search Parameters:
Keywords = LEO targets

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3803 KB  
Article
Optimization of a Walker Constellation Using an RBF Surrogate Model for Space Target Awareness
by You Fu, Zhaojing Xu, Youchen Fan, Liu Yi, Zhao Ma, Yuhai Li and Shengliang Fang
Aerospace 2025, 12(10), 933; https://doi.org/10.3390/aerospace12100933 - 16 Oct 2025
Viewed by 590
Abstract
Designing Low Earth Orbit (LEO) constellations for the continuous, collaborative observation of space objects in MEO/GEO is a complex optimization task, frequently limited by prohibitive computational costs. This study introduces an efficient surrogate-based framework to overcome this challenge. Our approach integrates Optimized Latin [...] Read more.
Designing Low Earth Orbit (LEO) constellations for the continuous, collaborative observation of space objects in MEO/GEO is a complex optimization task, frequently limited by prohibitive computational costs. This study introduces an efficient surrogate-based framework to overcome this challenge. Our approach integrates Optimized Latin Hypercube Sampling (OLHS) with a Radial Basis Function (RBF) model to minimize the required number of satellites. In a comprehensive case study targeting 18 diverse space objects—including communication satellites in GEO (e.g., EUTELSAT, ANIK) and navigation satellites in MEO/IGSO from GPS, Galileo, and BeiDou constellations—the method proved highly effective and scalable. It successfully designed a 208-satellite Walker constellation that provides 100% continuous coverage over a 36-h period. Furthermore, the design ensures that each target is simultaneously observed by at least three satellites at all times. A key finding is the method’s remarkable efficiency and scalability: the optimal solution for this larger problem was found using only 46 high-fidelity function evaluations, maintaining a computational time that was 5–8 times faster than traditional global optimization algorithms. This research demonstrates that surrogate-assisted optimization can drastically lower the computational barrier in constellation design, offering a powerful tool for building cost-effective and robust Space Situational Awareness (SSA) systems. Full article
(This article belongs to the Special Issue Advances in Space Surveillance and Tracking)
Show Figures

Figure 1

25 pages, 3867 KB  
Article
Edge Computing Task Offloading Algorithm Based on Distributed Multi-Agent Deep Reinforcement Learning
by Hui Li, Zhilong Zhu, Yingying Li, Wanwei Huang and Zhiheng Wang
Electronics 2025, 14(20), 4063; https://doi.org/10.3390/electronics14204063 - 15 Oct 2025
Viewed by 1463
Abstract
As an important supplement to ground computing, edge computing can effectively alleviate the computational burden on ground systems. In the context of integrating edge computing with low-Earth-orbit satellite networks, this paper proposes an edge computing task offloading algorithm based on distributed multi-agent deep [...] Read more.
As an important supplement to ground computing, edge computing can effectively alleviate the computational burden on ground systems. In the context of integrating edge computing with low-Earth-orbit satellite networks, this paper proposes an edge computing task offloading algorithm based on distributed multi-agent deep reinforcement learning (DMADRL) to address the challenges of task offloading, including low transmission rates, low task completion rates, and high latency. Firstly, a Ground–UAV–LEO (GUL) three-layer architecture is constructed to improve offloading transmission rate. Secondly, the task offloading problem is decomposed into two sub-problems: offloading decisions and resource allocation. The former is addressed using a distributed multi-agent deep Q-network, where the problem is formulated as a Markov decision process. The Q-value estimation is iteratively optimized through the online and target networks, enabling the agent to make autonomous decisions based on ground and satellite load conditions, utilize the experience replay buffer to store samples, and achieve global optimization via global reward feedback. The latter employs the gradient descent method to dynamically update the allocation strategy based on the accumulated task data volume and the remaining resources, while adjusting the allocation through iterative convergence error feedback. Simulation results demonstrate that the proposed algorithm increases the average transmission rate by 21.7%, enhances the average task completion rate by at least 22.63% compared with benchmark algorithms, and reduces the average task processing latency by at least 11.32%, thereby significantly improving overall system performance. Full article
Show Figures

Figure 1

19 pages, 2205 KB  
Article
Final Implementation and Performance of the Cheia Space Object Tracking Radar
by Călin Bîră, Liviu Ionescu and Radu Hobincu
Remote Sens. 2025, 17(19), 3322; https://doi.org/10.3390/rs17193322 - 28 Sep 2025
Viewed by 629
Abstract
This paper presents the final implemented design and performance evaluation of the ground-based C-band Cheia radar system, developed to enhance Romania’s contribution to the EU Space Surveillance and Tracking (EU SST) network. All data used for performance analysis are real-time, real-life measurements of [...] Read more.
This paper presents the final implemented design and performance evaluation of the ground-based C-band Cheia radar system, developed to enhance Romania’s contribution to the EU Space Surveillance and Tracking (EU SST) network. All data used for performance analysis are real-time, real-life measurements of true spatial test objects orbiting Earth. The radar is based on two decommissioned 32 m satellite communication antennas already present at the Cheia Satellite Communication Center, that were retrofitted for radar operation in a quasi-monostatic architecture. A Linear Frequency Modulated Continuous Wave (LFMCW) Radar design was implemented, using low transmitted power (2.5 kW) and advanced software-defined signal processing for detection and tracking of Low Earth Orbit (LEO) targets. System validation involved dry-run acceptance tests and calibration campaigns with known reference satellites. The radar demonstrated accurate measurements of range, Doppler velocity, and angular coordinates, with the capability to detect objects with radar cross-sections as low as 0.03 m2 at slant ranges up to 1200 km. Tracking of medium and large Radar Cross Section (RCS) targets remained robust under both fair and adverse weather conditions. This work highlights the feasibility of re-purposing legacy satellite infrastructure for SST applications. The Cheia radar provides a cost-effective, EUSST-compliant performance solution using primarily commercial off-the-shelf components. The system strengthens the EU SST network while demonstrating the advantages of LFMCW radar architectures in electromagnetically congested environments. Full article
Show Figures

Figure 1

15 pages, 5530 KB  
Article
Illegal Wildlife Trade in Al-Madinah, Saudi Arabia: Species, Prices, and Conservation Risks
by Abdulhadi Aloufi, Ehab Eid and Mohamed Alamri
Diversity 2025, 17(9), 615; https://doi.org/10.3390/d17090615 - 1 Sep 2025
Viewed by 3023
Abstract
Illegal wildlife trade is a major global driver of biodiversity loss, shaped by high consumer demand, transboundary networks, and uneven enforcement. In the Middle East, particularly the Gulf Cooperation Council (GCC) region, factors such as high purchasing power, cultural traditions (e.g., falconry, prestige [...] Read more.
Illegal wildlife trade is a major global driver of biodiversity loss, shaped by high consumer demand, transboundary networks, and uneven enforcement. In the Middle East, particularly the Gulf Cooperation Council (GCC) region, factors such as high purchasing power, cultural traditions (e.g., falconry, prestige pets), and expanding digital marketplaces sustain both legal and illegal flows. We present a nine-year (2017–2025) assessment based on weekly, repeated field surveys at the Friday Market, adjacent pet shops, and private farms, complemented by systematic monitoring of online advertisements on Haraj.com.sa. We recorded 1063 individual animals across 88 species, birds (39.4%), reptiles (52.0%), and mammals (8.6%), and analyzed prices, conservation status, and venue-specific patterns. The most frequently recorded taxa included the white-eared bulbul (Pycnonotus leucotis), common slider (Trachemys scripta), and Egyptian mastigure (Uromastyx aegyptia). Mammals, though fewer in number, commanded the highest prices, particularly cheetahs (Acinonyx jubatus) and lions (Panthera leo). About 26% of species were IUCN-listed as threatened, with CITES Appendix I taxa fetching higher prices. Findings underscore the need for real-time monitoring, targeted enforcement, and cross-border collaboration to address escalating trade in rare and protected species. Full article
(This article belongs to the Section Biodiversity Conservation)
Show Figures

Figure 1

23 pages, 26515 KB  
Article
LEO Navigation Augmentation Signal-Based Passive Radar: System Model and Performance Analysis
by Mingxu Zhang, Bin Sun and Qilei Zhang
Remote Sens. 2025, 17(17), 3021; https://doi.org/10.3390/rs17173021 - 31 Aug 2025
Viewed by 1631
Abstract
As the next generation of time–space infrastructure, low-earth-orbit navigation augmentation (LEO-NA) technology has become a hot research topic, since it can overcome the vulnerabilities and limitations of global navigation satellite systems (GNSSs). Meanwhile, a LEO-NA signal can serve as a better cooperative illuminator [...] Read more.
As the next generation of time–space infrastructure, low-earth-orbit navigation augmentation (LEO-NA) technology has become a hot research topic, since it can overcome the vulnerabilities and limitations of global navigation satellite systems (GNSSs). Meanwhile, a LEO-NA signal can serve as a better cooperative illuminator to build more powerful passive radar (PR). This paper proposes and investigates a new and promising PR system, LEO-NA signal-based PR (LNAS-PR), which utilizes LEO-NA signals as the illuminator and utilizes an unmanned aerial vehicle (UAV) to carry the receiver. Taking advantage of higher landing power and global coverage, LNAS-PR can be used to detect maritime targets with benefits of low cost and high efficiency. However, new technical challenges of information capture and processing need to be dealt with. Therefore, this paper presents the system model, signal model, and performance analyses within a maritime monitoring scenario, providing a foundation for future in-depth research. Full article
Show Figures

Figure 1

26 pages, 6806 KB  
Article
Fine Recognition of MEO SAR Ship Targets Based on a Multi-Level Focusing-Classification Strategy
by Zhaohong Li, Wei Yang, Can Su, Hongcheng Zeng, Yamin Wang, Jiayi Guo and Huaping Xu
Remote Sens. 2025, 17(15), 2599; https://doi.org/10.3390/rs17152599 - 26 Jul 2025
Viewed by 759
Abstract
The Medium Earth Orbit (MEO) spaceborne Synthetic Aperture Radar (SAR) has great coverage ability, which can improve maritime ship target surveillance performance significantly. However, due to the huge computational load required for imaging processing and the severe defocusing caused by ship motions, traditional [...] Read more.
The Medium Earth Orbit (MEO) spaceborne Synthetic Aperture Radar (SAR) has great coverage ability, which can improve maritime ship target surveillance performance significantly. However, due to the huge computational load required for imaging processing and the severe defocusing caused by ship motions, traditional ship recognition conducted in focused image domains cannot process MEO SAR data efficiently. To address this issue, a multi-level focusing-classification strategy for MEO SAR ship recognition is proposed, which is applied to the range-compressed ship data domain. Firstly, global fast coarse-focusing is conducted to compensate for sailing motion errors. Then, a coarse-classification network is designed to realize major target category classification, based on which local region image slices are extracted. Next, fine-focusing is performed to correct high-order motion errors, followed by applying fine-classification applied to the image slices to realize final ship classification. Equivalent MEO SAR ship images generated by real LEO SAR data are utilized to construct training and testing datasets. Simulated MEO SAR ship data are also used to evaluate the generalization of the whole method. The experimental results demonstrate that the proposed method can achieve high classification precision. Since only local region slices are used during the second-level processing step, the complex computations induced by fine-focusing for the full image can be avoided, thereby significantly improving overall efficiency. Full article
(This article belongs to the Special Issue Advances in Remote Sensing Image Target Detection and Recognition)
Show Figures

Graphical abstract

19 pages, 2272 KB  
Article
Antimicrobial Activity of Lavender Essential Oil from Lavandula angustifolia Mill.: In Vitro and In Silico Evaluation
by Sylvia Stamova, Neli Ermenlieva, Gabriela Tsankova and Emilia Georgieva
Antibiotics 2025, 14(7), 656; https://doi.org/10.3390/antibiotics14070656 - 28 Jun 2025
Cited by 5 | Viewed by 6252
Abstract
The increasing prevalence of antimicrobial resistance (AMR) demands novel strategies, including the use of plant-derived agents. This study investigates the chemical profile and in vitro antimicrobial activity of essential oil from Lavandula angustifolia (LEO), cultivated in Northeastern Bulgaria. Gas chromatography–mass spectrometry (GC-MS) analysis [...] Read more.
The increasing prevalence of antimicrobial resistance (AMR) demands novel strategies, including the use of plant-derived agents. This study investigates the chemical profile and in vitro antimicrobial activity of essential oil from Lavandula angustifolia (LEO), cultivated in Northeastern Bulgaria. Gas chromatography–mass spectrometry (GC-MS) analysis confirmed the presence of a linalool/linalyl acetate chemotype, characteristic of high-quality lavender oil. LEO demonstrated significant inhibitory activity against Escherichia coli ATCC 25922, with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 0.31% (v/v) and moderate to weak activity against other Gram-positive and fungal strains. Time–kill assays revealed a concentration-dependent bactericidal effect on E. coli. The addition of LEO at subinhibitory concentrations increased the inhibition zones for all antibiotics. In silico analysis identified functional protein clusters potentially modulated by LEO constituents, including targets related to membrane integrity and metabolic regulation. The findings indicate the potential of lavender essential oil as a natural antimicrobial adjuvant; however, additional in vivo and clinical investigations are necessary to validate its therapeutic use. Furthermore, molecular docking analysis revealed a high binding affinity of linalool and linalyl acetate towards the FabI protein of E.coli, suggesting a potential inhibitory mechanism at the molecular level. Full article
Show Figures

Figure 1

27 pages, 1004 KB  
Article
Satellite Constellation Optimization for Emitter Geolocalization Missions Based on Angle of Arrival Techniques
by Marcello Asciolla, Rodrigo Blázquez-García, Angela Cratere, Vittorio M. N. Passaro and Francesco Dell’Olio
Sensors 2025, 25(11), 3376; https://doi.org/10.3390/s25113376 - 27 May 2025
Cited by 2 | Viewed by 1210
Abstract
The context of this study is the geolocation of signal emitters on the Earth’s surface through satellite platforms able to perform Angle of Arrival (AOA) measurements. This paper provides the theoretical framework to solve the optimization problem for the orbital deployment of the [...] Read more.
The context of this study is the geolocation of signal emitters on the Earth’s surface through satellite platforms able to perform Angle of Arrival (AOA) measurements. This paper provides the theoretical framework to solve the optimization problem for the orbital deployment of the satellites minimizing the variance on the position error estimation with constraints on the line of sight (LOS). The problem is theoretically formulated for an arbitrary number of satellites in Low Earth Orbit (LEO) and target pointing attitude, focusing on minimizing the Position Dilution of Precision (PDOP) metric, providing a methodology for translating mission design requirements into problem formulation. An exemplary numerical application is presented for the operative case of the placement of a second satellite after a first one is launched. Simulation results are on angles of true anomaly, right ascension of the ascending node, and spacing angle, while accounting for orbital radius and emitter latitude. New insights on trends, parameter dependencies, and properties of symmetry and anti-symmetry are presented. The topic is of interest for new technological demonstrators based on CubeSats with AOA payload. Civil applications of interest are on interceptions of non-cooperative signals in activities of spectrum monitoring or search and rescue. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

25 pages, 16504 KB  
Article
High-Resolution, Low-Latency Multi-Satellite Precipitation Merging by Correcting with Weather Radar Network Data
by Seungwoo Baek, Soorok Ryu, Choeng-Lyong Lee, Francisco J. Tapiador and Gyuwon Lee
Remote Sens. 2025, 17(10), 1702; https://doi.org/10.3390/rs17101702 - 13 May 2025
Cited by 1 | Viewed by 2109
Abstract
Satellite-based precipitation products (SPPs) have become a crucial source of quantitative global precipitation data. Geostationary Orbit (GEO) satellites provide high spatiotemporal resolution but tend to have lower accuracy, while Low Earth Orbit (LEO) satellites provide more precise precipitation estimates but suffer from lower [...] Read more.
Satellite-based precipitation products (SPPs) have become a crucial source of quantitative global precipitation data. Geostationary Orbit (GEO) satellites provide high spatiotemporal resolution but tend to have lower accuracy, while Low Earth Orbit (LEO) satellites provide more precise precipitation estimates but suffer from lower temporal resolution due to their limited observation frequency. This study proposes an efficient algorithm for integrating and enhancing precipitation estimates from multiple satellite observations. The target domain includes the Full Disk (FD) and the extended East Asia (EA) regions, both of which are observable by GEO satellites, such as Himawari-8, serving as the GEO platform in this study. The algorithm involves four steps: pre-data preparation, LEO morphing, adjustment, and final merging. It produces Early and Late composite products with 10-min temporal and up to 2 km spatial resolution and significantly reduces latency compared to IMERG. Specifically, the Early and Late products can be generated with approximate latencies of 90 min and 270 min, respectively—much faster than Integrated Multi-satellite Retrievals for GPM (IMERG)’s Early (4-h) and Late (14-h) products. A key feature of the proposed method is the use of accuracy-based weighting derived from radar-based validation, enabling dynamic merging that reflects the reliability of each satellite observation. Statistical validation using Global Telecommunication System (GTS) precipitation data confirmed the positive impact of the proposed bias correction and merging method. In particular, the Late product achieved accuracy comparable to or higher than that of IMERG Early and IMERG Late, despite its significantly shorter latency. However, its accuracy was still lower than that of IMERG Final, which benefits from additional gauge-based correction but is released with a delay of several months. Full article
(This article belongs to the Special Issue Precipitation Estimations Based on Satellite Observations)
Show Figures

Figure 1

32 pages, 12317 KB  
Article
Analysis of Observation Modes for Space-Based Inverse Synthetic Aperture Lidar Based on Target Characteristics
by Ruimin Shen, Jingpeng Zhang, Lei Dong, Zhenzhen Zheng and Haiying Hu
Aerospace 2025, 12(3), 236; https://doi.org/10.3390/aerospace12030236 - 14 Mar 2025
Viewed by 1095
Abstract
With the increasing congestion in orbital environments, on-orbit observation has become critical for spacecraft safety. This study investigated the observation performance of space-based inverse synthetic aperture lidar (ISAL) for monitoring on-orbit targets and space debris in geostationary Earth orbit (GEO) and low Earth [...] Read more.
With the increasing congestion in orbital environments, on-orbit observation has become critical for spacecraft safety. This study investigated the observation performance of space-based inverse synthetic aperture lidar (ISAL) for monitoring on-orbit targets and space debris in geostationary Earth orbit (GEO) and low Earth orbit (LEO). Using STK simulations, the performances under fly-around and fly-by scenarios were evaluated based on three key parameters: minimum imaging time, pulse repetition frequency (PRF), and signal-to-noise ratio (SNR). The results reveal that while the GEO provided a high PRF and SNR for fly-around observations, longer imaging times limited its practical application, making the fly-by mode more suitable. In contrast, the LEO provided stable fly-around observations with lower system requirements, but the fly-by mode suffered from high PRF demands and a low SNR due to the high relative angular velocity of the target. This study further simulated fly-by observations for actual space debris in both the GEO and LEO, validating ISAL’s performance under different conditions. These findings offer valuable insights into the selection of observation modes and the optimization of ISAL’s performance in on-orbit target and debris monitoring, serving as a foundation for future space-based monitoring systems. Full article
(This article belongs to the Special Issue Asteroid Impact Avoidance)
Show Figures

Figure 1

9 pages, 8115 KB  
Proceeding Paper
A Hybrid Propulsion-Based Mission Architecture for the Removal of Debris from Low-Earth Orbit
by Sasi Kiran Palateerdham, Abdul Rahman, Emiliano Ortore and Antonella Ingenito
Eng. Proc. 2025, 90(1), 4; https://doi.org/10.3390/engproc2025090004 - 7 Mar 2025
Viewed by 1005
Abstract
Satellite technology has advanced with rising demand from the service sector, but increased accessibility also raises risks to the orbital environment. Space debris in low-Earth orbit (LEO) poses a major threat to satellite operations and access to space. Potential solutions for debris removal [...] Read more.
Satellite technology has advanced with rising demand from the service sector, but increased accessibility also raises risks to the orbital environment. Space debris in low-Earth orbit (LEO) poses a major threat to satellite operations and access to space. Potential solutions for debris removal include using an onboard propulsion module to deorbit a satellite or employing a robotic arm on a “chaser” satellite to capture and remove debris. This study examines active debris removal from LEO at 2000 km altitude, focusing on a target debris weight of 100 kg and a chaser-satellite mass of 100 kg. The mission’s velocity change was calculated using the Hohmann transfer for different trajectories, and propellant requirements were derived using Tsiolkovsky’s rocket equation: ΔV = Isp × g0 × ln(mf/mi). Several scenarios were considered to assess the mission’s feasibility with respect to debris removal. Full article
Show Figures

Figure 1

26 pages, 8455 KB  
Article
Re-Entry Comparison of a Spacecraft in Low Earth Orbit: Propulsion-Assisted vs. Non-Propulsive Configurations
by Antonio Sannino, Dylan De Prisco, Sergio Cassese, Stefano Mungiguerra, Anselmo Cecere and Raffaele Savino
Aerospace 2025, 12(2), 79; https://doi.org/10.3390/aerospace12020079 - 23 Jan 2025
Cited by 2 | Viewed by 3645
Abstract
This paper presents a mission concept for a Low Earth Orbit (LEO) satellite equipped with a payload for space experiments, designed to be recovered on Earth post-mission. The focus of this study is on developing a mission concept with fast de-orbit and accurate [...] Read more.
This paper presents a mission concept for a Low Earth Orbit (LEO) satellite equipped with a payload for space experiments, designed to be recovered on Earth post-mission. The focus of this study is on developing a mission concept with fast de-orbit and accurate landing capability for a small satellite payload. Two re-entry configurations are analyzed: one employing a deployable aero-brake heat shield for aerodynamic descent and another integrating a propulsion system. Aerodynamic analysis of the capsule, including drag coefficient and stability at relevant altitudes, was conducted using the Direct Simulation Monte Carlo (DSMC) method. A trade-off analysis, accounting for uncertainties such as CD, atmospheric density, and ignition timing, revealed significant differences in mission profiles. A propulsion system providing a ΔV of approximately 100 m/s reduces descent time from 54 days (aerodynamic-only re-entry) to under 1 h, without altering trajectory. Drag-related uncertainties contribute to a landing dispersion of ~100 km, while a ±1% error in total impulse increases dispersion to 400 km. A monopropellant rocket engine was preliminarily designed, meeting constraints such as catalytic chamber pressure and performance targets. The resulting thruster, weighing under 4 kg and contained within a 250 mm-high, 350 mm-diameter cylinder, supports three potential component layouts. Full article
(This article belongs to the Special Issue Space Propulsion: Advances and Challenges (3rd Volume))
Show Figures

Figure 1

25 pages, 9870 KB  
Article
Development of Piezoelectric Inertial Rotary Motor for Free-Space Optical Communication Systems
by Laurynas Šišovas, Andrius Čeponis, Dalius Mažeika and Sergejus Borodinas
Micromachines 2024, 15(12), 1495; https://doi.org/10.3390/mi15121495 - 14 Dec 2024
Cited by 2 | Viewed by 1294
Abstract
This paper presents the design, development, and investigation of a novel piezoelectric inertial motor whose target application is the low Earth orbit (LEO) temperature conditions. The motor utilizes the inertial stick–slip principle, driven by the first bending mode of three piezoelectric bimorph plates, [...] Read more.
This paper presents the design, development, and investigation of a novel piezoelectric inertial motor whose target application is the low Earth orbit (LEO) temperature conditions. The motor utilizes the inertial stick–slip principle, driven by the first bending mode of three piezoelectric bimorph plates, and is compact and lightweight, with a total volume of 443 cm3 and a mass of 28.14 g. Numerical simulations and experimental investigations were conducted to assess the mechanical and electromechanical performance of the motor in a temperature range from −20 °C to 40 °C. The results show that the motor’s resonant frequency decreases from 12,810 Hz at −20 °C to 12,640 Hz at 40 °C, with a total deviation of 170 Hz. The displacement amplitude increased from 12.61 μm to 13.31 μm across the same temperature range, indicating an improved mechanical response at higher temperatures. The motor achieved a maximum angular speed up to 1200 RPM and a stall torque of 13.1 N·mm at an excitation voltage amplitude of 180 Vp-p. The simple and scalable design, combined with its stability under varying temperature conditions, makes it well suited for small satellite applications, particularly in precision positioning tasks such as satellite orientation and free-space optical (FSO) communications. Full article
(This article belongs to the Special Issue Advances in Ultrasonic Motors)
Show Figures

Figure 1

18 pages, 6204 KB  
Article
An Integrity Monitoring Method for Navigation Satellites Based on Multi-Source Observation Links
by Jie Xin, Dongxia Wang and Kai Li
Remote Sens. 2024, 16(23), 4574; https://doi.org/10.3390/rs16234574 - 6 Dec 2024
Cited by 3 | Viewed by 1201
Abstract
The BeiDou-3 navigation satellite system (BDS-3) has officially provided positioning, navigation, and timing (PNT) services to global users since 31 July 2020. With the application of inter-satellite link technology, global integrity monitoring becomes possible. Nevertheless, the content of integrity monitoring is still limited [...] Read more.
The BeiDou-3 navigation satellite system (BDS-3) has officially provided positioning, navigation, and timing (PNT) services to global users since 31 July 2020. With the application of inter-satellite link technology, global integrity monitoring becomes possible. Nevertheless, the content of integrity monitoring is still limited by the communication capacity of inter-satellite links and the layout of ground monitoring stations. Low earth orbit (LEO) satellites have advantages in information-carrying rate and kinematic velocity and can be used as satellite-based monitoring stations for navigation satellites. Large numbers of LEO satellites can provide more monitoring data than ground monitoring stations and make it easier to obtain full-arc observation data. A new challenge of redundant data also arises. This study constructs multi-source observation links with satellite-to-ground, inter-satellite, and satellite-based observation data, proposes an integrity monitoring method with optimization of observation links, and verifies the performance of integrity monitoring with different observation links. The experimental results show four findings. (1) Based on the integrity status of BDS-3, the proposed system-level integrity mode can realize full-arc anomaly diagnosis in information and signals according to the observation conditions of the target satellite. Apart from basic navigation messages and satellite-based augmentation messages, autonomous messages and inter-satellite ranging data can be used to evaluate the state of the target satellite. (2) For a giant LEO constellation, only a small number of LEO satellites need to be selected to construct a minimum satellite-based observation unit that can realize multiple returns of navigation messages and reduce the redundancy of observation data. With the support of 12 and 30 LEO satellites, the minimum number of satellite-based observation links is 1 and 4, respectively, verifying that a small amount of LEO satellites could be used to construct a minimum satellite-based observation unit. (3) A small number of LEO satellites can effectively improve the observation geometry of the target satellite. An orbit determination observation unit, which consists of chosen satellite-to-ground and/or satellite-based observation links based on observation geometry, is proposed to carry out fast calculations of satellite orbit. If the orbit determination observation unit contains 6 satellite-to-ground monitoring links and 6/12/60 LEO satellites, the value of satellite position dilution of precision (SPDOP) is 38.37, 24.60, and 15.71, respectively, with a 92.95%, 95.49%, and 97.12% improvement than the results using 6 satellite-to-ground monitoring links only. (4) LEO satellites could not only expand the resolution of integrity parameters in real time but also augment the service accuracy of the navigation satellite system. As the number of LEO satellites increases, the area where UDRE parameters can be solved in real time is constantly expanding to a global area. The service accuracy is 0.93 m, 0.88 m, and 0.65 m, respectively, with augmentation of 6, 12, and 60 LEO satellites, which is an 8.9%, 13.7%, and 36.3% improvement compared with the results of regional service. LEO satellites have practical application values by improving the integrity monitoring of navigation satellites. Full article
Show Figures

Figure 1

22 pages, 12585 KB  
Article
Preparation and Characterization of Atomic Oxygen-Resistant, Optically Transparent and Dimensionally Stable Copolyimide Films from Fluorinated Monomers and POSS-Substituted Diamine
by Zhenzhong Wang, Xiaolei Wang, Shunqi Yuan, Xi Ren, Changxu Yang, Shujun Han, Yuexin Qi, Duanyi Li and Jingang Liu
Polymers 2024, 16(19), 2845; https://doi.org/10.3390/polym16192845 - 9 Oct 2024
Cited by 5 | Viewed by 1891
Abstract
Optically transparent polyimide (PI) films with good atomic oxygen (AO) resistance have been paid extensive attention as thermal controls, optical substrates for solar cells or other components for low Earth orbit (LEO) space applications. However, for common PI films, it is usually quite [...] Read more.
Optically transparent polyimide (PI) films with good atomic oxygen (AO) resistance have been paid extensive attention as thermal controls, optical substrates for solar cells or other components for low Earth orbit (LEO) space applications. However, for common PI films, it is usually quite difficult to achieve both high optical transparency and AO resistance and maintain the intrinsic thermal stability of the PI films at the same time. In the current work, we aimed to achieve the target by using the copolymerization methodology using the fluorinated dianhydride 9,9-bis(trifluoromethyl)xanthene-2,3,6,7-tetracarboxylic dianhydride (6FCDA), the fluorinated diamine 2,2-bis [4-(4-aminophenoxy)phenyl]hexafluoropropane (BDAF) and the polyhedral oligomeric silsesquioxane (POSS)-containing diamine N-[(heptaisobutyl-POSS)propyl]-3,5-diaminobenzamide (DABA-POSS) as the starting materials. The fluoro-containing monomers were used to endow the PI films with good optical and thermal properties, while the silicon-containing monomer was used to improve the AO resistance of the afforded PI films. Thus, the 6FCDA-based PI copolymers, including 6FCPI-1, 6FCPI-2 and 6FCPI-3, were prepared using a two-step chemical imidization procedure, respectively. For comparison, the analogous PIs, including 6FPI-1, 6FPI-2 and 6FPI-3, were correspondingly developed according to the same procedure except that 6FCDA was replaced by 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA). Two referenced PI homopolymers were prepared from BDAF and 6FDA (PI-ref1) and 6FCDA (PI-ref2), respectively. The experimental results indicated that a good balance among thermal stability, optical transparency, and AO resistance was achieved by the 6FCDA-PI films. For example, the 6FCDA-PI films exhibited good thermal stability with glass transition temperatures (Tg) up to 297.3 °C, good optical transparency with an optical transmittance at a wavelength of 450 nm (T450) higher than 62% and good AO resistance with the erosion yield (Ey) as low as 1.7 × 10−25 cm3/atom at an AO irradiation fluence of 5.0 × 1020 atoms/cm2. The developed 6FCDA-PI films might find various applications in aerospace as solar sails, thermal control blankets, optical components and other functional materials. Full article
(This article belongs to the Special Issue Polymer Thin Films and Their Applications)
Show Figures

Figure 1

Back to TopTop