Antimicrobial Activity of Lavender Essential Oil from Lavandula angustifolia Mill.: In Vitro and In Silico Evaluation
Abstract
1. Introduction
2. Results
2.1. Essential Oil Extraction
2.2. Gas Chromatography–Mass Spectrometry Analysis
2.3. Determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal/Fungicidal Concentration (MBC/MFC)
2.4. Time–Kill Kinetics of LEO Against E. coli and C. albicans
2.5. Modulatory Effect of Lavender Essential Oil on Antibiotic Activity Against E. coli
2.6. In Silico Target Prediction and Protein–Protein Interaction (PPI) Network Analysis
2.6.1. LEO and Ampicillin
2.6.2. LEO and Ceftriaxone
2.6.3. LEO and Meropenem
2.6.4. LEO and Gentamicin
2.6.5. LEO and Ciprofloxacin
2.7. Docking of Linalool and Linalyl Acetate to FabI
3. Discussion
4. Materials and Methods
4.1. Reagents, Media, and Antibiotics
4.2. Essential Oil Extraction
4.3. Chemical Composition Analysis
4.4. Determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal/Fungicidal Concentration (MBC/MFC)
4.5. Time–Kill Kinetics of LEO Against E. coli and C. albicans
4.6. Modulatory Effect of Lavender Essential Oil on Antibiotic Activity Against E. coli
4.7. In Silico Target Prediction and PPI Network Analysis
4.8. Molecular Docking Protocol
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization (WHO). Priority Medicines for Europe and the World; Kaplan, W., Laing, R., Eds.; WHO: Geneva, Switzerland, 2004; Available online: https://iris.who.int/handle/10665/68769?show=full (accessed on 25 August 2023).
- Rehman, M.T.; Faheem, M.; Khan, A.U. An insight into the biophysical characterization of different states of cefotaxime hydrolyzing β-lactamase 15 (CTX-M-15). J. Biomol. Struct. Dyn. 2015, 33, 625–638. [Google Scholar] [CrossRef] [PubMed]
- Muteeb, G.; Rehman, M.T.; Shahwan, M.; Aatif, M. Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review. Pharmaceuticals 2023, 16, 1615. [Google Scholar] [CrossRef] [PubMed]
- Lis-Balchin, M.; Hart, S. Studies on the mode of action of the essential oil of lavender (Lavandula angustifolia P. Miller). Phytother. Res. 1999, 13, 540–542. [Google Scholar] [CrossRef]
- Cavanagh, H.M.; Wilkinson, J.M. Biological activities of lavender essential oil. Phytother. Res. 2002, 16, 301–308. [Google Scholar] [CrossRef]
- Hammer, K.A.; Carson, C.F.; Riley, T.V. Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol. 1999, 86, 985–990. [Google Scholar] [CrossRef]
- Aprotosoaie, A.C.; Gille, E.; Trifan, A.; Miron, A. Essential oils of Lavandula genus: A systematic review of their chemistry. Phytochem. Rev. 2017, 16, 761–799. [Google Scholar] [CrossRef]
- Clarke, S. Essential Chemistry for Aromatherapy; Elsevier: Amsterdam, The Netherlands, 2009; p. 301. [Google Scholar]
- Lawless, J. The Illustrated Encyclopedia of Essential Oils; Element Books Ltd.: Shaftesbury, UK, 1995; p. 256. [Google Scholar]
- Council of Europe. European Pharmacopoeia, 11th ed.; Council of Europe: Strasbourg, France, 2023. [Google Scholar]
- Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential Oils as Antimicrobial Agents—Myth or Real Alternative? Molecules 2019, 24, 2130. [Google Scholar] [CrossRef]
- Perović, A.B.; Karabegović, I.T.; Krstić, M.S.; Veličković, A.V.; Avramović, J.M.; Danilović, B.R.; Veljković, V.B. Novel hydrodistillation and steam distillation methods of essential oil recovery from lavender: A comprehensive review. Ind. Crops Prod. 2024, 211, 118244. [Google Scholar] [CrossRef]
- Kozuharova, E.; Simeonov, V.; Stoycheva, C.; Benbassat, N.; Batovska, D. Lavender essential oils–hidden relationships between the samples of origin. Pharmacia 2024, 71, 1–10. [Google Scholar] [CrossRef]
- Stanev, S.; Zagorcheva, T.; Atanassov, I. Lavender cultivation in Bulgaria–21st century developments, breeding challenges and opportunities. Bulg. J. Agric. Sci. 2016, 22, 584–590. [Google Scholar]
- Zagorcheva, T.; Stanev, S.; Rusanov, K.; Atanassov, I. SRAP markers for genetic diversity assessment of lavender (Lavandulaangustifolia Mill. ) varieties and breeding lines. Biotechnol. Biotechnol. Equip. 2020, 34, 303–308. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Cantrell, C.L.; Astatkie, T.; Jeliazkova, E. Distillation time effect on lavender essential oil yield and composition. J. Oleo Sci. 2013, 62, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing: Carol Stream, IL, USA, 2007. [Google Scholar]
- NIST Chemistry WebBook, SRD 69; National Institute of Standards and Technology: Gaithersburg, MD, USA. Available online: https://webbook.nist.gov (accessed on 10 April 2025).
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Bassolé, I.H.N.; Juliani, H.R. Essential oils in combination and their antimicrobial properties. Molecules 2012, 17, 3989–4006. [Google Scholar] [CrossRef]
- Jianu, C.; Pop, G.; Gruia, A.T.; Horhat, F.G. Chemical composition and antimicrobial activity of essential oils of lavender (Lavandula angustifolia) and lavandin (Lavandula × intermedia) grown in Western Romania. Int. J. Agric. Biol. 2013, 15, 772–776. [Google Scholar]
- Hossain, S.; Heo, H.; De Silva, B.C.J.; Wimalasena, S.H.M.P.; Pathirana, H.N.K.S.; Heo, G.J. Antibacterial activity of essential oil from lavender (Lavandula angustifolia) against pet turtle-borne pathogenic bacteria. Lab. Anim. Res. 2017, 33, 195–201. [Google Scholar] [CrossRef]
- Ratajczak, M.; Kamińska, M.; Głowacka, A.; Duda-Madej, A.; Francik, R. Chemical Composition and Antimicrobial Activity of Lavender, Peppermint, Raspberry Seed, and Ylang-Ylang Essential Oils. Appl. Sci. 2023, 13, 11281. [Google Scholar]
- Yang, S.K.; Low, L.Y.; Yap, P.S.X.; Yusoff, K.; Mai, C.W.; Lai, K.S.; Lim, S.H.E. Plant-derived essential oils: Potential agents against antibiotic-resistant bacteria. Sci. Rep. 2020, 10, 819. [Google Scholar]
- Donadu, M.G.; Ferrari, M.; Usai, D.; Mazzarello, V.; Cappuccinelli, P.; Zanetti, S.; Le, L.; Marchetti, M.; Sanna, G.; Delogu, G. Lavender essential oil synergizes with gentamicin against Gram-negative bacteria. J. Infect. Dev. Ctries. 2018, 12, 9–14. [Google Scholar] [CrossRef]
- Jigău, R.A.C.; Dinu, M.; Oniga, I.; Hanganu, D.; Benedec, D.; Vlase, L.; Popescu, R.; Crișan, G. Antimicrobial and anti-inflammatory potential of Romanian Lavandula angustifolia essential oils. Plants 2024, 13, 2136. [Google Scholar]
- Perovic, S.; Pantovic, S.; Scepanovic, V.; Perovic, A.; Zivkovic, V.; Damjanovic Vratnica, B. Evaluation of antimicrobial activity and activity on the autonomic nervous system of the lavender essential oils from Montenegro. Prog. Nutr. 2019, 21, 584–590. [Google Scholar]
- Langeveld, W.T.; Veldhuizen, E.J.; Burt, S.A. Synergy between essential oil components and antibiotics: A review. Crit. Rev. Microbiol. 2014, 40, 76–94. [Google Scholar] [CrossRef] [PubMed]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef]
- Doran, A.L.; Morden, W.E.; Dunn, K.; Edwards-Jones, V. Vapour-phase activities of essential oils against antibiotic sensitive and resistant bacteria including MRSA. Lett. Appl. Microbiol. 2009, 48, 387–392. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- de Rapper, S.; Kamatou, G.; Viljoen, A.; van Vuuren, S. The in vitro antimicrobial activity of Lavandula angustifolia essential oil in combination with other aroma-therapeutic oils. Evid. Based Complement. Alternat. Med. 2013, 2013, 852049. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef]
- Sandner, G.; Mueller, M.; Nemeth, O.; Mende, B.; Friedl, H.; Radulović, N.S.; Stuppner, H.; Bucar, F. Lavender oil modulates host immune response and bacterial clearance. Biomolecules 2020, 10, 1139. [Google Scholar]
- Prashar, A.; Locke, I.C.; Evans, C.S. Cytotoxicity of lavender oil and its major components to human skin cells. Cell Prolif. 2004, 37, 221–229. [Google Scholar] [CrossRef]
- Todorova, D.; Yavorov, N.; Lasheva, V.; Damyanova, S.; Kostova, I. Lavender Essential Oil as Antibacterial Treatment for Packaging Paper. Coatings 2023, 13, 32. [Google Scholar] [CrossRef]
- Mladenova, A.; Popova, T.P.; Bankova, R.; Ignatov, I. In vitro antimicrobial activity of Bulgarian lavender essential oil. Acta Microbiol. Bulg. 2024, 40, 252–257. [Google Scholar] [CrossRef]
- Stanev, S.; Angelova, D. Stability of the Ratio between linalool and Linalylacetate in Bulgarian Lavender cultivars. In Proceedings of the Ecology and Agrotechnologies, Sofia, Bulgaria; 2022; pp. 116–121. [Google Scholar]
- Guo, F.; Chen, Q.; Liang, Q.; Zhang, M.; Wang, M.; Kong, J.; Wang, S. Antimicrobial Activity and Proposed Action Mechanism of Linalool Against Pseudomonas fluorescens. Front. Microbiol. 2021, 12, 562094. [Google Scholar] [CrossRef] [PubMed]
- Su, R.; Guo, P.; Zhang, Z.; Wang, J.; Guo, X.; Guo, D.; Wang, Y.; Lü, X.; Shi, C. Antibacterial Activity and Mechanism of Linalool against Shigella sonnei and Its Application in Lettuce. Foods 2022, 11, 3160. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; He, R.; Chen, H.; Chen, D.; Chen, W. Respiratory Depression as Antibacterial Mechanism of Linalool against Pseudomonas fragi Based on Metabolomics. Int. J. Mol. Sci. 2022, 23, 11586. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Y.; Wang, Y.; Zhang, X.; Wang, S.; Zhao, J. The Mechanism of Lavender Essential Oil in the Treatment of Acute Colitis Based on Network Pharmacology and Experimental Verification. Front. Pharmacol. 2021, 12, 810781. [Google Scholar] [CrossRef]
- Pandur, E.; Balatinácz, A.; Micalizzi, G.; Mondello, L.; Horváth, A.; Sipos, K.; Horváth, G. Anti-Inflammatory Effect of Lavender (Lavandula angustifolia Mill.) Essential Oil Prepared from Flowers Collected at the Beginning and End of Flowering Period on THP-1 Macrophages. BMC Complement. Med. Ther. 2021, 21, 34. [Google Scholar] [CrossRef]
- World Health Organization. WHO Priority Pathogens List for R&D of New Antibiotics, 2020. Available online: https://www.who.int/publications/i/item/WHO-EMP-IAU-2017.12 (accessed on 10 April 2025).
- Heath, R.J.; Rock, C.O. A Triclosan-Resistant Bacterial Enzyme. Nature 2000, 406, 145–146. [Google Scholar] [CrossRef]
- Lu, H.; Tonge, P.J. Inhibitors of FabI, an Enzyme Drug Target in the Bacterial Fatty Acid Biosynthesis Pathway. Acc. Chem. Res. 2008, 41, 11–20. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 34th ed.; CLSI supplement M100; CLSI: Wayne, PA, USA, 2024. [Google Scholar]
- Mondello, L.; Casilli, A.; Tranchida, P.Q.; Dugo, P.; Dugo, G. Comprehensive two-dimensional GC for the analysis of essential oils. Flavour Fragr. J. 2008, 23, 382–391. [Google Scholar] [CrossRef]
- Stein, S.E. Mass spectral reference libraries: An ever-expanding resource for chemical identification. Anal. Chem. 2012, 84, 7274–7282. [Google Scholar] [CrossRef]
- Swiss Target Prediction. Available online: http://www.swisstargetprediction.ch (accessed on 10 April 2025).
- UniProt Database. Available online: https://www.uniprot.org (accessed on 10 April 2025).
- STRING Database. Available online: https://string-db.org (accessed on 10 April 2025).
- SwissDock. Available online: http://www.swissdock.ch (accessed on 14 June 2025).
- The Jamovi Project, version 2.4.8, Sydney, Australia. 2023. Available online: https://www.jamovi.org (accessed on 10 April 2025).
Lavender EO Compounds | Mean % Area (n = 3) | Kovats Index |
---|---|---|
α-Pinene | 0.55 | 939 |
Camphene | 0.32 | 954 |
β-Pinene | 0.17 | 980 |
1-Octen-3-ol | 0.49 | 974 |
3-Octanone | 1.52 | 987 |
β-Myrcene | 0.95 | 988 |
β-Phellandrene | 0.18 | 1033 |
cis-β-Ocimene | 7.22 | 1029 |
1,8-cineol | 1.10 | 1033 |
Limonene | 0.24 | 1031 |
trans-β-Ocimene | 5.30 | 1042 |
Linalool | 29.94 | 1100 |
1-Octen-3-yl-acetate | 0.93 | 1100 |
Hexyl butyrate | 0.33 | 1165 |
Camphor | 0.43 | 1146 |
Borneol | 0.84 | 1165 |
Terpinene-4-ol | 5.20 | 1174 |
α-Terpineol | 1.58 | 1186 |
Linalyl acetete | 24.31 | 1250 |
Lavandulol acetate | 3.25 | 1290 |
Lavandulol | 1.07 | 1418 |
β-Caryophyllene | 3.94 | 1582 |
89.96% |
Microorganism | MIC LEO %(v/v) ± SD | MBC/MFC LEO%(v/v) ± SD |
---|---|---|
E. coli | 0.31 ± 0.00 | 0.31 ± 0.00 |
S. aureus | 5.00 ± 0.00 | 10.00 ± 0.00 |
B. subtilis | 10.00 ± 0.00 | 10.00 ± 0.00 |
K. pneumoniae | 5.00 ± 0.29 | 10.00 ± 0.00 |
P. aeruginosa | 10.00 ± 0.00 | 10.00 ± 0.00 |
S. pyogenes | 2.50 ± 0.29 | 5.00 ± 0.50 |
C. albicans | >10.00 | >10.00 |
Antimicrobial Agent | Antibiotic, mm ± SD | LEO Alone 0.31%, mm ± SD | Antibiotic + LEO, mm ± SD | p-Value |
---|---|---|---|---|
Ampicillin (A) | 23.00 ± 0.50 | 19.00 ± 0.00 | 31.00 ± 0.60 | 0.0002 |
Ceftriaxone (CRO) | 34.00 ± 0.30 | 19.00 ± 0.00 | 38.00 ± 0.40 | 0.0265 |
Meropenem (MEM) | 38.00 ± 0.40 | 19.00 ± 0.00 | 41.00 ± 0.50 | 0.0047 |
Ciprofloxacin (CIP) | 45.00 ± 0.20 | 19.00 ± 0.00 | 48.00 ± 0.30 | 0.0079 |
Gentamicin (GEN) | 25.00 ± 0.40 | 19.00 ± 0.00 | 32.00 ± 0.60 | 0.0008 |
Linalool FullFitness | Linalool Score (kcal/mol) | Linalyl Acetate FullFitness | Linalyl Acetate (kcal/mol) | |
---|---|---|---|---|
1. | −1746.45 | −7.45 | −1872.78 | −8.93 |
2. | −1744.13 | −7.38 | −1871.35 | −8.82 |
3. | −1743.01 | −7.35 | −1869.45 | −8.76 |
4. | −1741.89 | −7.33 | −1868.02 | −8.71 |
5. | −1741.20 | −7.31 | −1866.89 | −8.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stamova, S.; Ermenlieva, N.; Tsankova, G.; Georgieva, E. Antimicrobial Activity of Lavender Essential Oil from Lavandula angustifolia Mill.: In Vitro and In Silico Evaluation. Antibiotics 2025, 14, 656. https://doi.org/10.3390/antibiotics14070656
Stamova S, Ermenlieva N, Tsankova G, Georgieva E. Antimicrobial Activity of Lavender Essential Oil from Lavandula angustifolia Mill.: In Vitro and In Silico Evaluation. Antibiotics. 2025; 14(7):656. https://doi.org/10.3390/antibiotics14070656
Chicago/Turabian StyleStamova, Sylvia, Neli Ermenlieva, Gabriela Tsankova, and Emilia Georgieva. 2025. "Antimicrobial Activity of Lavender Essential Oil from Lavandula angustifolia Mill.: In Vitro and In Silico Evaluation" Antibiotics 14, no. 7: 656. https://doi.org/10.3390/antibiotics14070656
APA StyleStamova, S., Ermenlieva, N., Tsankova, G., & Georgieva, E. (2025). Antimicrobial Activity of Lavender Essential Oil from Lavandula angustifolia Mill.: In Vitro and In Silico Evaluation. Antibiotics, 14(7), 656. https://doi.org/10.3390/antibiotics14070656