Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = LED-yarn

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6101 KiB  
Article
Deciphering Ageing Effects in Green-Dyed English Wool Carpet Yarns from the 1840s
by Terry T. Schaeffer, Jacob Mobberley and Laura Maccarelli
Heritage 2025, 8(6), 216; https://doi.org/10.3390/heritage8060216 - 7 Jun 2025
Viewed by 671
Abstract
In 1842, carpet manufacturer W.H. Worth of Kidderminster, England, began assembling a sample book of wool yarns dyed with natural dyestuffs. This paper reports on a study of the “Greens” section, which contains sixteen yarn samples—six still green and ten now ranging from [...] Read more.
In 1842, carpet manufacturer W.H. Worth of Kidderminster, England, began assembling a sample book of wool yarns dyed with natural dyestuffs. This paper reports on a study of the “Greens” section, which contains sixteen yarn samples—six still green and ten now ranging from tan to dark brown. The accompanying recipes list similar ingredients: old fustic and either “mixture” or extracet of indigo. To verify whether Worth’s recipes were followed, the yarns were analyzed using HPLC-DAD and FORS. Additionally, mock-ups were prepared according to Worth’s green dye recipes and subjected to thermal ageing to explore potential causes of discoloration. Preliminary analysis of the historic samples revealed that the discoloured yarns contain both indigo and indigo carmine, while the still-green samples contain only indigo carmine. This suggests that one or more components of the indigo vat may have contributed to discoloration. To test this hypothesis, contemporary wool yarns were dyed using a Worth green recipe, with and without indigo, at varying pH levels. These were thermally aged, and their colour changes monitored. HPLC-DAD and FORS analyses of the mock-ups were compared to the historic samples to identify dyeing conditions that may have led to the observed browning. Full article
(This article belongs to the Special Issue Dyes in History and Archaeology 43)
Show Figures

Figure 1

19 pages, 1272 KiB  
Article
Hybrid Oversampling and Undersampling Method (HOUM) via Safe-Level SMOTE and Support Vector Machine
by Duygu Yilmaz Eroglu and Mestan Sahin Pir
Appl. Sci. 2024, 14(22), 10438; https://doi.org/10.3390/app142210438 - 13 Nov 2024
Cited by 4 | Viewed by 1467
Abstract
The improvements in collecting and processing data using machine learning algorithms have increased the interest in data mining. This trend has led to the development of real-life decision support systems (DSSs) in diverse areas such as biomedical informatics, fraud detection, natural language processing, [...] Read more.
The improvements in collecting and processing data using machine learning algorithms have increased the interest in data mining. This trend has led to the development of real-life decision support systems (DSSs) in diverse areas such as biomedical informatics, fraud detection, natural language processing, face recognition, autonomous vehicles, image processing, and each part of the real production environment. The imbalanced datasets in some of these studies, which result in low performance measures, have highlighted the need for additional efforts to address this issue. The proposed method (HOUM) is used to address the issue of imbalanced datasets for classification problems in this study. The aim of the model is to prevent the overfitting problem caused by oversampling and valuable data loss caused by undersampling in imbalanced data and obtain successful classification results. The HOUM is a hybrid approach that tackles imbalanced class distribution challenges, refines datasets, and improves model robustness. In the first step, majority-class data points that are distant from the decision boundary obtained via SVM are reduced. If the data are not balanced, SLS is employed to augment the minority-class data. This loop continues until the dataset becomes balanced. The main contribution of the proposed method is reproducing informative minority data using SLS and diminishing non-informative majority data using the SVM before applying classification techniques. Firstly, the efficiency of the proposed method, the HOUM, is verified by comparison with the SMOTE, SMOTEENN, and SMOTETomek techniques using eight datasets. Then, the results of the W-SIMO and RusAda algorithms, which were developed for imbalanced datasets, are compared with those of the HOUM. The strength of the HOUM is revealed through this comparison. The proposed HOUM algorithm utilizes a real dataset obtained from a project endorsed by The Scientific and Technical Research Council of Turkey. The collected data include quality control and processing parameters of yarn data. The aim of this project is to prevent yarn breakage errors during the weaving process on looms. This study introduces a decision support system (DSS) designed to prevent yarn breakage during fabric weaving. The high performance of the algorithm may encourage producers to manage yarn flow and enhance the HOUM’s efficiency as a DSS. Full article
Show Figures

Figure 1

25 pages, 12953 KiB  
Article
Mechanical Behaviour of Green Epoxy Composites Reinforced with Sheep and Dog Wool from Serra Da Estrela
by Cláudia Antunes, Ana Paula Costa, André Costa Vieira and Joana Costa Vieira
Polymers 2024, 16(22), 3115; https://doi.org/10.3390/polym16223115 - 7 Nov 2024
Viewed by 1211
Abstract
Environmental awareness has led industries and consumers to replace products derived from oil resources with products derived from natural sources. In the case of the composite materials industry, the replacement of synthetic fibres with natural fibres has increased in recent years. To study [...] Read more.
Environmental awareness has led industries and consumers to replace products derived from oil resources with products derived from natural sources. In the case of the composite materials industry, the replacement of synthetic fibres with natural fibres has increased in recent years. To study the influence that different types of natural fibres and different textile manufacturing techniques have on the mechanical properties of composites, bio-based epoxy matrix composites reinforced with different natural animal fibres were produced, some reinforced with sheep’s wool and others with dog wool, which were later subjected to bending and tensile tests. From the authors’ knowledge, there are few studies of composites produced with animal fibres, and even fewer with dog hair. The textile structures used as reinforcement were created using crochet, knitting, and weaving techniques. Prior to the composites production, the fibres were characterized by X-ray Diffraction (X-RD), and the yarns produced from these fibres were subjected to tensile tests. The results obtained suggest that the number of yarns and the diameter of the needles used during the production of the reinforcement have a significant impact on the mechanical properties of the composites. The green epoxy resin composites reinforced with sheep’s wool exhibit higher values of flexural strength, tensile strength, and Young’s modulus than those reinforced with dog wool, with average increases of 36.97%, 45.16%, and 72.99%, respectively. It was also possible to verify that the composites reinforced with woven fabrics and crocheted fabrics exhibit the highest values of tensile strength, flexural strength, and Young’s modulus. Additionally, the composites reinforced with woven fabrics exhibit the highest values of deformation at first failure/break and toughness. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

15 pages, 7533 KiB  
Article
Enhancing Force Absorption, Stress–Strain and Thermal Properties of Weft-Knitted Inlay Spacer Fabric Structures for Apparel Applications
by Mei-Ying Kwan, Yi-Fan Tu, Kit-Lun Yick, Joanne Yip, Nga Wun Li, Annie Yu and Ka-Wai Lo
Polymers 2024, 16(21), 3031; https://doi.org/10.3390/polym16213031 - 29 Oct 2024
Cited by 2 | Viewed by 1540
Abstract
The pursuit of materials that offer both wear comfort and protection for functional and protective clothing has led to the exploration of weft-knitted spacer structures. Traditional cushioning materials such as spacer fabrics and laminated foam often suffer from deformation under compression stresses, thus [...] Read more.
The pursuit of materials that offer both wear comfort and protection for functional and protective clothing has led to the exploration of weft-knitted spacer structures. Traditional cushioning materials such as spacer fabrics and laminated foam often suffer from deformation under compression stresses, thus compromising their protective properties. This study investigates the enhancement of the force absorption, stress–strain, and thermal properties of weft-knitted spacer fabrics with inlays. Surface yarns with superior stretchability and thermal properties are used and combined with elastic yarns in various patterns to fabricate nine different inlay samples. The mechanical and thermal properties of these samples are systematically analyzed, including their compression, stretchability, thermal comfort, and surface properties. The results show that the inlay spacer fabric exhibits superior compression properties and thermal conductivity compared to traditional laminated foam and spacer fabrics while maintaining stretchability, thus providing better performance than traditional fabrics for protective clothing and wearable cushioning products. This study further confirms that the type of inlay yarn and inlay structure are crucial factors that significantly influence the thermal, tensile, and compressive properties of the fabric. This research provides valuable insights into the design and development of advanced textile structures to improve wear comfort and protection in close-fitting apparel applications. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

17 pages, 6099 KiB  
Article
Influence of Graphene, Carbon Nanotubes, and Carbon Black Incorporated into Polyamide Yarn on Fabric Properties
by Veerakumar Arumugam, Aleksander Góra and Vitali Lipik
Textiles 2024, 4(4), 442-458; https://doi.org/10.3390/textiles4040026 - 4 Oct 2024
Cited by 2 | Viewed by 1890
Abstract
Carbon nanomaterials are increasingly being integrated into modern research, particularly within the textile industry, to significantly boost performance and broaden application possibilities. This study investigates the impact of incorporating three distinct carbon-based nanofillers—carbon nanotubes (CNTs), carbon black (CB), and graphene (Gn)—into polyamide 6 [...] Read more.
Carbon nanomaterials are increasingly being integrated into modern research, particularly within the textile industry, to significantly boost performance and broaden application possibilities. This study investigates the impact of incorporating three distinct carbon-based nanofillers—carbon nanotubes (CNTs), carbon black (CB), and graphene (Gn)—into polyamide 6 (PA6) multifilament yarns. It explores how these nanofillers affect the physical, mechanical, and thermal properties of PA6 yarns and fabrics. By utilizing melt extrusion, the nanomaterials were uniformly distributed in the yarns, and knitted fabrics were subsequently produced for detailed analysis. The research offers critical insights into how each nanofiller improves the thermal behavior of PA6-based textiles, enabling the customization of their applications. FTIR spectroscopy revealed significant chemical interactions between polyamide and carbon additives, while DSC analysis showed enhanced thermal stability, particularly with the inclusion of graphene. The introduction of these nanomaterials led to increased absorbance and decreased transmittance in the UV-Vis-NIR spectrum. Additionally, Far-Infrared (FIR) emissivity and thermal effusivity varied with different concentrations, with optimal improvements observed at specific levels. Although thermal conductivity decreased with the addition of these nanomaterials, heat management experiments demonstrated varied effects on heat accumulation and cooling times, underscoring potential applications in insulation and cooling technologies. These findings enrich the existing knowledge on nanomaterial-enhanced textiles, providing valuable guidance for optimizing PA6 yarns and fabrics for use in protective clothing, sportswear, and technical textiles. The comparative analysis offers a thorough understanding of the relationship between carbon nanomaterials and thermal properties, paving the way for innovative advancements in functional textile materials. Full article
Show Figures

Figure 1

17 pages, 1804 KiB  
Article
A Multifunctional Approach to Optimizing Woven Fabrics for Thermal Protective Clothing
by Ivana Schwarz, Dubravko Rogale, Stana Kovačević and Snježana Firšt Rogale
Fibers 2024, 12(4), 35; https://doi.org/10.3390/fib12040035 - 7 Apr 2024
Cited by 2 | Viewed by 2993
Abstract
This paper presents a detailed exploration of the development and characterization of multifunctional dual-purpose woven fabrics for thermal protective clothing. Through this research, 69 woven fabric prototypes have been carefully designed and produced, integrating various raw materials, yarn, and woven fabric construction parameters, [...] Read more.
This paper presents a detailed exploration of the development and characterization of multifunctional dual-purpose woven fabrics for thermal protective clothing. Through this research, 69 woven fabric prototypes have been carefully designed and produced, integrating various raw materials, yarn, and woven fabric construction parameters, with the aim of optimizing thermal protection properties while ensuring comfort and durability. The analysis led to the identification of two optimal woven fabric samples, which, upon further testing, exhibited exceptional dimensional stability, crease recovery, tear resistance, as well as abrasion and water resistance. Furthermore, the thermal properties were evaluated, demonstrating exceptional flame resistance, limited heat transmission, and high thermal insulation. Additionally, the study evaluated dynamic thermal properties, contact conductive heat transfer, air permeability, water vapour resistance, and thermal resistance of two clothing systems constructed from selected woven fabrics. Statistical analysis confirms significant differences between clothing systems, highlighting the influence of yarn composition and fabric structure on thermal performance and comfort, where one system exhibits better thermal insulation characteristics suitable for colder environments while the other excels in breathability for warmer climates. The developed woven fabrics meet high standards for protective clothing against heat and flame, surpassing currently available comparable woven fabrics on the market in terms of efficacy and performance. This research provides insights into the intricate balance between protection, comfort, and durability of woven fabrics, contributing to advancements in protective textile technology. Full article
Show Figures

Figure 1

27 pages, 22078 KiB  
Article
Numerical Study of the Influence of the Structural Parameters on the Stress Dissipation of 3D Orthogonal Woven Composites under Low-Velocity Impact
by Wang Xu, Mohammed Zikry and Abdel-Fattah M. Seyam
Technologies 2024, 12(4), 49; https://doi.org/10.3390/technologies12040049 - 5 Apr 2024
Cited by 4 | Viewed by 2318
Abstract
This study investigates the effects of the number of layers, x-yarn (weft) density, and z-yarn (binder) path on the mechanical behavior of E-glass 3D orthogonal woven (3DOW) composites during low-velocity impacts. Meso-level finite element (FE) models were developed and validated for 3DOW composites [...] Read more.
This study investigates the effects of the number of layers, x-yarn (weft) density, and z-yarn (binder) path on the mechanical behavior of E-glass 3D orthogonal woven (3DOW) composites during low-velocity impacts. Meso-level finite element (FE) models were developed and validated for 3DOW composites with different yarn densities and z-yarn paths, providing analyses of stress distribution within reinforcement fibers and matrix, energy absorption, and failure time. Our findings revealed that lower x-yarn densities led to accumulations of stress concentrations. Furthermore, changing the z-yarn path, such as transitioning from plain weaves to twill or basket weaves had a noticeable impact on stress distributions. The research highlights the significance of designing more resilient 3DOW composites for impact applications by choosing appropriate parameters in weaving composite designs. Full article
(This article belongs to the Section Innovations in Materials Science and Materials Processing)
Show Figures

Figure 1

3 pages, 426 KiB  
Proceeding Paper
Performance Quality of Braided e-Yarns for Pedestrian Interactive Textiles
by Raphael Kanyire Seidu and Shouxiang Jiang
Eng. Proc. 2023, 52(1), 4; https://doi.org/10.3390/engproc2023052004 - 11 Jan 2024
Cited by 2 | Viewed by 1007
Abstract
A low-cost electronic yarn (e-yarn) fabricated with conductive yarns and light-emitting diodes (LEDs) for wearables is presented. As part of ongoing research to develop smart interactive pedestrian clothing, this work demonstrates the design and performance qualities of braided e-yarns to produce red lighting [...] Read more.
A low-cost electronic yarn (e-yarn) fabricated with conductive yarns and light-emitting diodes (LEDs) for wearables is presented. As part of ongoing research to develop smart interactive pedestrian clothing, this work demonstrates the design and performance qualities of braided e-yarns to produce red lighting effects. The design process adopted a simple encapsulation process with adhesive tape and a heat contraction tube to secure stainless steel conductive threads to solder pads of the LEDs. These were arranged in series against two stainless steel conductive threads to provide single positive and negative terminals at both ends. The success of these low-cost, flexible, and strong (wash durability) braided e-yarns proved to be a major achievement for integration into woven fabrics for smart pedestrian safety clothing. These braided e-yarns producing the necessary lighting effects are a key safety feature for improving pedestrian visibility and driver recognition at night-time. Full article
(This article belongs to the Proceedings of Eng. Proc., 2023, E-Textiles 2023)
Show Figures

Figure 1

21 pages, 9562 KiB  
Article
Analysing the Impact of the Bleaching Process on Wet Spun Hemp Yarn Properties
by Simona Tripa, Naz Kadınkız, Ayesha Kanwal, Muhammad Anwaar Nazeer, Ahsan Nazir, Florin Tripa and Muhammet Uzun
Sustainability 2023, 15(24), 16894; https://doi.org/10.3390/su152416894 - 15 Dec 2023
Cited by 4 | Viewed by 2523
Abstract
Historically, cotton has been regarded as a highly sustainable material; however, thorough research indicates otherwise. The increasing levels of pollution and the need to address climate change have led towards a global search for sustainable alternatives. Plants with comparable chemical compositions, such as [...] Read more.
Historically, cotton has been regarded as a highly sustainable material; however, thorough research indicates otherwise. The increasing levels of pollution and the need to address climate change have led towards a global search for sustainable alternatives. Plants with comparable chemical compositions, such as hemp, are attracting growing attention. The cultivation of hemp can be done with sustainable methods, thereby making it a viable alternative to cotton. This study investigates the mechanical, physical, and dyeing properties of 100% wet-spun hemp yarn in its natural and bleached state with the objective of incorporating its use in both technical and traditional textiles. Although significant academic literature is available on the properties of cotton, there is a noticeable lack of literature based on wet-spun hemp. This research suggests that the bleaching process positively affects wet-spun hemp yarn, thus making it suitable for use by the textile industries in various applications. Full article
(This article belongs to the Special Issue Advances in Sustainability Research from the University of Oradea)
Show Figures

Figure 1

29 pages, 8027 KiB  
Article
Average and Local Effect of Thermal Fatigue on the Coefficients of the Thermal Expansion of a Complex Continuous Composite Fibre Used for Car Clutch Facing: A Multi-Technique Study
by Camille Flament, Bruno Berthel, Michelle Salvia, Olivier Graton and Isabelle Alix
Materials 2023, 16(17), 5833; https://doi.org/10.3390/ma16175833 - 25 Aug 2023
Cited by 1 | Viewed by 1959
Abstract
The clutch facing is a complex organic matrix composite in dry clutch systems. When the clutch engages, there is a sliding contact between the clutch facing and the mating surfaces, resulting in temperature increases of up to 300 °C. These thermal cycles activate [...] Read more.
The clutch facing is a complex organic matrix composite in dry clutch systems. When the clutch engages, there is a sliding contact between the clutch facing and the mating surfaces, resulting in temperature increases of up to 300 °C. These thermal cycles activate several mechanisms that can have consequences on such material: cracking and, more generally, the ageing of the polymer. The thermomechanical properties of the material therefore evolve according to the number of thermal cycles. This study focused on investigating the local and average evolution of the coefficients of thermal expansion (CTE) of clutch facing as a function of thermal cycles. Several techniques were employed, including image stereocorrelation for determining the CTE, Dynamic Mechanical Analysis (DMA) tests for monitoring the ageing of the material and acoustic emission for highlighting the damage. The results showed that the average CTE decreased as a function of the temperature and the number of loading cycles, while locally, it increased in some areas and decreased in others. These differences appear to be the result of material heterogeneity (actual yarn tracing, etc.) and interaction between cracking and ageing mechanisms in the polymer matrix. Indeed, thermal cycling led to cracking and additional crosslinking, which is influenced by ageing conditions. Full article
Show Figures

Figure 1

10 pages, 3218 KiB  
Article
On the Pressure and Rate of Infiltration Made by a Carbon Fiber Yarn with an Aluminum Melt during Ultrasonic Treatment
by Sergei Galyshev, Bulat Atanov and Valery Orlov
Fibers 2023, 11(5), 41; https://doi.org/10.3390/fib11050041 - 6 May 2023
Cited by 1 | Viewed by 2035
Abstract
The effect of the infiltration time of a carbon fiber yarn in the range of 6 to 13.6 s on the infiltrated volume under the cavitation of an aluminum melt has been studied. When the infiltration time was more than 10 s, the [...] Read more.
The effect of the infiltration time of a carbon fiber yarn in the range of 6 to 13.6 s on the infiltrated volume under the cavitation of an aluminum melt has been studied. When the infiltration time was more than 10 s, the carbon fiber was completely infiltrated with the matrix melt, and a decrease in the infiltration time led to a monotonous decrease in the fraction of the infiltrated volume. Based on the experimental data, the infiltration rate and the pressure necessary to infiltrate a carbon fiber yarn with an aluminum melt were estimated. The infiltration rate was 20.9 cm3/s and was independent of the infiltration depth. The calculated pressure necessary for the complete infiltration of a carbon fiber yarn at this rate was about 270 Pa. A comparison of the pressure values calculated according to Darcy’s and Forchheimer’s laws showed that the difference between them did not exceed 0.01%. This indicates that a simpler Darcy’s law could be used to estimate pressure. Full article
(This article belongs to the Special Issue Fibers 10th Anniversary: Past, Present, and Future)
Show Figures

Figure 1

17 pages, 4767 KiB  
Article
Production of Long Hemp Fibers Using the Flax Value Chain
by Lola Pinsard, Nathalie Revol, Henri Pomikal, Emmanuel De Luycker and Pierre Ouagne
Fibers 2023, 11(5), 38; https://doi.org/10.3390/fib11050038 - 28 Apr 2023
Cited by 9 | Viewed by 5030
Abstract
Hemp is finding a strong renewal of interest in the production of fine fibers for garment textiles. This resource of long-line fibers would come as a complement to the highly demanded flax fibers, whose large production in the north-west of Europe cannot be [...] Read more.
Hemp is finding a strong renewal of interest in the production of fine fibers for garment textiles. This resource of long-line fibers would come as a complement to the highly demanded flax fibers, whose large production in the north-west of Europe cannot be extended. In Normandy, where a complete industrial value chain exists for flax, it is intended to adapt it to hemp, and this was demonstrated from the field to the scutched fibers with a complete value chain. In this region, early harvesting is necessary to leave enough time for dew-retting and permit dry storage of stems before mid-September. An early-flowering variety (USO-31) was harvested using dedicated hemp equipment to obtain a 1 m parallel and aligned windrow that can be further processed by flax equipment. The scutching process as well as the fiber’s morphological and mechanical properties were particularly studied. Adapted scutching process parameters with reduced advancing speed and beating turbine velocity led to long fiber yields of about 18% of the stem mass. Stem yields were reaching about 6 tons/ha leading to a production of 1.1 tons/ha of long fibers. The tensile properties of the long fibers were highly sufficient for textile applications, and their thickness after hackling was in the range suitable for the production of fine yarns. Compared to other crops grown in Normandy, the hemp as produced in this 2020 case study provides good incomes to the farmer, higher than traditional crops such as wheat or barley, and the results of this study should encourage farmers to grow hemp for textile purposes. Full article
Show Figures

Graphical abstract

14 pages, 3568 KiB  
Article
Stretchable Woven Fabric-Based Triboelectric Nanogenerator for Energy Harvesting and Self-Powered Sensing
by Lijun Chen, Tairan Wang, Yunchu Shen, Fumei Wang and Chaoyu Chen
Nanomaterials 2023, 13(5), 863; https://doi.org/10.3390/nano13050863 - 25 Feb 2023
Cited by 14 | Viewed by 2924
Abstract
With the triboelectric nanogenerator developing in recent years, it has gradually become a promising alternative to fossil energy and batteries. Its rapid advancements also promote the combination of triboelectric nanogenerators and textiles. However, the limited stretchability of fabric-based triboelectric nanogenerators hindered their development [...] Read more.
With the triboelectric nanogenerator developing in recent years, it has gradually become a promising alternative to fossil energy and batteries. Its rapid advancements also promote the combination of triboelectric nanogenerators and textiles. However, the limited stretchability of fabric-based triboelectric nanogenerators hindered their development in wearable electronic devices. Here, in combination with the polyamide (PA) conductive yarn, polyester multifilament, and polyurethane yarn, a highly stretchable woven fabric-based triboelectric nanogenerator (SWF-TENG) with the three elementary weaves is developed. Different from the normal woven fabric without elasticity, the loom tension of the elastic warp yarn is much larger than non-elastic warp yarn in the weaving process, which results in the high elasticity of the woven fabric coming from the loom. Based on the unique and creative woven method, SWF-TENGs are qualified with excellent stretchability (up to 300%), flexibility, comfortability, and excellent mechanical stability. It also exhibits good sensitivity and fast responsibility to the external tensile strain, which can be used as a bend–stretch sensor to detect and identify human gait. Its collected power under pressure mode is capable of lighting up 34 light-emitting diodes (LEDs) by only hand-tapping the fabric. SWF-TENG can be mass-manufactured by using the weaving machine, which decreases fabricating costs and accelerates industrialization. Based on these merits, this work provides a promising direction toward stretchable fabric-based TENGs with wide applications in wearable electronics, including energy harvesting and self-powered sensing. Full article
(This article belongs to the Special Issue Nanogenerators for Energy Harvesting and Sensing)
Show Figures

Figure 1

34 pages, 60201 KiB  
Article
Textile Knitted Stretch Sensors for Wearable Health Monitoring: Design and Performance Evaluation
by Md Abdullah al Rumon, Gozde Cay, Vignesh Ravichandran, Afnan Altekreeti, Anna Gitelson-Kahn, Nicholas Constant, Dhaval Solanki and Kunal Mankodiya
Biosensors 2023, 13(1), 34; https://doi.org/10.3390/bios13010034 - 27 Dec 2022
Cited by 17 | Viewed by 6428
Abstract
The advancement of smart textiles has led to significant interest in developing wearable textile sensors (WTS) and offering new modalities to sense vital signs and activity monitoring in daily life settings. For this, textile fabrication methods such as knitting, weaving, embroidery, and braiding [...] Read more.
The advancement of smart textiles has led to significant interest in developing wearable textile sensors (WTS) and offering new modalities to sense vital signs and activity monitoring in daily life settings. For this, textile fabrication methods such as knitting, weaving, embroidery, and braiding offer promising pathways toward unobtrusive and seamless sensing for WTS applications. Specifically, the knitted sensor has a unique intermeshing loop structure which is currently used to monitor repetitive body movements such as breathing (microscale motion) and walking (macroscale motion). However, the practical sensing application of knit structure demands a comprehensive study of knit structures as a sensor. In this work, we present a detailed performance evaluation of six knitted sensors and sensing variation caused by design, sensor size, stretching percentages % (10, 15, 20, 25), cyclic stretching (1000), and external factors such as sweat (salt-fog test). We also present regulated respiration (inhale–exhale) testing data from 15 healthy human participants; the testing protocol includes three respiration rates; slow (10 breaths/min), normal (15 breaths/min), and fast (30 breaths/min). The test carried out with statistical analysis includes the breathing time and breathing rate variability. These testing results offer an empirically derived guideline for future WTS research, present aggregated information to understand the sensor behavior when it experiences a different range of motion, and highlight the constraints of the silver-based conductive yarn when exposed to the real environment. Full article
(This article belongs to the Special Issue Devices and Wearable Devices toward Innovative Applications)
Show Figures

Figure 1

11 pages, 3616 KiB  
Article
Study on the Tensile Behavior of Helical Auxetic Yarns with Finite Element Method
by Sai Liu and Zhaoqun Du
Materials 2023, 16(1), 122; https://doi.org/10.3390/ma16010122 - 22 Dec 2022
Cited by 3 | Viewed by 1922
Abstract
Complex yarns with helical wrapping structure show auxetic effect under axial tension and a wide perspective application. Experimental results suggested that initial helical angle was one of the most important structural parameters. However, the experimental method was limited and could not effectively explain [...] Read more.
Complex yarns with helical wrapping structure show auxetic effect under axial tension and a wide perspective application. Experimental results suggested that initial helical angle was one of the most important structural parameters. However, the experimental method was limited and could not effectively explain the deformation behavior or auxetic mechanism. A finite element model of the helical auxetic yarn was built and used to analyze the interactive relationship between the two components and the stress distribution mode. The effectiveness and accuracy of the model was first verified by comparing with the experimental results. The simulation results showed that the complex yarn with initial helical angle of 14.5° presented the maximum negative Poisson’s ratio of −2.5 under 5.0% axial strain. Both the contact property between the two components and the radial deformability of the elastic core filament were key factors of the auxetic property. When the contact surfaces were completely smooth and the friction coefficient μ was set to 0, the complex yarn presented non-auxetic behavior. When the Poisson’s ratio of the core filament was 0, the complex yarn showed greater auxetic effect. During the axial stretching, the tensile stress was mainly distributed in the wrap filament, which led to structural deformation and auxetic behavior. A pair of auxetic yarns showed pore effect and high expansion under axial strain. Thus, it may be necessary to consider new weaving structures and preparation methods to obtain the desired auxetic property and application of auxetic yarns. Full article
(This article belongs to the Special Issue Advanced Textile Materials: Design, Properties and Applications)
Show Figures

Figure 1

Back to TopTop