Study on the Tensile Behavior of Helical Auxetic Yarns with Finite Element Method
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Poisson’s Ratios of Complex Yarns
3.1.1. Finite Element Model Validation
3.1.2. The Effect of Initial Helical Angle
3.1.3. The Effect of Yarn Components’ Poisson’s Ratios
3.1.4. The Effect of Friction between Contacting Surfaces
3.2. Auxetic Property of a Pair of Complex Yarns
3.3. Auxetic Mechanism
4. Conclusions
- (1)
- The complex yarn with smaller helical angle showed a greater auxetic effect under smaller axial strain.
- (2)
- The Poisson’s ratios of the components, especially the core filament, affected the auxetic property. This is mainly attributable to the deformable characteristic of the core filament with positive Poisson’s ratio. The interaction between the two components was indispensable for the auxetic effect. However, different friction coefficients between contact surfaces of the two components led to nearly no difference in expansion behavior.
- (3)
- A pair of auxetic yarns being laid together led to a more negative Poisson’s ratio than a single yarn, and showed an obvious pore effect.
- (4)
- During the axial tension process, the stress was always distributed on the stiff wrap filament. The difference of the modulus led to the deformation behavior and auxetic effect. The structure and outside contour of the helical complex yarn varied with the axial strain. This could be a valuable prediction model for radial strain and theoretical Poisson’s ratio by finite element method.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Evans, K.E.; Alderson, A. Auxetic materials: Functional materials and structures from lateral thinking! Adv. Mater. 2000, 12, 617–628. [Google Scholar] [CrossRef]
- Shukla, S.; Behera, B. Auxetic fibrous structures and their composites: A review. Compos. Struct. 2022, 290, 115530. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, H. 3D auxetic warp-knitted spacer fabrics. Phys. Status Solidi B 2014, 251, 281–288. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, G.; You, Z. Large deformation and energy absorption of additively manufactured auxetic materials and structures: A review. Compos. Part B Eng. 2020, 201, 108340. [Google Scholar] [CrossRef]
- Olly, D.; Todd, S.; Charlotte, M.; Leon, F.; Praburaj, V.; Keith, W.; Tom, A.; Andrew, A. Review of auxetic materials for sports applications: Expanding options in comfort and protection. Appl. Sci. 2018, 8, 941. [Google Scholar]
- Miller, W.; Hook, P.; Smith, C.; Wang, X.; Evans, K. The manufacture and characterisation of a novel, low modulus, negative Poisson’s ratio composite. Compos. Sci. Technol. 2009, 69, 651–655. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Zhang, G.; Ghita, O.; Evans, K. The variation in Poisson’s ratio caused by interactions between core and wrap in helical composite auxetic yarns. Compos. Sci. Technol. 2014, 102, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Du, Z.Q.; Zhou, M.; He, L.E.; Liu, H.L. Study on negative Poisson’s ratio of auxetic yarn under tension: Part 2–Experimental verification. Text. Res. J. 2015, 85, 768–774. [Google Scholar] [CrossRef]
- Zhang, G.; Ghita, O.; Evans, K. The fabrication and mechanical properties of a novel 3-component auxetic structure for composites. Compos. Sci. Technol. 2015, 117, 257–267. [Google Scholar] [CrossRef] [Green Version]
- Jiang, N.; Hu, H. A study of tubular braided structure with negative Poisson’s ratio behavior. Text. Res. J. 2017, 88, 2810–2824. [Google Scholar] [CrossRef]
- Hu, H.; Wang, Z.; Liu, S. Development of auxetic fabrics using flat knitting technology. Text. Res. J. 2011, 81, 1493–1502. [Google Scholar] [CrossRef]
- Zhao, S.; Hu, H.; Kamrul, H.; Chang, Y.; Zhang, M. Development of auxetic warp knitted fabrics based on reentrant geometry. Text. Res. J. 2019, 90, 344–356. [Google Scholar] [CrossRef]
- Ng, W.; Hu, H. Woven Fabrics Made of Auxetic Plied Yarns. Polymers 2018, 10, 226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Du, Z.; Li, T. Structural design and characterization of highly elastic woven fabric containing helical auxetic yarns. Text. Res. J. 2019, 90, 809–823. [Google Scholar] [CrossRef]
- Lolaki, A.; Shanbeh, M. Variation of Poisson’s ratio of fabrics woven with helical composite auxetic weft yarns in relation to fabric structural parameters. J. Ind. Text. 2020, 50, 149–169. [Google Scholar] [CrossRef]
- Cao, H.; Zulifqar, A.; Hua, T.; Hu, H. Bi-stretch auxetic woven fabrics based on foldable geometry. Text. Res. J. 2019, 89, 2694–2712. [Google Scholar] [CrossRef]
- Ullah, T.; Ahmad, S.; Nawab, Y. Development of helical auxetic yarn with negative Poisson’s ratio by combinations of different materials and wrapping angle. J. Ind. Text. 2022, 51, 2181S–2196S. [Google Scholar] [CrossRef]
- Chen, Y.; Zulifqar, A.; Hu, H. Auxeticity from the Folded Geometry: A Numerical Study. Phys. Status Solidi B 2020, 257, 1900361. [Google Scholar] [CrossRef]
- Razbin, M.; Bagherzadeh, R. Predicting the longitudinal young’s modulus of helical auxetic yarn reinforced unidirectional composite. J. Text. Inst. 2022, 1–9. [Google Scholar] [CrossRef]
- Wright, J.R.; Sloan, M.R.; Evans, K.E. Tensile properties of helical auxetic structures: A numerical study. J. Appl. Phys. 2010, 108, 044905. [Google Scholar] [CrossRef]
- McAfee, J.; Faisal, N.H. Parametric sensitivity analysis to maximise auxetic effect of polymeric fibre based helical yarn. Compos. Struct. 2017, 162, 1–12. [Google Scholar] [CrossRef]
- Zhou, M.; Du, Z.Q. Effects of Structural Parameters and Performance on Poisson’s Ratio of Auxetic Yarn. Adv. Mater. Res. 2013, 821, 252–258. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, X.; Studd, R. Experimental and numerical study of helical auxetic yarns. Text. Res. J. 2021, 91, 1290–1301. [Google Scholar] [CrossRef]
- Liu, S.; Chen, X.; Du, Z. A finite element analysis of auxetic behavior of complex yarns with negative Poisson′s ratio. In Proceedings of the 8th World Conference on 3D Fabrics and Their Applications, Manchester, UK, 28–29 March 2018. [Google Scholar]
- Du, Z.; Zhou, M.; Liu, H.; He, L. Study on negative Poisson’s ratio of auxetic yarn under tension: Part 1—Theoretical analysis. Text. Res. J. 2015, 85, 487–498. [Google Scholar] [CrossRef]
- Liu, S.; Du, Z.; Liu, G.; Pan, X.; Li, T. Study on the tensile behavior of helical auxetic yarns by modeling and mechanical analysis. J. Text. Inst. 2021, 112, 1531–1537. [Google Scholar] [CrossRef]
- Razbin, M.; Avanaki, M.J.; Jeddi, A.A.A. Application of artificial neural network and full factorial method to predict the Poisson’s ratio of double core helical auxetic yarn. J. Text. Inst. 2022, 1–9. [Google Scholar] [CrossRef]
Poisson’s Ratio of Core | Poisson’s Ratio of Wrap | Most Negative Poisson’s Ratio | Related Axial Strain (%) |
---|---|---|---|
0 | 0.3 | −1.0 | 9.9 |
0.1 | 0.3 | −0.9 | 13.5 |
0.3 | 0.3 | −0.8 | 14.6 |
0.5 | 0.3 | −0.8 | 14.0 |
0.5 | 0 | −0.8 | 15.4 |
0 | 0 | −1.2 | 16.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Du, Z. Study on the Tensile Behavior of Helical Auxetic Yarns with Finite Element Method. Materials 2023, 16, 122. https://doi.org/10.3390/ma16010122
Liu S, Du Z. Study on the Tensile Behavior of Helical Auxetic Yarns with Finite Element Method. Materials. 2023; 16(1):122. https://doi.org/10.3390/ma16010122
Chicago/Turabian StyleLiu, Sai, and Zhaoqun Du. 2023. "Study on the Tensile Behavior of Helical Auxetic Yarns with Finite Element Method" Materials 16, no. 1: 122. https://doi.org/10.3390/ma16010122
APA StyleLiu, S., & Du, Z. (2023). Study on the Tensile Behavior of Helical Auxetic Yarns with Finite Element Method. Materials, 16(1), 122. https://doi.org/10.3390/ma16010122