Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Keywords = LC-MC/MS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3470 KB  
Article
Research on the Changing Characteristics of Milk Composition and Serum Metabolites Across Various Lactation Periods in Xinggao Sheep
by Jingda Yuan, Zhenbo Wu, Biao Wang, Shaoyin Fu, Rigele Te, Lai Da, Liwei Wang, Qing Qin and Xiaolong He
Metabolites 2025, 15(10), 678; https://doi.org/10.3390/metabo15100678 - 20 Oct 2025
Viewed by 712
Abstract
Background: The variation in sheep milk composition is closely related to the sheep’s metabolic status. This study aimed to analyze the milk composition and serum metabolic characteristics of Xinggao sheep during different lactation periods and to evaluate the association between milk quality traits [...] Read more.
Background: The variation in sheep milk composition is closely related to the sheep’s metabolic status. This study aimed to analyze the milk composition and serum metabolic characteristics of Xinggao sheep during different lactation periods and to evaluate the association between milk quality traits and body metabolism. Methods: Eighteen intensively reared ewes were divided into three groups: an early lactation group (MA), a mid-lactation group (MB), and a late lactation group (MC). Milk components were detected by infrared spectroscopy, and the ewes’ serum metabolomic characteristics were detected by liquid chromatography–mass spectrometry (LC-MS). K-means correlation analysis revealed that the milk fat percentage was positively correlated with L-aspartic acid and negatively correlated with citrulline levels. Random forest analysis for metabolite importance ranking showed that methionine sulfoxide and methionine exhibited high mean decrease accuracy and mean decrease Gini index values. Results: The milk composition results showed that, compared with MA, the milk fat content and total solids in MB and MC were significantly higher, while the freezing point in the MC was significantly lower. Metabolomic studies showed that 207, 210, and 238 differential metabolites were identified in the comparisons of MA vs. MB MA vs. MC, and MB vs. MC, respectively, and these metabolites were mainly enriched in the pyrimidine metabolism, arachidonic acid metabolism, and arginine biosynthesis pathways. Evaluation of metabolite importance using random forest models revealed that 27 metabolites, including 2-Arachidonyl glycerol ether, methionine, and methionine sulfoxide, showed a high mean decrease accuracy and mean decrease Gini index. Correlation analysis revealed that milk fat percentage and total solids were positively correlated with 11 metabolites, including citrulline, phenylalanine, and octadecylamine, and negatively correlated with isoproterenol, cortisol, and kynurenic acid. The freezing point was positively correlated with cortisol, isoproterenol, and kynurenic acid and negatively correlated with aldosterone, dehydroepiandrosterone, and betaine. Conclusions: This study showed that there were significant differences in the milk composition and metabolites of Xinggao sheep during different lactation periods, highlighting the impact of lactation stage on milk composition and production performance. We recommend developing targeted nutritional strategies based on the specific metabolic profiles of different lactation periods to optimize the feeding management and nutritional regulation of Xinggao sheep. Full article
(This article belongs to the Section Animal Metabolism)
Show Figures

Figure 1

21 pages, 13552 KB  
Article
Effects of Thermal Treatments on the Physicochemical and Flavor Profiles of Chili Powders and Their Derived Chili Oils
by Chunping Jiang, Lijia Zhang, Linman Yu, Zhengfeng Fang, Bin Hu, Hong Chen, Wenjuan Wu, Yuntao Liu and Zhen Zeng
Foods 2025, 14(17), 3129; https://doi.org/10.3390/foods14173129 - 6 Sep 2025
Cited by 2 | Viewed by 1410
Abstract
Current research on chili powder and oil has predominantly focused on cultivar selection and oil temperature, while the impact of thermal pretreatment methods on their quality and flavor profiles remains underexplored. In this study, the flavor profiles of raw untreated, stir-fried, oven-baked, and [...] Read more.
Current research on chili powder and oil has predominantly focused on cultivar selection and oil temperature, while the impact of thermal pretreatment methods on their quality and flavor profiles remains underexplored. In this study, the flavor profiles of raw untreated, stir-fried, oven-baked, and microwaved chili powders (RC, SC, OC, and MC) and their corresponding chili oils obtained through secondary flavor activation (RCO, SCO, OCO, and MCO) were analyzed using E-nose, GC-IMS, HS-SPME-GC-MS, LC-MS/MS, and sensory evaluation techniques. E-nose and GC-IMS 2D topographic plots revealed that thermal treatment increased the concentration of volatile flavor compounds. HS-SPME-GC-MS further detected 220 and 207 volatile compounds in chili powders and oils, respectively, with 74 and 35 identified as differential volatile compounds. Aldehydes ((E,E)-2,4-heptadienal, benzaldehyde), alcohols (1-nonanol, 2-furanmethanol), Maillard reaction products (ethyl pyrazine, 2,3-dimethylpyrazine, and 2-ethyl-6-methylpyrazine), and methyl acetate were significantly enhanced in SC, OC, and MC and their corresponding chili oils. Among them, OC and OCO showed the greatest increase in differential flavor substances. Additionally, all three treatments enhanced the release of taste-active substances and improved sensory overall acceptability. These findings provide new insights for the food industry in optimizing chili product processing. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

13 pages, 5559 KB  
Article
Effects of Different Titanium Anodized Surfaces on Peri-Implant Soft Tissue Healing Around Dental Abutments: In Vitro and Proteomic Study
by Francisco Romero-Gavilán, Andreia Cerqueira, Carlos Arias-Mainer, David Peñarrocha-Oltra, Claudia Salavert-Martínez, Juan Carlos Bernabeu-Mira, Iñaki García-Arnáez, Félix Elortza, Mariló Gurruchaga, Isabel Goñi and Julio Suay
Appl. Sci. 2025, 15(13), 7349; https://doi.org/10.3390/app15137349 - 30 Jun 2025
Viewed by 1318
Abstract
Objectives: This study aimed to evaluate the effects of different titanium (Ti) anodized surfaces on soft tissue healing around dental implant abutments. Methods: Discs of machined (MC), pink anodized (PA) and yellow anodized (YA) surfaces were morphologically characterized and evaluated in vitro. Cell [...] Read more.
Objectives: This study aimed to evaluate the effects of different titanium (Ti) anodized surfaces on soft tissue healing around dental implant abutments. Methods: Discs of machined (MC), pink anodized (PA) and yellow anodized (YA) surfaces were morphologically characterized and evaluated in vitro. Cell adhesion and collagen synthesis by human gingival fibroblasts (hGFs) were assessed to evaluate the regenerative potential of the surfaces under study. Their inflammatory potential was evaluated in THP-1 cell cultures by measuring cytokine secretion, and their proteomic adsorption patterns were characterized using nano-liquid chromatography mass spectrometry (nLC-MS/MS). Statistical significance was considered at 5%. In relation to proteomics, statistical differences were evaluated using the Student t-test with the Perseus application. Results: The anodization process resulted in a reduction in the surface roughness parameter (Ra) relative to the machined titanium (p < 0.05). No differences in hGF adhesion were found between the surfaces after one day. PA induced increased hGF collagen synthesis after 7 days (p < 0.05). The secretion of TNF-α was lower for anodized surfaces than for MC, and its concentration was lower for PA than for YA (p < 0.05). In turn, TGF-β was higher for PA and YA versus MC after one and three days of culture. A total of 176 distinct proteins were identified and 26 showed differences in adhesion between the anodized surfaces and MC. These differential proteins were related to coagulation, lipid metabolism, transport activity, plasminogen activation and a reduction in the immune response. Conclusions: Anodized Ti surfaces showed promising anti-inflammatory and regenerative potential for use in dental implant abutments. Anodization reduced surface roughness, increased collagen synthesis and lowered TNF-α secretion while increasing TGF-β levels compared to machined surfaces. Identified proteins related to coagulation and lipid metabolism supported these findings. Clinical relevance: Anodized surfaces could offer improved short-term peri-implant soft tissue healing over machined surfaces. The analysis of abutment surface, instead of implant surface, is a new approach that can provide valuable information. Full article
(This article belongs to the Special Issue Application of Advanced Therapies in Oral Health)
Show Figures

Figure 1

12 pages, 2694 KB  
Article
In-Situ Measurement of Gas Permeability for Membranes in Water Electrolysis
by Shuaimin Li, Chuan Song, Li Xu, Yuxin Wang and Wen Zhang
Membranes 2025, 15(5), 147; https://doi.org/10.3390/membranes15050147 - 13 May 2025
Viewed by 1753
Abstract
Water electrolysis (WE) is a green technology for producing hydrogen gas without the emission of carbon dioxide. The ideal membrane materials in WE should be capable of transporting ions quickly and have gas barrier properties in harsh work environments. However, currently, no desirable [...] Read more.
Water electrolysis (WE) is a green technology for producing hydrogen gas without the emission of carbon dioxide. The ideal membrane materials in WE should be capable of transporting ions quickly and have gas barrier properties in harsh work environments. However, currently, no desirable measurement method has been developed for evaluating the gas barrier behavior of the membranes. Hence, an in-situ electrochemical method is developed to measure the gas permeability of membranes in the actual electrolysis environment, with the supersaturated state of H2 in the electrolyte and H2 bubbles during the electrolysis process. Four membranes, including Zirfon (a state-of-the-art alkaline WE membrane), polyphenylene sulfide fabric (PPS, a commercial alkaline WE membrane), FAA-3-PK-75 (a commercial anion-exchange membrane), and BILP-PE (a home-made composite membrane) were employed as the standard samples to perform the electrochemical measurement under different current densities, temperatures, and electrolyte concentrations. The results show that an increase in electrolytic current density or temperature or a decrease in KOH concentration can increase the H2 permeability of the membrane. The two porous membranes, Zirfon and PPS, are more affected by the current density and KOH concentration, while the dense FAA-3-PK-75 and BILP-PE membranes have a stronger ability to hinder H2 permeation. Under the conditions of 80 °C, 30 wt.% KOH, 101 kPa, and 400 mA·cm−2, the hydrogen permeability (×1010 L·cm·cm−2·s−1) of Zirfon, PPS, FAA, and BILP-PE are 263, 367, 28.3, and 5.32, respectively. Full article
(This article belongs to the Section Membrane Applications for Energy)
Show Figures

Figure 1

20 pages, 15417 KB  
Article
An Investigation of the Anticancer Mechanism of Caesalpinia sappan L. Extract Against Colorectal Cancer by Integrating a Network Pharmacological Analysis and Experimental Validation
by Mibae Jeong, Jaemoo Chun, Sang-Min Park, Heerim Yeo, Se Won Na, In Jin Ha, Bonglee Kim and Mi-Kyung Jeong
Plants 2025, 14(2), 263; https://doi.org/10.3390/plants14020263 - 18 Jan 2025
Cited by 4 | Viewed by 2587
Abstract
Caesalpinia sappan L. has exhibited various pharmacological effects, yet its anticancer activities against colorectal cancer (CRC) and underlying molecular mechanisms remain unclear. This study investigated the anticancer properties of an ethanol extract of C. sappan L. (CSE) against CRC cells, focusing on the [...] Read more.
Caesalpinia sappan L. has exhibited various pharmacological effects, yet its anticancer activities against colorectal cancer (CRC) and underlying molecular mechanisms remain unclear. This study investigated the anticancer properties of an ethanol extract of C. sappan L. (CSE) against CRC cells, focusing on the identification of bioactive compounds and their mechanisms of action. A network pharmacology analysis was conducted to identify potential CRC targets and bioactive compounds of CSE, using LC-MS for compound identification. The anticancer effects of CSE were then validated through in vitro and in vivo models of CRC. The network pharmacological approach identified 87 overlapping genes between CSE targets and CRC-related genes, with protein–protein interaction analysis highlighting 33 key target genes. CSE inhibited cell proliferation in human CRC cell lines, including HCT 116, KM12SM, HT-29, and COLO 205, and induced apoptosis via caspase 3/7 activation. Western blot analyses confirmed the modulation of critical signaling pathways, including STAT3, AKT, and mitogen-activated protein kinases. Furthermore, CSE significantly suppressed tumor growth in MC38 CRC-bearing mice. These findings suggest that CSE possesses substantial potential as a natural anticancer agent for CRC treatment, highlighting the need for further exploration in therapeutic development. Full article
Show Figures

Figure 1

15 pages, 5598 KB  
Article
An Integrated Analysis of the Role of Gut Microbiome-Associated Metabolites in the Detection of MASH-Related Cirrhosis
by Feixiang Xiong, Xuejie Zhang, Yuyong Jiang, Peipei Meng, Yang Zhou, Xiaomin Ji, Jialiang Chen, Tong Wu and Yixin Hou
Metabolites 2024, 14(12), 681; https://doi.org/10.3390/metabo14120681 - 4 Dec 2024
Cited by 1 | Viewed by 1626
Abstract
Background and aim: The prevalence and adverse outcomes of metabolic dysfunction associated with steatotic liver disease (MAFLD) are increasing. The changes in the gut microbiota and metabolites associated with metabolic dysfunction-associated steatohepatitis (MASH) are regarded as an essential part of the progression of [...] Read more.
Background and aim: The prevalence and adverse outcomes of metabolic dysfunction associated with steatotic liver disease (MAFLD) are increasing. The changes in the gut microbiota and metabolites associated with metabolic dysfunction-associated steatohepatitis (MASH) are regarded as an essential part of the progression of MAFLD. This study aimed to identify the gut microbiota and metabolites involved in the development of MAFLD in patients. Method: This study enrolled 90 patients (healthy controls, HC: n = 30; MASH: n = 30; MASH-related cirrhosis, MC: n = 30), and their fecal samples were collected for 16S rRNA sequencing and non-targeted LC–MS/MS metabolomics analysis. Data preprocessing and statistical analyses were performed using QIIME2 software, Pynast, QIIME2 package, Progenesis QI, and R program. Results: The abundance of Prevotellaceae at the family level and Prevotella at the genus level was lower in the MASH and NC samples than in the HC samples. Both Prevotellaceae and Prevotella showed the strongest correlation with MASH progression via random forest analysis. Untargeted metabolomics was used to quantitatively screen for discrepant metabolites in the stool samples from the three groups. Linolenic acid (LA)-related metabolite levels were significantly lower in MASH and NC samples. Associations between Prevotella- or LA-related metabolites and liver function were discovered. A high abundance of Prevotella was associated with LA-related metabolites and MASH. Conclusion: This study identified that gut microbiota and metabolites are associated with MASH-related metabolic dysfunction. LA and Prevotella are depleted during MASH progression, and additional supplementation with Prevotella may be a potential strategy for the future treatment of MAFLD. Full article
(This article belongs to the Section Lipid Metabolism)
Show Figures

Figure 1

21 pages, 10722 KB  
Article
Quantitative Analysis of Deer Bone Hydroethanolic Extract Using Label-Free Proteomics: Investigating Its Safety and Promoting Effect on Mouse Embryonic Osteoblastic Progenitor Cell Proliferation
by Yanlu Li, Junxia Ma, Yingshan Jiang, Yanchao Xing, Zhongmei He, Weijia Chen, Yan Zhao, Jianan Geng, Ying Zong and Rui Du
Nutrients 2024, 16(22), 3807; https://doi.org/10.3390/nu16223807 - 6 Nov 2024
Cited by 2 | Viewed by 2245
Abstract
Background: Deer bone is rich in proteins and free amino acids, offering high nutritional value and benefits such as strengthening bones and antioxidant properties. However, the development and utilization of deer bone resources are limited, and the safety evaluation of health foods is [...] Read more.
Background: Deer bone is rich in proteins and free amino acids, offering high nutritional value and benefits such as strengthening bones and antioxidant properties. However, the development and utilization of deer bone resources are limited, and the safety evaluation of health foods is incomplete. Methods: We established a hydrogen ethanol extraction method for deer bone and analyzed the components of the deer bone hydroethanolic extract (DBHE) using liquid chromatography–tandem mass spectrometry (LC-MS/MS), gas chromatography–mass spectrometry (GC-MS), and inductively coupled plasma mass spectrometry (ICP-MS). Results: Using Label-free proteomics technology, we identified 69 proteins and 181 peptides. We also quantified 16 amino acids, 22 fatty acids, and 17 inorganic elements. Finally, we evaluated the safety of DBHE both in vitro and in vivo. The results indicated that DBHE did not exhibit any toxic effects at the doses we tested and can promote the proliferation of mouse embryonic osteoblastic progenitor cells (MC3T3-E1), demonstrating potential efficacy against osteoporosis and arthritis. Conclusions: This study provides a theoretical basis for the quality control, processing, and resource development of deer bone. Full article
(This article belongs to the Section Proteins and Amino Acids)
Show Figures

Figure 1

14 pages, 3850 KB  
Article
Cobalt-Doped Carbon Nitride for Efficient Removal of Microcystis aeruginosa via Peroxymonosulfate Activation
by Wen Yan, Chuqiao Li, Yunjuan Meng, Yao Yue, Teer Wen, Jiafeng Ding and Hangjun Zhang
Toxins 2024, 16(11), 455; https://doi.org/10.3390/toxins16110455 - 24 Oct 2024
Cited by 2 | Viewed by 2079
Abstract
Heterogeneous persulfate activation is an advanced technology for treating harmful algae in drinking water sources, while it remains a significant hurdle in the efficient management of cyanobacterial blooms. In this study, super-dispersed cobalt-doped carbon nitride (2CoCN) was prepared to activate peroxymonosulfate (PMS) for [...] Read more.
Heterogeneous persulfate activation is an advanced technology for treating harmful algae in drinking water sources, while it remains a significant hurdle in the efficient management of cyanobacterial blooms. In this study, super-dispersed cobalt-doped carbon nitride (2CoCN) was prepared to activate peroxymonosulfate (PMS) for simultaneous Microcystis aeruginosa inhibition and microcystin (MC-LR) degradation. When the initial PMS and 2CoCN concentrations were 0.3 g/L and 0.4 g/L, respectively, the efficiency of algal cell removal reached 97% in 15 min, and the degradation of MC-LR reached 96%. Analyses by SEM, TEM, and EEM spectra revealed that the reaction led to changes in algal cell morphology, damage to the cell membrane and cell wall, and the diffusion of thylakoid membranes and liposomes. The activities of antioxidant enzymes (superoxide dismutase and catalase) and antioxidants (glutathione) in algal cells generally increased, and the content of malondialdehyde increased, indicating severe damage to the cell membrane. Radical capture experiments confirmed that singlet oxygen (1O₂) was the key species destroying algal cells in the 2CoCN/PMS system. The 2CoCN/PMS system was effective in removing M. aeruginosa within a wide pH range (3–9), and 2CoCN had good reusability. Additionally, three degradation products of MC-LR were identified by LC–MS/MS analysis, and a possible mechanism for the inactivation of M. aeruginosa and the degradation of MC-LR was proposed. In conclusion, this study pioneered the 2CoCN/PMS system for inhibiting M. aeruginosa and degrading microcystin, aiming to advance water purification and algae removal technology. Full article
Show Figures

Figure 1

14 pages, 9639 KB  
Article
Extraction Condition Optimization, Quantitative Analysis, and Anti-AD Bioactivity Evaluation of Acorn Polyphenols from Quercus variabilis, Quercus aliena, and Quercus dentata
by Jianing Du, Zhengkun Han, Longyi Ran, Taiyu Zhang, Junru Li and Huiying Li
Int. J. Mol. Sci. 2024, 25(19), 10536; https://doi.org/10.3390/ijms251910536 - 30 Sep 2024
Cited by 2 | Viewed by 1593 | Correction
Abstract
In the present study, Quercus variabilis (Q. variabilis), Quercus aliena (Q. aliena), and Quercus dentata (Q. dentata) acorn kernels were taken as the research objects, and the free polyphenols and bound polyphenols in acorn kernels were extracted using improved ultrasound-assisted ethanolic and alkaline [...] Read more.
In the present study, Quercus variabilis (Q. variabilis), Quercus aliena (Q. aliena), and Quercus dentata (Q. dentata) acorn kernels were taken as the research objects, and the free polyphenols and bound polyphenols in acorn kernels were extracted using improved ultrasound-assisted ethanolic and alkaline extraction methods, after which the contents of gallic acid, quercetin, azelaic acid, ellagic acid, and ferulic acid were quantified by LC-MC/MS. The results demonstrated that Q. variabilis and Q. aliena acorns were suitable as raw materials to extract ellagic acid, the contents of ferulic acid and bound gallic acid in them were different, and Q. aliena acorns were more suitable for the research of gallic acid, but not for azelaic acid. Results on APP/PS1 transgenic mice verified that five polyphenols significantly suppressed the progression of AD. This study provides a theoretical basis for the drug development of acorn polyphenols. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

16 pages, 1230 KB  
Article
Contaminant Exposure and Liver and Kidney Lesions in North American River Otters in the Indian River Lagoon, Florida
by Ami Krasner, Megan Stolen, David Rotstein and Spencer Fire
Toxics 2024, 12(9), 684; https://doi.org/10.3390/toxics12090684 - 21 Sep 2024
Cited by 5 | Viewed by 2374
Abstract
The harmful algal bloom (HAB) liver toxin microcystin (MC) and trace element biomagnification were previously detected in organisms in the Indian River Lagoon (IRL), Florida. Since there are no routine screening programs for these contaminants, liver tissue from North American river otters ( [...] Read more.
The harmful algal bloom (HAB) liver toxin microcystin (MC) and trace element biomagnification were previously detected in organisms in the Indian River Lagoon (IRL), Florida. Since there are no routine screening programs for these contaminants, liver tissue from North American river otters (Lontra canadensis), an important sentinel species in the IRL, was screened for MC via enzyme-linked immunoassay (ELISA), followed by confirmatory analyses via liquid-chromatography/mass spectrometry methods (LC-MS/MS). Liver and kidney samples were evaluated for trace element (As, Cd, Co, Cu, Fe, Hg, Mn, Mo, Pb, Se, Tl, and Zn) bioaccumulation via inductively coupled plasma mass spectrometry (ICP-MS). Histopathologic evaluation of the liver and kidney was conducted to assess possible correlation with toxic insults. Forty-three river otters were evaluated (2016–2022). Microcystin was not detected in any river otter sample (n = 37). Of those tested for trace element bioaccumulation (n = 22), no sample measured above provided reference ranges or estimated toxic thresholds for this species. There were no statistically significant patterns observed based on season, year, or age class, but sex had a small influence on trace element levels in the kidney. One individual had a kidney Cu level (52 μg/g dry weight) higher than any previously reported for this species. Trace elements were detected at presumed background levels providing baselines for future monitoring. For otters with available histopathologic evaluation (n = 28), anomalies indicative of contaminant exposure (non-specific inflammation, necrosis, and/or lipidosis) were present in the liver and kidney of 18% and 4% of individuals, respectively. However, since these lesions were not linked to abnormal trace element bioaccumulation or MC exposure, other causes (e.g., infectious disease) should be considered. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Figure 1

20 pages, 5118 KB  
Article
Co-Occurrence of Cyanotoxins and Phycotoxins in One of the Largest Southeast Asian Brackish Waterbodies: A Preliminary Study at the Tam Giang—Cau Hai Lagoon (Vietnam)
by Devleena Sahoo, Ngoc Khanh Ni Tran, Thi Gia-Hang Nguyen, Thi Thu Hoai Ho, Thi Thuy Hang Phan, Duong Thu Huong Hoang, Ngo Huu Binh, Thi Thu Lien Nguyen, Luong Quang Doc, Noureddine Bouaïcha and Tri Nguyen-Quang
Limnol. Rev. 2024, 24(3), 335-353; https://doi.org/10.3390/limnolrev24030020 - 25 Aug 2024
Cited by 2 | Viewed by 3132
Abstract
The Tam Giang-Cau Hai lagoon (TGCH) in Thua Thien Hue province (Vietnam) is a marsh/lagoon system and ranks among the largest waterbodies in Southeast Asia. It plays a significant role in terms of both socio-economic and environmental resources. However, anthropogenic stress, as well [...] Read more.
The Tam Giang-Cau Hai lagoon (TGCH) in Thua Thien Hue province (Vietnam) is a marsh/lagoon system and ranks among the largest waterbodies in Southeast Asia. It plays a significant role in terms of both socio-economic and environmental resources. However, anthropogenic stress, as well as the discharge of untreated domestic and industrial sewage with agricultural runoff from its three major tributaries, dramatically damages the water quality of the lagoon. Especially after heavy rain and flash floods, the continuous degradation of its water quality, followed by harmful algal and cyanobacterial bloom patterns (HABs), is more perceptible. In this study, several physicochemical factors, cyanotoxins (anatoxins (ATXs), saxitoxins (STXs), microcystins (MCs)), phycotoxins (STXs, okadaic acid (OA), and dinophysistoxins (DTXs)) were analyzed in water and shellfish samples from 13 stations in June 2023 from 13 stations, using enzyme-linked immunosorbent assay (ELISA) kits for the ATXs and STXs, and the serine/threonine phosphatase type 2A (PP2A) inhibition assay kit for the MCs, OA, and DTXs. The results showed for the first time the co-occurrence of freshwater cyanotoxins and marine phycotoxins in water and shellfish samples in this lagoon. Traces of ATXs and STXs were detected in the shellfish and the orders of magnitude were below the seafood safety action levels. However, toxins inhibiting the PP2A enzyme, such as MCs and nodularin (NODs), as well as OA and DTXs, were detected at higher concentrations (maximum: 130.4 μg equiv. MC-LR/kg shellfish meat wet weight), approaching the actionable level proposed for this class of toxin in shellfish (160 μg of OA equivalent per kg of edible bivalve mollusk meat). It is very important to note that due to the possible false positives produced by the ELISA test in complex matrices such as a crude shellfish extract, this preliminary and pilot research will be repeated with a more sophisticated method, such as liquid chromatography coupled with mass spectroscopy (LC-MS), in the upcoming research plan. Full article
(This article belongs to the Special Issue Hot Spots and Topics in Limnology)
Show Figures

Figure 1

12 pages, 2244 KB  
Article
Cyanotoxins in Epipelic and Epiphytic Cyanobacteria from a Hypersaline Coastal Lagoon, an Environmental Hazard in Climate Warming Times and a Potential Source of New Compounds
by Yerai Gómez-Leyva, Alejandro Torrecillas and Marina Aboal
Mar. Drugs 2024, 22(8), 334; https://doi.org/10.3390/md22080334 - 24 Jul 2024
Cited by 2 | Viewed by 1816
Abstract
Cyanobacterial biodiversity and potential toxicity in coastal lagoons have barely been studied despite these transitional water systems being very important in conservation and for the preservation of economic resources. Most of these transitional systems have been affected by eutrophication, and climate change will [...] Read more.
Cyanobacterial biodiversity and potential toxicity in coastal lagoons have barely been studied despite these transitional water systems being very important in conservation and for the preservation of economic resources. Most of these transitional systems have been affected by eutrophication, and climate change will severely affect them by promoting cyanobacteria growth, especially in Mediterranean areas. This study aims to characterize the diversity of epipelic and epiphytic cyanobacteria species in a Mediterranean coastal lagoon and their potential for toxins production (microcystins and saxitoxins). Strains were isolated and genetically identified. Toxins were extracted and quantified by LC/MS-MS. All the taxa belong to the former Oscillatoriales. The presence of Nodosilinea and Toxifilum is reported for the first time for Spanish waters, but Pseudanabaena, Phormidium, Geitlerinema and Synechococcus also formed part of benthic mats. All the strains contained Microcystin-YR (MC-YR), but saxitoxin (STX) was present only in the extracts of Nodosilinea and Pseudanabena. MC-LY, MC-LW and [D-Asp3] MC-LR were detected in the extracts of Synechococcus and MC-LF in Toxifilum, but at concentrations that did not permit quantification. Toxins production by epipelic and epiphytic strains in coastal lagoons may represent a hazard, but also an opportunity to obtain potentially interesting compounds that should be further studied. Full article
(This article belongs to the Special Issue Emerging Toxins Accumulation in Shellfish)
Show Figures

Graphical abstract

12 pages, 2552 KB  
Article
Environmentally Friendly and Cost-Effective Approaches to Reduce Toxin Content in Toxic Cyanobacterial Biomasses
by Leticia Loss, Joana Azevedo, Tomé Azevedo, Marisa Freitas, Vitor Vasconcelos and Alexandre Campos
Biomass 2024, 4(2), 518-529; https://doi.org/10.3390/biomass4020027 - 3 Jun 2024
Viewed by 1649
Abstract
Cyanobacterial outgrowths are naturally occurring processes in eutrophic aquatic ecosystems. Furthermore, as a result of climate change and anthropogenic pollution, cyanobacteria harmful algal blooms (CyanoHABs) are expanding worldwide. CyanoHABs are considered a threat to human health and environment due to the production of [...] Read more.
Cyanobacterial outgrowths are naturally occurring processes in eutrophic aquatic ecosystems. Furthermore, as a result of climate change and anthropogenic pollution, cyanobacteria harmful algal blooms (CyanoHABs) are expanding worldwide. CyanoHABs are considered a threat to human health and environment due to the production of potent toxic substances, but at the same time, valuable products can be obtained from these microorganisms. The main objective of this study was to test straightforward and cost-effective methods to reduce the toxin content of cyanobacterial biomass for the exploitation of this important biological resource. To carry out this study, lyophilized or hydrated biomass from microcystin-LR (MC-LR) producing Microcystis aeruginosa and cylindrospermopsin (CYN) producing Chrysosporum ovalisporum strains were subjected to the following treatments: (1) thermal (50 °C); (2) ultraviolet (UV) radiation; (3) ozone; and (4) sunlight, for periods varying between 2 and 12 h. MC-LR and CYN concentrations were quantified by LC-MS and compared between experimental groups. The results show a significant reduction in the amount of MC-LR in M. aeruginosa biomass (lyophilized and hydrated) exposed to sunlight. Since no other treatment reduced MC-LR in M. aeruginosa biomass, this molecule was demonstrated to be very stable. Regarding CYN, the concentration of this toxin in C. ovalisporum biomass was significantly reduced with the exposure to UV radiation, to approximately 51% of the initial concentration after 2 h of exposure; 86% reduction after 5 h of exposure; and 77% reduction after 12 h of exposure. Overall, this study demonstrates that the toxicity of cyanobacterial biomass can be reduced by employing environmentally friendly and cost-effective treatments with sunlight and UV radiation. Full article
Show Figures

Figure 1

19 pages, 3495 KB  
Article
Screening and Genomic Analysis of Alkaloid-Producing Endophytic Fungus Fusarium solani Strain MC503 from Macleaya cordata
by Xinhong Wu, Nazidi Ibrahim, Yili Liang and Xueduan Liu
Microorganisms 2024, 12(6), 1088; https://doi.org/10.3390/microorganisms12061088 - 27 May 2024
Cited by 1 | Viewed by 1865
Abstract
The extensive harvesting of Macleaya cordata, as a biomedicinal plant and a wild source of quaternary benzo[c]phenanthridine alkaloids, has led to a rapid decline in its population. An alternative approach to the production of these bioactive compounds, which are known for their [...] Read more.
The extensive harvesting of Macleaya cordata, as a biomedicinal plant and a wild source of quaternary benzo[c]phenanthridine alkaloids, has led to a rapid decline in its population. An alternative approach to the production of these bioactive compounds, which are known for their diverse pharmacological effects, is needed. Production of these compounds using alkaloid-producing endophytic fungi is a promising potential approach. In this research, we isolated an alkaloid-producing endophytic fungus, strain MC503, from the roots of Macleaya cordata. Genomic analysis was conducted to elucidate its metabolic pathways and identify the potential genes responsible for alkaloid biosynthesis. High-performance liquid chromatography (HPLC) and liquid chromatography–mass spectrometry (LC–MS) analyses revealed the presence and quantified the content of sanguinarine (536.87 μg/L) and chelerythrine (393.31 μg/L) in the fungal fermentation extract. Based on our analysis of the morphological and micromorphological characteristics and the ITS region of the nuclear ribosomal DNA of the alkaloid-producing endophyte, it was identified as Fusarium solani strain MC503. To the best of our knowledge, there is no existing report on Fusarium solani from Macleaya cordata or other medicinal plants that produce sanguinarine and chelerythrine simultaneously. These findings provide valuable insights into the capability of Fusarium solani to carry out isoquinoline alkaloid biosynthesis and lay the foundation for further exploration of its potential applications in pharmaceuticals. Full article
(This article belongs to the Section Systems Microbiology)
Show Figures

Figure 1

20 pages, 1202 KB  
Article
The Metabolomic Profile of Microscopic Colitis Is Affected by Smoking but Not Histopathological Diagnosis, Clinical Course, Symptoms, or Treatment
by Axel Ström, Hans Stenlund and Bodil Ohlsson
Metabolites 2024, 14(6), 303; https://doi.org/10.3390/metabo14060303 - 27 May 2024
Cited by 1 | Viewed by 1901
Abstract
Microscopic colitis (MC) is classified as collagenous colitis (CC) and lymphocytic colitis (LC). Genetic associations between CC and human leucocyte antigens (HLAs) have been found, with smoking being a predisposing external factor. Smoking has a great impact on metabolomics. The aim of this [...] Read more.
Microscopic colitis (MC) is classified as collagenous colitis (CC) and lymphocytic colitis (LC). Genetic associations between CC and human leucocyte antigens (HLAs) have been found, with smoking being a predisposing external factor. Smoking has a great impact on metabolomics. The aim of this explorative study was to analyze global metabolomics in MC and to examine whether the metabolomic profile differed regarding the type and course of MC, the presence of IBS-like symptoms, treatment, and smoking habits. Of the 240 identified women with MC aged ≤73 years, 131 completed the study questionnaire; the Rome III questionnaire; and the Visual Analog Scale for Irritable Bowel Syndrome (VAS-IBS). Blood samples were analyzed by ultra-high-performance liquid chromatograph mass spectrometry (UHLC-MS/UHPLC-MSMS). The women, 63.1 (58.7–67.2) years old, were categorized based on CC (n = 76) and LC (n = 55); one episode or refractory MC; IBS-like symptoms or not; use of corticosteroids or not; and smoking habits. The only metabolomic differences found in the univariate model after adjustment for false discovery rate (FDR) were between smokers and non-smokers. Serotonin was markedly increased in smokers (p < 0.001). No clear patterns appeared when conducting a principal component analysis (PCA). No differences in the metabolomic profile were found depending on the type or clinical course of the disease, neither in the whole MC group nor in the subgroup analysis of CC. Full article
(This article belongs to the Section Advances in Metabolomics)
Show Figures

Figure 1

Back to TopTop