Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (207)

Search Parameters:
Keywords = L. perenne

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4087 KB  
Article
Influence of Composite Amendments on the Characteristics of Sandy Soil
by Xinrui Sui, Lingyan Wang, Xinyao Lv, Yanan Liu, Yuqi Zhu, Lingyun Fan and Hanxi Wang
Sustainability 2025, 17(17), 7619; https://doi.org/10.3390/su17177619 - 23 Aug 2025
Viewed by 64
Abstract
Soil desertification control is a global challenge, and the barrenness of sandy soil limits the growth of plants. To enhance the vegetation growth capacity of sandy soils, the preparation of soil amendments and the experiment of improving desertified soil were conducted. The soil [...] Read more.
Soil desertification control is a global challenge, and the barrenness of sandy soil limits the growth of plants. To enhance the vegetation growth capacity of sandy soils, the preparation of soil amendments and the experiment of improving desertified soil were conducted. The soil amendment is prepared by mixing polyacrylamide (2.7%), biochar (16.2%), sodium bentonite (16.2%), straw fibers (5.4%), corn straw (2.7%), sheep manure organic fertilizer (54.1%), and composite microbial agents (2.7%). The laboratory experiment was conducted to investigate the effects of varying rates (0, 1.5%, 3%, 4.5%, 6%) of composite soil amendments on the properties of sandy soil and the Lolium perenne L. with a growth period of 30–60 days. The results indicated that the application of composite amendments at different rates maintained the soil pH between 7.0 and 7.5, increased the electrical conductivity, and significantly improved the soil moisture content, soil organic carbon (SOC), total nitrogen (TN), and total phosphorus contents. Under the condition of 3% amendment, the soil TN content increased from 0.74 to 1.83 g·kg⁻¹. The composite amendments remarkably promoted L. perenne growth, as evidenced by increased plant height, dry weight, and nitrogen and phosphorus nutrient content, while the SOC content increased by 1–4 times. The application of composite amendments, prepared by mixing materials such as biochar, organic fertilizer, crop straw, microbial agents, bentonite, and water-retaining agents, enhanced the physicochemical properties of sandy soil and promoted L. perenne growth, and 3% was the most suitable application rate. These findings are expected to advance desertification-controlling technologies and enhance soil carbon sequestration capacity. Full article
(This article belongs to the Section Soil Conservation and Sustainability)
15 pages, 2026 KB  
Article
Planting Diversification Enhances Phosphorus Availability and Reshapes Fungal Community Structure in the Maize Rhizosphere
by Yannan Li, Yuming Zhang, Xiaoxin Li, Hongjun Li, Wenxu Dong, Shuping Qin, Xiuping Liu, Lijuan Zhang, Chunsheng Hu, Hongbo He, Pushan Zheng and Jingyun Zhao
Agronomy 2025, 15(8), 1993; https://doi.org/10.3390/agronomy15081993 - 19 Aug 2025
Viewed by 212
Abstract
Intercropping with green manures is an effective practice for increasing agricultural production and reducing environmental issues. However, the effects of green manure type and intercropping patten on soil nutrient availability and microbial communities remains underexplored. In the present study, the impacts of three [...] Read more.
Intercropping with green manures is an effective practice for increasing agricultural production and reducing environmental issues. However, the effects of green manure type and intercropping patten on soil nutrient availability and microbial communities remains underexplored. In the present study, the impacts of three green manure–maize intercropping patterns on maize yield, rhizosphere nutrient availability, and soil fungal community were evaluated. Four treatments (three replicate plots for each) were involved, including a monoculture treatment (MC) as a control and three intercropping patterns as follows: maize–ryegrass (Lolium perenne L.) (IntL), maize–forage soybean (Fen Dou mulv 2, a hybrid soybean cultivar) (IntF), and maize–ryegrass–forage soybean (IntLF) intercropping. The results showed that all three intercropping patterns significantly increased maize yield and rhizosphere available phosphorus (AP) compared with MC. Intercropping shifted the dominant assembly process of the maize rhizosphere fungal community from stochastic to deterministic processes, shaping a community rich in arbuscular mycorrhizal fungi (AMF) and limited in plant pathogens, primarily Exserohilum turcicum. AP showed significant correlations with fungal community and AMF, while maize yield was negatively correlated with plant pathogens. In addition, the dual-species green manure intercropping pattern (IntLF) had the strongest positive effects on maize yield, AP content, and fungal community compared with single-species patterns (IntL and IntF). These results illustrate the advantages of planting diversification in boosting crop production by improving nutrient availability and soil health in the rhizosphere and suggest that the maize–ryegrass–forage soybean intercropping system is a potential strategy for improving soil fertility and health. Full article
(This article belongs to the Special Issue Plant Nutrition Eco-Physiology and Nutrient Management)
Show Figures

Figure 1

16 pages, 2268 KB  
Article
Epichloë Endophyte Alters Bacterial Nitrogen-Cycling Gene Abundance in the Rhizosphere Soil of Perennial Ryegrass
by Munire Maimaitiyiming, Yanxiang Huang, Letian Jia, Mofan Wu and Zhenjiang Chen
Biology 2025, 14(7), 879; https://doi.org/10.3390/biology14070879 - 18 Jul 2025
Viewed by 335
Abstract
Perennial ryegrass (Lolium perenne), an important forage and turfgrass species, can establish a mutualistic symbiosis with the fungal endophyte Epichloë festucae var. lolii. Although the physiological and ecological impacts of endophyte infection on ryegrass have been extensively investigated, the response of [...] Read more.
Perennial ryegrass (Lolium perenne), an important forage and turfgrass species, can establish a mutualistic symbiosis with the fungal endophyte Epichloë festucae var. lolii. Although the physiological and ecological impacts of endophyte infection on ryegrass have been extensively investigated, the response of the soil microbial community and nitrogen-cycling gene to this relationship has received much less attention. The present study emphasized abundance and diversity variation in the AOB-amoA, nirK and nosZ functional genes in the rhizosphere soil of the endophyte–ryegrass symbiosis following litter addition. We sampled four times: at T0 (prior to first litter addition), T1 (post 120 d of 1st litter addition), T2 (post 120 d of 2nd litter addition) and T3 (post 120 d of 3rd litter addition) times. Real-time fluorescence quantitative PCR (qPCR) and PCR amplification and sequencing were used to characterize the abundance and diversity of the AOB-amoA, nirK and nosZ genes in rhizosphere soils of endophyte-infected (E+) plants and endophyte-free (E−) plants. A significant enhancement of total Phosphorus (P), Soil Organic Carbon (SOC), Ammonium ion (NH4+) and Nitrate ion (NO3) contents in the rhizosphere soil was recorded in endophyte-infected plants at different sampling times compared to endophyte-free plants (p ≤ 0.05). The absolute abundance of the AOB-amoA gene at T0 and T1 times was higher, as was the absolute abundance of the nosZ gene at T0, T1 and T3 times in the E+ plant rhizophere soils relative to E− plant rhizosphere soils. A significant change in relative abundance of the AOB-amoA and nosZ genes in the host rhizophere soils of endophyte-infected plants at T1 and T3 times was observed. The experiment failed to show any significant alteration in abundance and diversity of the nirK gene, and diversity of the AOB-amoA and nosZ genes. Analysis of the abundance and diversity of the nirK gene indicated that changes in soil properties accounted for approximately 70.38% of the variation along the first axis and 16.69% along the second axis, and soil NH4+ (p = 0.002, 50.4%) and soil C/P ratio (p = 0.012, 15.8%) had a strong effect. The changes in community abundance and diversity of the AOB-amoA and nosZ genes were mainly related to soil pH, N/P ratio and NH4+ content. The results demonstrate that the existence of tripartite interactions among the foliar endophyte E. festucae var. Lolii, L. perenne and soil nitrogen-cycling gene has important implications for reducing soil losses on N. Full article
(This article belongs to the Collection Plant Growth-Promoting Bacteria: Mechanisms and Applications)
Show Figures

Figure 1

20 pages, 2415 KB  
Article
Intercropping with Gramineous Plants in Nutrient Solutions as a Tool to Optimize the Use of Iron in Brassica oleracea
by Teresa Saavedra, Maribela Pestana, João Costa, Paula Gonçalves, David Fangueiro, José Paulo Da Silva and Pedro José Correia
Plants 2025, 14(14), 2215; https://doi.org/10.3390/plants14142215 - 17 Jul 2025
Viewed by 381
Abstract
This study aimed to evaluate the impact of intercropping Brassica oleracea. with three perennial grasses (Poa pratensis L., Lolium perenne L., and Festuca rubra L.) under varying levels of iron (Fe) availability (Fe0, Fe1 and Fe5) in nutrient solutions. The research [...] Read more.
This study aimed to evaluate the impact of intercropping Brassica oleracea. with three perennial grasses (Poa pratensis L., Lolium perenne L., and Festuca rubra L.) under varying levels of iron (Fe) availability (Fe0, Fe1 and Fe5) in nutrient solutions. The research focused on biomass accumulation, photosynthetic efficiency, root development, nutrient uptake, and oxidative stress response. In the absence of Fe, Brassica sp. exhibited chlorosis, reduced biomass, and increased ferric chelate reductase (FCR) enzyme activity as an adaptive response. Brassica plants intercropped with Poa sp. maintained higher chlorophyll (Chl) levels and photosystem II efficiency (Fv/Fm values), mitigating Fe deficiency effects. Catalase activity and polyphenol production varied with intercropping species, indicating differential stress response mechanisms. Intercropping improved Zn, Mn, and P accumulation, with Poa sp. facilitating greater Zn and Mn uptake. Intercropping Brassica sp. with specific grass species offers potential agronomic benefits by improving Fe use efficiency, mitigating stress, and enhancing nutrient uptake. Future research should focus on optimizing intercropping combinations for sustainable agricultural practices. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

18 pages, 2052 KB  
Article
Distribution Characteristics of Cadmium in Soil Aggregates and Their Regulating Effects on Cd Bioavailability
by Ying Chen, Ya Zhang, Hanqing Li and Shiqiang Wei
Agriculture 2025, 15(14), 1514; https://doi.org/10.3390/agriculture15141514 - 14 Jul 2025
Viewed by 396
Abstract
Soil aggregates play critical roles in regulating the behavior of heavy metal in soils. To understand the distribution of cadmium (Cd) in aggregates of different soil types, as well as their roles in regulating the Cd bioavailability of bulk soils, four major arable [...] Read more.
Soil aggregates play critical roles in regulating the behavior of heavy metal in soils. To understand the distribution of cadmium (Cd) in aggregates of different soil types, as well as their roles in regulating the Cd bioavailability of bulk soils, four major arable soils, including acidic, neutral, and calcareous purple soils and calcareous yellow soil (APS, NPS, CPS, and CYS), were sampled from Chongqing, China, for aggregate separation and determination of the total Cd(T-Cd) distribution, fractionation, and extractability in various-sized aggregates. A pot experiment with ryegrass (Lolium perenne L.) was conducted to evaluate the Cd bioavailability in bulk soils as influenced by aggregates. The results show that the composition of soil aggregates varies a lot among soils: lower soil pH tends to increase the proportion of macroaggregates while decreasing that of smaller aggregates. The Cd distribution, HCl-extractability, and active fraction (AF, T-Cd/HCl-Cd) in aggregates are all soil type-dependent, with pH and particle size being the main determining factors; the distribution pattern of Cd concentrated in smaller aggregates is only found for CPS and CYS (pH > 7.5) upon exogenous Cd addition, though the finest aggregates (silt–clay, <0.053 mm) consistently exhibited the highest Cd enrichment for all tested soils. The Cd extractability and AF values in all aggregates show a sequence of APS > NPS > CPS > CYS, indicating the fundamental influence of soil pH on Cd availability. Higher AF values over bulk soils, either in silt–clay aggregates or in microaggregates (0.053–0.25 mm), whereas lower AF in macroaggregates (1–2 mm) are found for APS and NPS, which correspond to the relative portions of Ex-Cd and Fe/Mn oxide-bound Cd (Fe/Mn-Cd) in these aggregates. In contrast, less variation of AF values among aggregates is observed for CPS and CYS and for APS/NPS upon Cd addition. Pot experiments demonstrated strong positive correlations between ryegrass Cd uptake and HCl-Cd in silt–clay aggregates and T-Cd in microaggregates, while a negative correlation was observed with T-Cd in macroaggregates. These findings supply new insight into the mechanisms of aggregates in controlling Cd bioavailability in bulk soils and shed light on the development of new strategies for remediating Cd-polluted soils. Full article
(This article belongs to the Special Issue Heavy Metal Pollution and Remediation in Agricultural Soils)
Show Figures

Figure 1

23 pages, 1348 KB  
Review
The Genome Era of Forage Selection: Current Status and Future Directions for Perennial Ryegrass Breeding and Evaluation
by Jiashuai Zhu, Kevin F. Smith, Noel O. Cogan, Khageswor Giri and Joe L. Jacobs
Agronomy 2025, 15(6), 1494; https://doi.org/10.3390/agronomy15061494 - 19 Jun 2025
Viewed by 773
Abstract
Perennial ryegrass (Lolium perenne L.) is a cornerstone forage species in temperate dairy systems worldwide, valued for its high yield potential, nutritive quality, and grazing recovery. However, current regional evaluation systems face challenges in accurately assessing complex traits like seasonal dry matter [...] Read more.
Perennial ryegrass (Lolium perenne L.) is a cornerstone forage species in temperate dairy systems worldwide, valued for its high yield potential, nutritive quality, and grazing recovery. However, current regional evaluation systems face challenges in accurately assessing complex traits like seasonal dry matter yield due to polygenic nature, environmental variability, and lengthy evaluation cycles. This review examines the evolution of perennial ryegrass evaluation systems, from regional frameworks—like Australia’s Forage Value Index (AU-FVI), New Zealand’s Forage Value Index (NZ-FVI), and Ireland’s Pasture Profit Index (PPI)—to advanced genomic prediction (GP) approaches. We discuss prominent breeding frameworks—F2 family, Half-sib family, and Synthetic Population—and their integration with high-throughput genotyping technologies. Statistical models for GP are compared, including marker-based, kernel-based, and non-parametric approaches, highlighting their strengths in capturing genetic complexity. Key research efforts include representative genotyping approaches for heterozygous populations, disentangling endophyte–host interactions, extending prediction to additional economically important traits, and modeling genotype-by-environment (G × E) interactions. The integration of multi-omics data, advanced phenotyping technologies, and environmental modeling offers promising avenues for enhancing prediction accuracy under changing environmental conditions. By discussing the combination of regional evaluation systems with GP, this review provides comprehensive insights for enhancing perennial ryegrass breeding and evaluation programs, ultimately supporting sustainable productivity of the dairy industry in the face of climate challenges. Full article
Show Figures

Graphical abstract

20 pages, 1942 KB  
Article
Physiological Responses and the Dust Retention Ability of Different Turfgrass Mixture Ratios Under Continuous Drought
by Junrui Wang, Haimei Li, Dehong Gong, Xiujun Liu, Bingqi Liu and Xiao Guo
Plants 2025, 14(11), 1667; https://doi.org/10.3390/plants14111667 - 30 May 2025
Viewed by 491
Abstract
Drought is one of the main environmental disturbances limiting the growth and production of turfgrass in China and around the world. To study the performance under drought conditions of different mixing ratios (Lolium perenne L., Festuca elata Keng., Poa pratensis L.), a [...] Read more.
Drought is one of the main environmental disturbances limiting the growth and production of turfgrass in China and around the world. To study the performance under drought conditions of different mixing ratios (Lolium perenne L., Festuca elata Keng., Poa pratensis L.), a water-controlled pot experiment was conducted. The mixing ratios used were 2:3:5, 2:6:2, and 2:2:6 for Lolium perenne, Festuca elata, and Poa pratensis, respectively. The relative water content (RWC), proline (Pro) content, and other physiological and ecological variables of three turfgrass monocultures and their three ratio mixtures (a total of six different treatments) were measured under drought as well as dust stress at various time points. The results revealed that, under drought stress, the dust retention performance of the mixing ratio treatments was better than the monocultures, with the best performance in the 2:6:2 mix and the worst in the Poa pratensis monoculture. Additionally, during the 21 days of drought stress, as time increased, the appearance quality (TQ) of the turfgrass gradually declined over time; its RWC gradually decreased; its chlorophyll (Chl) content, peroxidase (POD) activity, and superoxide dismutase (SOD) activity all showed a trend of initially increasing then decreasing; and its soluble sugar (Sol), malondialdehyde (MDA), and Pro content increased continuously. A comprehensive evaluation of physiological and ecological variables, using the membership function method, showed that the six types of turfgrass treatments ranked as follows (from strongest to weakest) in drought resistance: 2:6:2 mix > Festuca elata monoculture > 2:3:5 mix > 2:2:6 mix > Lolium perenne monoculture > Poa pratensis monoculture. The dust retention capability was assessed through quantitative measurements, and the ranking of dust retention amounts in descending order was as follows: Festuca elata > 2:6:2 mix > 2:2:6 mix > Poa pratensis > Lolium perenne > 2:3:5 mix. We conclude that, in practical applications, the degree of drought can be appropriately controlled within a certain range to achieve maximum dust retention benefits from turfgrass. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

12 pages, 1811 KB  
Article
Norsesquiterpenes from Lolium perenne and Their Replacement Control of an Invasive Plant, Ageratina adenophora, Through Allelopathy
by Wenbo Shi, Tong An, Xiaomin Yang, Youlin Li, Amanula Yimingniyazi, Zhixiang Liu and Yulong Feng
Molecules 2025, 30(11), 2384; https://doi.org/10.3390/molecules30112384 - 29 May 2025
Viewed by 405
Abstract
Lolium perenne (Poaceae), a perennial forage, has high economic and nutritional value. It is often used as a replacement control for some invasive plants, as it has achieved good ecological and economic effects. However, its control effects, allelochemicals, allelopathic effects, release pathways, and [...] Read more.
Lolium perenne (Poaceae), a perennial forage, has high economic and nutritional value. It is often used as a replacement control for some invasive plants, as it has achieved good ecological and economic effects. However, its control effects, allelochemicals, allelopathic effects, release pathways, and contents are still unclear in the process of L. perenne replacement control of an invasive plant, Ageratina adenophora (Asteraceae). Therefore, it is necessary to reveal the mechanism of L. perenne replacement control of A. adenophora from the perspective of allelopathy. In this study, L. perenne could effectively inhibit the growth of A. adenophora in the competition assay. In addition, seven norsesquiterpenes (17) were isolated and identified from the whole plant of L. perenne, and most of the compounds exhibited potent allelopathic effects on the growth of A. adenophora and one model plant (Lactuca sativa, Asteraceae). Moreover, some active compounds were released into the environment through root secretion and rainwater leaching, and their contents were determined by UPLC-MS/MS (Ultra Performance Liquid Chromatography Tandem Mass Spectrometry). Our results elucidated the allelopathic mechanism of L. perenne’s replacement control, A. adenophora, and provided a theoretical basis for the development of norsesquiterpenes from L. perenne. Full article
Show Figures

Graphical abstract

13 pages, 3734 KB  
Article
Limitations of the Farquhar–von Caemmerer–Berry Model in Estimating the Maximum Electron Transport Rate: Evidence from Four C3 Species
by Zipiao Ye, Wenhai Hu, Shuangxi Zhou, Piotr Robakowski, Huajing Kang, Ting An, Fubiao Wang, Yi’an Xiao and Xiaolong Yang
Biology 2025, 14(6), 630; https://doi.org/10.3390/biology14060630 - 29 May 2025
Viewed by 411
Abstract
The study evaluates the accuracy of two FvCB model sub-models (I and II) in estimating the maximum electron transport rate for CO2 assimilation (JA-max) by comparing estimated values with observed maximum electron transport rates (Jf-max) in [...] Read more.
The study evaluates the accuracy of two FvCB model sub-models (I and II) in estimating the maximum electron transport rate for CO2 assimilation (JA-max) by comparing estimated values with observed maximum electron transport rates (Jf-max) in four C3 species: Triticum aestivum L., Silphium perfoliatum L., Lolium perenne L., and Trifolium pratense L. Significant discrepancies were found between JA-max estimates from sub-model I and observed Jf-max values for T. aestivum, S. perfoliatum, and T. pratense (p < 0.05), with sub-model I overestimating JA-max for T. aestivum. Sub-model II consistently produced higher JA-max estimates than sub-model I. This study highlights limitations in the FvCB sub-models, particularly their tendency to overestimate JA-max when accounting for electron consumption by photorespiration (JO), nitrate reduction (JNit), and the Mehler reaction (JMAP). An alternative empirical model provided more accurate Jf-max estimates, suggesting the need for improved approaches to model photosynthetic electron transport. These findings have important implications for crop yield prediction, ecological modeling, and climate change adaptation strategies, emphasizing the need for more accurate estimation methods in plant physiology research. Full article
(This article belongs to the Special Issue Plant Stress Physiology: A Trait Perspective)
Show Figures

Figure 1

16 pages, 1886 KB  
Article
Enhancing Single-Cell Protein Yield Through Grass-Based Substrates: A Study of Lolium perenne and Kluyveromyces marxianus
by Tianyi Guo, Joshua Bode, Katrin Kuka and Nils Tippkötter
Fermentation 2025, 11(5), 266; https://doi.org/10.3390/fermentation11050266 - 7 May 2025
Viewed by 784
Abstract
This study evaluated Lolium perenne press juice as a sustainable substrate for Single-Cell Protein (SCP) production using Kluyveromyces marxianus. Key fermentation parameters were systematically optimized, including microbial reduction, dilution ratios, temperature, and nutrient supplementation. Pasteurization at 75 °C preserved essential nutrients better [...] Read more.
This study evaluated Lolium perenne press juice as a sustainable substrate for Single-Cell Protein (SCP) production using Kluyveromyces marxianus. Key fermentation parameters were systematically optimized, including microbial reduction, dilution ratios, temperature, and nutrient supplementation. Pasteurization at 75 °C preserved essential nutrients better than autoclaving, resulting in a 27.8% increase in biomass yield. A 1:2 dilution of press juice enhanced fermentation efficiency, achieving 20.2% higher biomass despite a lower initial sugar content. Cultivation at 30 °C enabled sustained substrate utilization and outperformed 40 °C fermentation, increasing final biomass by 43.4%. Nutrient supplementation with yeast extract, peptone, and glucose led to the highest biomass yield, with a 71% increase compared to unsupplemented juice. Press juice from the tetraploid variety, Explosion, consistently outperformed the diploid Honroso, especially when harvested early, reaching up to 16.62 g·L−1 biomass. Early harvests promoted faster growth, while late harvests exhibited higher biomass yield coefficients due to improved sugar-to-biomass conversion. Compared to a conventional YM medium, fermentation with L. perenne press juice achieved up to a threefold increase in biomass yield. These findings highlight the potential of grass-based substrates for efficient SCP production and demonstrate how agricultural parameters like variety and harvest timing influence both quantity and quality. The approach supports circular bioeconomy strategies by valorising underutilized biomass through microbial fermentation. Full article
Show Figures

Figure 1

14 pages, 2834 KB  
Article
Belowground Structural Attributes and Morpho-Anatomical Response Strategies of Bromus valdivianus Phil. and Lolium perenne L. to Soil Water Restriction
by Yongmei Zhang, Javier García-Favre, Haiying Hu, Ignacio F. López, Iván P. Ordóñez, Andrew D. Cartmill, Vaughan Symonds and Peter D. Kemp
Agronomy 2025, 15(5), 1024; https://doi.org/10.3390/agronomy15051024 - 24 Apr 2025
Viewed by 436
Abstract
The effect of soil water restriction on the root structure and morpho-anatomical attributes of Lolium perenne L. (Lp) and Bromus valdivianus Phil. (Bv) was investigated. The anatomical structure of roots from plants grown under two water restriction conditions (20–25% and 80–85% field capacity [...] Read more.
The effect of soil water restriction on the root structure and morpho-anatomical attributes of Lolium perenne L. (Lp) and Bromus valdivianus Phil. (Bv) was investigated. The anatomical structure of roots from plants grown under two water restriction conditions (20–25% and 80–85% field capacity (FC)) were assessed using paraffin embedding and thin sections. These sections were examined to assess anatomical traits, including root diameter (root D), stele diameter (stele D) and cortex thickness (cortex T), and xylem vessel of Lp and Bv roots. Tiller population, shoot herbage mass, and the shoot-to-root ratio were also determined. Under water restriction, biomass and tillers were significantly decreased (p < 0.001), while the root-to-shoot ratio significantly increased, indicating a higher proportion of Bv roots than shoots when compared to Lp. The root D and stele D, and cortex T, were larger in Bv than in Lp (p < 0.001), indicating a greater adaptation of Bv for water uptake and storage compared to Lp. Xylem vessels were wider in Lp when compared to Bv (p < 0.01), indicating greater water flow within the plant. Water restriction generated a decrease in root D, stele D, and cortex T (p < 0.01). Canonical variate analysis showed that the pith cell wall had a strong positive relationship with water restriction in both Bv and Lp; lignified xylem and the endodermis wall had a close relationship with Lp under water restriction. The findings demonstrate that Lp and Bv have individual structural and morpho-anatomical response strategies to increasing water restriction. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

25 pages, 2841 KB  
Article
Assessing Microbial Activity and Rhizoremediation in Hydrocarbon and Heavy Metal-Impacted Soil
by Robert Conlon, David N. Dowling and Kieran J. Germaine
Microorganisms 2025, 13(4), 848; https://doi.org/10.3390/microorganisms13040848 - 8 Apr 2025
Cited by 1 | Viewed by 907
Abstract
Rhizodegradation enhances pollutant degradation through plant–microbe interactions in the rhizosphere. Plant roots provide a colonisation surface and root exudates that promote microbial abundance and activity, facilitating organic pollutant breakdown via direct microbial degradation and co-metabolism. This study assessed the rhizodegradation of weathered petroleum [...] Read more.
Rhizodegradation enhances pollutant degradation through plant–microbe interactions in the rhizosphere. Plant roots provide a colonisation surface and root exudates that promote microbial abundance and activity, facilitating organic pollutant breakdown via direct microbial degradation and co-metabolism. This study assessed the rhizodegradation of weathered petroleum hydrocarbons (PHCs) in heavy metal co-contaminated soil in a microcosm-scale pot trial. Treatments included Sinapis alba, Lolium perenne, a L. perenne + Trifolium repens mix, and Cichorium intybus, alongside a non-planted control. After 14 weeks, PHC concentrations were analysed via gas chromatography, and rhizosphere microbial communities were characterised through sequencing. Sinapis alba achieved the highest PHC degradation (68%), significantly exceeding the non-planted control (p < 0.05, Kruskal–Wallis test). Hydrocarbon-degrading bacteria, including KCM-B-112, C1-B045, Hydrogenophaga, unclassified Saccharimonadales sp., and Pedobacter, were enriched in the rhizosphere, with the uncultured clade mle1-27 potentially contributing indirectly. Metals analysis of plant tissues showed that mustard could accumulate copper more than lead and zinc, despite higher concentrations of zinc and lead in the soil. These results highlight the potential of S. alba for rhizoremediation in PHC–heavy metal co-contaminated soils. Full article
(This article belongs to the Topic Environmental Bioengineering and Geomicrobiology)
Show Figures

Figure 1

16 pages, 1662 KB  
Article
Identifying Root-Associated Endophytic Fungi and Bacteria in Festuca and Lolium Grasses from a Site in Lithuania
by Violeta Stakelienė, Izolda Pašakinskienė, Saulė Matijošiūtė, Justas Martūnas and Gitana Štukėnienė
Microorganisms 2025, 13(4), 799; https://doi.org/10.3390/microorganisms13040799 - 31 Mar 2025
Viewed by 670
Abstract
This study investigates the diversity and distribution of root endophyte fungi and bacteria across Festuca and Lolium grasses, including open-grassland and forest species. The species examined include perennials such as Festuca arundinacea, F. gigantea, F. pratensis, Lolium perenne, and [...] Read more.
This study investigates the diversity and distribution of root endophyte fungi and bacteria across Festuca and Lolium grasses, including open-grassland and forest species. The species examined include perennials such as Festuca arundinacea, F. gigantea, F. pratensis, Lolium perenne, and L. perenne × F. gigantea hybrids and the annuals L. temulentum and L. multiflorum. A total of 21 fungal species (60 isolates) and 26 bacterial taxa (59 isolates) were recovered in the culture (PDA medium for fungi and LB for bacteria) from the root cuttings of these grasses. Microdochium bolleyi fungi and Bacillus sp. bacteria were the most prevalent endophytes, with each being identified in five of the seven plant species examined. The annuals L. multiflorum and L. temulentum exhibited a higher abundance of endophytes than that in their perennial relatives, suggesting the benefits of microbial associations in supporting their short life cycles. The woodland F. gigantea demonstrated the highest fungal endophyte diversity, with six species identified. In contrast, the open-grassland perennials F. arundinacea, F. pratensis, and L. perenne hosted only one to two species. Two Basidiomycota, Coprinellus disseminatus and Sistotrema brinkmannii, were exclusively obtained from the roots of the forest grass F. gigantea. Notably, the open-grassland perennial F. arundinacea exhibited the highest bacterial diversity, with nine species present. However, it showed the lowest fungal diversity, with only one species detected. Overall, our study reveals distinct patterns of fungal and bacterial endophyte diversity in the roots of Festuca and Lolium grasses, with variations linked to host species, growth type traits, and ecological adaptations. Among the root-derived endophytes isolated, several fungi and bacteria are potential candidates for plant growth promotion and biocontrol. Therefore, the findings of this study provide potential implications for improved grassland management and crop breeding strategies aimed at specific climate and/or soil conditions. Full article
(This article belongs to the Special Issue Rhizosphere Bacteria and Fungi That Promote Plant Growth)
Show Figures

Figure 1

16 pages, 283 KB  
Article
Effects of Zn-Organic Supplementation on Growth, Body Composition, Carcass Traits, and Meat Quality of Grazing Lambs Fed with Two Levels of Concentrate
by Daniel Trujillo-Gutiérrez, Ignacio Arturo Domínguez-Vara, Daniel Márquez-Hernández, Jessica Reyes-Juárez, Ernesto Morales-Almaráz, Juan Edrei Sánchez-Torres, Gisela Velázquez-Garduño, Juan Manuel Pinos-Rodríguez and Jacinto Efrén Ramírez-Bribiesca
Processes 2025, 13(3), 900; https://doi.org/10.3390/pr13030900 - 19 Mar 2025
Viewed by 691
Abstract
Supplemental zinc in fattening lambs improves their health, performance, and meat quality. However, the Zn effect on grazing animals combined with different levels of concentrate should be known unknown. The objective was to evaluate the Zn-organic effect in the diet of grazing lambs [...] Read more.
Supplemental zinc in fattening lambs improves their health, performance, and meat quality. However, the Zn effect on grazing animals combined with different levels of concentrate should be known unknown. The objective was to evaluate the Zn-organic effect in the diet of grazing lambs supplemented with two levels of concentrate on growth, dry matter (DM) intake, carcass traits, body composition, meat quality, and fatty acid profile in Longissimus dorsi muscle. Twenty-eight lambs were used in a factorial arrangement of two levels of concentrate (C) feed intake (C-0.75 and C-1.5% of live weight) and two Zn-Met levels (0 and 80 ppm Zn kg−1 DM) on the grazing of Lolium perenne L. Digestibility and dry matter intake, weight gain, and productive performance were measured. At the end of the fattening period (90 d), the lambs were slaughtered and the carcass traits, body composition, instrumental quality, and lipid profile of meat were evaluated. The effect of treatment (T), measurement period (P), and T × P interaction was observed (p < 0.05) for dry matter intake (DMI). For the final live weight (FLW) and daily weight gain (DWG), there was an effect (p < 0.05) of T and P, with Zn-80 ppm + C-1.5% treatment being greater. The live weight at slaughter (LWS) and leg length (LL) showed an effect (p < 0.05) of C × Zn. Zn-80 ppm + C-1.5% treatment was higher in the kidney fat, empty body weight, carcass fat, fat and retained energy but lower in protein content (p < 0.05). The physicochemical characteristics and fatty acid content of meat were not affected (p > 0.05). It can be concluded that the concentrated-organic zinc synergy in grazing lambs improved the performance, weight gain, and body composition, which resulted in heavier carcasses with greater amounts of fat, protein, and energy deposited. Furthermore, the physical and chemical meat traits were not affected, but the n-3 fatty acid content and n-3/n-6 ratio in Longissimus dorsi was affected by the Zn level supplemented. Full article
24 pages, 3915 KB  
Article
Optimizing Fodder Yield and Quality Through Grass–Legume Relay Intercropping in the Mediterranean Region
by Antigolena Folina, Panteleimon Stavropoulos, Antonios Mavroeidis, Ioannis Roussis, Ioanna Kakabouki, Eleni Tsiplakou and Dimitrios Bilalis
Plants 2025, 14(6), 877; https://doi.org/10.3390/plants14060877 - 11 Mar 2025
Cited by 2 | Viewed by 1054
Abstract
An annual relay intercropping of grasses and legumes (LGI) (50:50) was compared with the sole crops, respectively, to determine the effect of the mixtures on the yield and quality of them as fodder in the Mediterranean region. The treatments were sole Rye ( [...] Read more.
An annual relay intercropping of grasses and legumes (LGI) (50:50) was compared with the sole crops, respectively, to determine the effect of the mixtures on the yield and quality of them as fodder in the Mediterranean region. The treatments were sole Rye (Secale cereale; G1), Ryegrass (Lolium perenne; G2), Faba bean (Vicia faba L.; L1), Berssem (Trifolium alexandrinum L.; L2), inoculated Clover (Trifolium alexandrinum L.; L3), and all the combinations of grasses and legumes. The experiment used a randomized block design with three blocks. ANOVA showed significant effects of intercropping on the biomass yield (BY) and the forage quality. Monocrops L2 and L3 showed better fodder quality than LGI and L1. The relative land-use efficiency (RLI) was higher for four out of six intercrops, while G2L1 and G2L3 had an RLI < 1, indicating lower efficiency than their monocrops. The Aggressivity Index (AG) showed that L1 was competitive against the grasses. The Relative Yield Maximization (RYM) demonstrated that intercropping significantly improved the biomass yield. The competition indices revealed that G1 with legumes had the highest efficiency and economic viability (ELER > 1), while the G2 combinations were less profitable. The study highlights the importance of selecting species based on soil fertility and climatic conditions to optimize intercropping outcomes. Full article
Show Figures

Figure 1

Back to TopTop