Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = Korean drought

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3927 KiB  
Article
Effects of the Light-Felling Intensity on Hydrological Processes in a Korean Pine (Pinus koraiensis) Forest on Changbai Mountain in China
by Qian Liu, Zhenzhao Zhou, Xiaoyang Li, Xinhai Hao, Yaru Cui, Ziqi Sun, Haoyu Ma, Jiawei Lin and Changcheng Mu
Forests 2025, 16(7), 1050; https://doi.org/10.3390/f16071050 - 24 Jun 2025
Viewed by 225
Abstract
(1) Background: Understanding how forest management practices regulate hydrological cycles is critical for sustainable water resource management and addressing global water crises. However, the effects of light-felling (selective thinning) on hydrological processes in temperate mixed forests remain poorly understood. This study comprehensively evaluated [...] Read more.
(1) Background: Understanding how forest management practices regulate hydrological cycles is critical for sustainable water resource management and addressing global water crises. However, the effects of light-felling (selective thinning) on hydrological processes in temperate mixed forests remain poorly understood. This study comprehensively evaluated the impacts of light-felling intensity levels on three hydrological layers (canopy, litter, and soil) in mid-rotation Korean pine (Pinus koraiensis) forests managed under the “planting conifer and preserving broadleaved trees” (PCPBT) system on Changbai Mountain, China. (2) Methods: Hydrological processes—including canopy interception, throughfall, stemflow, litter interception, soil water absorption, runoff, and evapotranspiration—were measured across five light-felling intensity levels (control, low, medium, heavy, and clear-cutting) during the growing season. The stand structure and precipitation characteristics were analyzed to elucidate the driving mechanisms. (3) Results: (1) Low and heavy light-felling significantly increased the canopy interception by 18.9%~57.0% (p < 0.05), while medium-intensity light-felling reduced it by 20.6%. The throughfall was significantly decreased 10.7% at low intensity but increased 5.3% at medium intensity. The stemflow rates declined by 15.8%~42.7% across all treatments. (2) The litter interception was reduced by 22.1% under heavy-intensity light-felling (p < 0.05). (3) The soil runoff rates decreased by 56.3%, 16.1%, and 6.5% under the low, heavy, and clear-cutting intensity levels, respectively, although increased by 27.1% under medium-intensity activity (p < 0.05). (4) The monthly hydrological dynamics shifted from bimodal (control) to unimodal patterns under most treatments. (5) The canopy processes were primarily driven by precipitation, while litter interception was influenced by throughfall and tree diversity. The soil processes correlated strongly with throughfall. (4) Conclusions: Low and heavy light-felling led to enhanced canopy interception and reduced soil runoff and mitigated flood risks, whereas medium-intensity light-felling supports water supply during droughts by increasing the throughfall and runoff. These findings provide critical insights for balancing carbon sequestration and hydrological regulation in forest management. Full article
(This article belongs to the Section Forest Hydrology)
Show Figures

Figure 1

19 pages, 1325 KiB  
Article
Identifying and Prioritizing Climate-Related Natural Hazards for Nuclear Power Plants in Korea Using Delphi
by Dongchang Kim, Shinyoung Kwag, Minkyu Kim, Raeyoung Jung and Seunghyun Eem
Sustainability 2025, 17(12), 5400; https://doi.org/10.3390/su17125400 - 11 Jun 2025
Viewed by 439
Abstract
Climate change is projected to increase the intensity and frequency of natural hazards such as heat waves, extreme rainfall, heavy snowfall, typhoons, droughts, floods, and cold waves, potentially impacting the operational safety of critical infrastructure, including nuclear power plants (NPPs). Although quantitative indicators [...] Read more.
Climate change is projected to increase the intensity and frequency of natural hazards such as heat waves, extreme rainfall, heavy snowfall, typhoons, droughts, floods, and cold waves, potentially impacting the operational safety of critical infrastructure, including nuclear power plants (NPPs). Although quantitative indicators exist to screen-out natural hazards at NPPs, comprehensive methodologies for assessing climate-related hazards remain underdeveloped. Furthermore, given the variability and uncertainty of climate change, it is realistically and resource-wise difficult to evaluate all potential risks quantitatively. Using a structured expert elicitation approach, this study systematically identifies and prioritizes climate-related natural hazards for Korean NPPs. An iterative Delphi survey involving 42 experts with extensive experience in nuclear safety and systems was conducted and also evaluated using the best–worst scaling (BWS) method for cross-validation to enhance the robustness of the Delphi priorities. Both methodologies identified extreme rainfall, typhoons, marine organisms, forest fires, and lightning as the top five hazards. The findings provide critical insights for climate resilience planning, inform vulnerability assessments, and support regulatory policy development to mitigate climate-induced risks to Korean nuclear power plants. Full article
Show Figures

Figure 1

21 pages, 5672 KiB  
Article
Modeling Tree Mortality Induced by Climate Change-Driven Drought: A Case Study of Korean Fir in the Subalpine Forests of Jirisan National Park, South Korea
by Wontaek Lim, Hong-Chul Park, Sinyoung Park, Jeong-Wook Seo, Jinwon Kim and Dongwook W. Ko
Forests 2025, 16(1), 84; https://doi.org/10.3390/f16010084 - 6 Jan 2025
Cited by 2 | Viewed by 979
Abstract
Increased drought frequency due to climate change is intensifying tree mortality, a critical issue in forest ecosystem management, especially in vulnerable subalpine ecosystems. Korean fir (Abies koreana E.H. Wilson), an endemic species of South Korea that grows in subalpine areas, is threatened [...] Read more.
Increased drought frequency due to climate change is intensifying tree mortality, a critical issue in forest ecosystem management, especially in vulnerable subalpine ecosystems. Korean fir (Abies koreana E.H. Wilson), an endemic species of South Korea that grows in subalpine areas, is threatened by climate change-induced drought. However, our understanding of drought’s impact on tree mortality, particularly its seasonal and legacy effects, remains limited. To better understand drought-related mortality of Korean fir, we conducted annual mortality surveys, starting in 2012, at 10 fixed transects in Jirisan National Park, identified seasonal and legacy effects using redundancy analysis, and modeled Korean fir mortality, incorporating biotic and abiotic factors, using random forests. We found that early growing season drought had the greatest impact on Korean fir mortality, with legacy effects extending up to three years, while late growing season drought affected mortality only in the previous year. The mortality model achieved high predictive accuracy (94%) and revealed significant site- and size-dependent mortality patterns. These findings provide critical insights into the complex interactions between biotic and abiotic factors affecting tree mortality and offer valuable guidance for conservation strategies aimed at preserving climate-sensitive species in the face of ongoing climate change. Full article
Show Figures

Figure 1

16 pages, 4479 KiB  
Article
Drought and Salinity Stresses Response in Three Korean Native Herbaceous Plants and Their Suitability as Garden Plants
by Saeng Geul Baek, Jung Won Shin, Jae Ik Nam, Jeong Min Seo, Jung Min Kim and Su Young Woo
Horticulturae 2024, 10(11), 1225; https://doi.org/10.3390/horticulturae10111225 - 19 Nov 2024
Cited by 2 | Viewed by 1079
Abstract
Native garden plants significantly contribute to the conservation of biodiversity and ecosystem functions in urban environments. This study aimed to identify the physiochemical differences among native herbaceous plants subjected to drought or salinity stress and to assess their potential as garden plants adaptable [...] Read more.
Native garden plants significantly contribute to the conservation of biodiversity and ecosystem functions in urban environments. This study aimed to identify the physiochemical differences among native herbaceous plants subjected to drought or salinity stress and to assess their potential as garden plants adaptable to outdoor conditions and global climate change. Physiological parameters, such as chlorophyll (SD; −86.7% and −61.5%, SS: −85% and −76.5%) and carotenoid (SD; −84.5% and −58.3%, SS; −80.5% and −76%), decreased in Melica grandiflora and Carex forficula in severe drought or salinity treatment. In contrast, Carex boottiana maintained high water-use efficiency (SD: +97.5%, SS: +262.9%) under severe drought or salinity conditions, with no significant changes observed in chlorophyll (SD: +9.5%, SS: −3.7%) or carotenoid levels (SD: +35.2%, SS: +0.3%) compared to the WW or UT conditions. Biochemical analyses indicated that C. boottiana exhibited lower or slightly higher levels of malondialdehyde in SS (−22.5%) and reactive oxygen species such as O2 (SD: +9.9%; SS: −9.4%) than those observed in the other species under severe stress conditions. Principal component analysis revealed clear differences in tolerance levels among the native species. C. boottiana demonstrated high adaptability to both drought and salinity stress, indicating its potential as a sustainable and resilient garden material for urban landscapes facing severe climatic challenges. Full article
(This article belongs to the Section Biotic and Abiotic Stress)
Show Figures

Figure 1

19 pages, 1193 KiB  
Article
Analysis of Economic Ripple Effects in the Agricultural Field Using Input–Output Analysis: Drought Damage in Korea in 2018
by Youngseok Song, Moojong Park, Sangdan Kim and Sang Yeob Kim
Agronomy 2024, 14(6), 1090; https://doi.org/10.3390/agronomy14061090 - 21 May 2024
Cited by 2 | Viewed by 1788
Abstract
This study investigates the economic impact of the 2018 agricultural drought in Korea on the agricultural field through input–output analysis. Using industry linkage tables provided by the Bank of Korea, various economic impacts, including socio-economic and industry linkage effects, such as production, value [...] Read more.
This study investigates the economic impact of the 2018 agricultural drought in Korea on the agricultural field through input–output analysis. Using industry linkage tables provided by the Bank of Korea, various economic impacts, including socio-economic and industry linkage effects, such as production, value added inducement effects, and employment inducement effects in the agricultural field, were analyzed. Our findings show the following: (1) It was found that an increase of 1 billion KRW (South Korean won) in output of agricultural, forestry, and fishery products induces an average of 0.6544 KRW in production inducement effects in other industries, 0.23756 KRW in value-added inducement effects, and 3.11363 in employment inducement effects per 1 billion KRW. (2) The supply shortage effect of agricultural, forestry, and fishery products was analyzed to cause a decrease in production of 2.3932 KRW across all industries, and the price inducing effect of a 10% increase in price was found to be 0.19400%, on average. The highest production inducement effects in the food and beverage industry (0.16514 KRW) and the highest value-added inducement effects (0.04391 KRW) came from agricultural, forestry, and fishery products. (3) In the industry linkage effect analysis, agricultural, forestry, and fishery products were found to have a forward linkage coefficient of 0.95652 and a backward linkage coefficient of 0.98911. It is implied by this result that the economic impact of agriculture on other industrial sectors is not significant. This study emphasizes the economic importance of agriculture by providing analytical results that can be utilized in agricultural policy formulation and economic decision-making. It can be used as an important basis for policy development for sustainable development and economic stability of the agricultural field. It can also contribute to a better understanding of how agriculture interacts with other industrial sectors and to the development of effective response strategies to natural disasters such as agricultural drought. Full article
(This article belongs to the Special Issue Land and Water Resources for Food and Agriculture—2nd Edition)
Show Figures

Figure 1

16 pages, 10374 KiB  
Article
Climate Sensitivity and Drought Legacy of Tree Growth in Plantation Forests in Northeast China Are Species- and Age-Dependent
by Ting Li, Qiaoqi Sun, Hongfei Zou and Petra Marschner
Remote Sens. 2024, 16(2), 281; https://doi.org/10.3390/rs16020281 - 10 Jan 2024
Cited by 3 | Viewed by 2193
Abstract
The occurrence, frequency, and severity of drought are accelerating due to global warming. Understanding the vulnerability of plantation forests to climate change, particularly to drought events, is critical to revealing the underlying mechanisms of tree resilience, recovery, and acclimation, which are important for [...] Read more.
The occurrence, frequency, and severity of drought are accelerating due to global warming. Understanding the vulnerability of plantation forests to climate change, particularly to drought events, is critical to revealing the underlying mechanisms of tree resilience, recovery, and acclimation, which are important for plantation management. How the stand age affects the climate sensitivity of tree growth, as well as the direction, magnitude, and duration of the drought legacy, in plantation forests in northeast China is still unclear. In this study, we used MODIS-derived NDVI time series with gridded climate data from 2000 to 2020 to fill this knowledge gap. The selected plantation forests were dominated by four coniferous species: Korean pine (Pinus koraiensis), Scots pine (Pinus sylvestris), Japanese larch (Larix kaempferi), and Dahurian larch (Larix gmelinii). The results show that the climate sensitivity of tree growth differed among species and age groups. The growth of Korean pine and Scots pine was mostly dependent upon precipitation, while the growth of Japanese larch and Dahurian larch was determined primarily by temperature. Old Japanese larch (21–40 years) and Dahurian larch trees (31–60 years) were more sensitive to temperature and precipitation than young conspecifics, whereas old Korean pine (41–60 years) and Scots pine (31–60 years) were less sensitive to precipitation and temperature than young conspecifics. Furthermore, the legacy of drought lasted one year for Korean pine, Japanese larch, and Dahurian larch and over three years for Scots pine. Old trees were more severely affected by drought, particularly Scots pine and Dahurian larch. The findings of the study can help improve plantation forest management for better adaptation to future climate change. Full article
Show Figures

Figure 1

18 pages, 4832 KiB  
Article
A Study on Analyses of the Production Data of Feed Crops and Vulnerability to Climate Impacts According to Climate Change in Republic of Korea
by MoonSun Shin, Seonmin Hwang, Junghwan Kim, Byungcheol Kim and Jeong-Sung Jung
Appl. Sci. 2023, 13(20), 11603; https://doi.org/10.3390/app132011603 - 23 Oct 2023
Cited by 2 | Viewed by 2311
Abstract
According to the climate change scenario, climate change in the Korean Peninsula is expected to worsen due to extreme temperatures, with effects such as rising average temperatures, heat waves, and droughts. In Republic of Korea, which relies on foreign countries for the supply [...] Read more.
According to the climate change scenario, climate change in the Korean Peninsula is expected to worsen due to extreme temperatures, with effects such as rising average temperatures, heat waves, and droughts. In Republic of Korea, which relies on foreign countries for the supply of forage crops, a decrease in the productivity of forage crops is expected to cause increased damage to the domestic livestock industry. In this paper, to solve the issue of climate vulnerability for forage crops, we performed a study to predict the productivity of forage crops in relation to climate change. We surveyed and compiled not only forage crop production data from various regions, but also experimental cultivation production data over several years from reports of the Korea Institute of Animal Science and Technology. Then, we crawled related climate data from the Korea Meteorological Administration. Therefore, we were able to construct a basic database for forage crop production data and related climate data. Using the database, a production prediction model was implemented, applying a multivariate regression analysis and deep learning regression. The key factors were determined as a result of analyzing the changes in forage crop production due to climate change. Using the prediction model, it could be possible to forecast the shifting locations of suitable cultivation areas. As a result of our study, we were able to construct electromagnetic climate maps for forage crops in Republic of Korea. It can be used to present region-specific agricultural insights and guidelines for cultivation technology for forage crops against climate change. Full article
(This article belongs to the Special Issue Recent Advances in Precision Farming and Digital Agriculture)
Show Figures

Figure 1

20 pages, 4301 KiB  
Article
Aureobasidium pullulans Treatment Mitigates Drought Stress in Abies koreana via Rhizosphere Microbiome Modulation
by Mohamed Mannaa, Gil Han, Hyejung Jung, Jungwook Park, Jin-Cheol Kim, Ae Ran Park and Young-Su Seo
Plants 2023, 12(20), 3653; https://doi.org/10.3390/plants12203653 - 23 Oct 2023
Cited by 3 | Viewed by 3783
Abstract
The Korean fir tree Abies koreana, an endangered species in Korea, faces threats primarily from climate change-induced stress and drought. This study proposed a sustainable method to enhance A. koreana drought tolerance using a black yeast-like fungus identified as Aureobasidium pullulans (AK10). [...] Read more.
The Korean fir tree Abies koreana, an endangered species in Korea, faces threats primarily from climate change-induced stress and drought. This study proposed a sustainable method to enhance A. koreana drought tolerance using a black yeast-like fungus identified as Aureobasidium pullulans (AK10). The 16S/ITS metabarcoding analysis assessed the impact of drought and AK10 treatment on the seedlings’ rhizosphere microbiome. Results revealed a profound drought influence on the microbiome, particularly affecting fungal mycobiota. Drought-stressed seedlings exhibited elevated Agaricaceae levels, opportunistic fungi generally associated with decomposition. AK10 treatment significantly mitigated this proliferation and increased the relative abundance of beneficial fungi like Cystofilobasidium and Mortierella, known biocontrol agents and phosphate solubilizers. A notable reduction in the phytopathogenic Fusarium levels was observed with AK10, alongside an increase in beneficial bacteria, including Azospirillum and Nitrospirillum. Furthermore, the conducted correlation analysis shed light on microbial interrelationships within the rhizosphere, elucidating potential co-associations and antagonisms. Taken together, the isolated A. pullulans AK10 identified in this study serves as a potential biostimulant, enhancing the drought tolerance in A. koreana through beneficial alterations in the rhizosphere microbiome. This approach presents a promising strategy for the conservation of this endangered species. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

16 pages, 4047 KiB  
Article
Assessment of Agricultural Drought Vulnerability with Focus on Upland Fields and Identification of Primary Management Areas
by Hyungjin Shin, Gyumin Lee, Jaenam Lee, Sehoon Kim and Inhong Song
Sustainability 2023, 15(3), 2773; https://doi.org/10.3390/su15032773 - 3 Feb 2023
Cited by 1 | Viewed by 2070
Abstract
Robust water management systems are crucial for sustainable water use, particularly considering rapidly changing, ever-improving water supply system technologies. However, the establishment of specific management standards in upland fields is challenging, as several types of crops are cultivated in upland fields. Hence, the [...] Read more.
Robust water management systems are crucial for sustainable water use, particularly considering rapidly changing, ever-improving water supply system technologies. However, the establishment of specific management standards in upland fields is challenging, as several types of crops are cultivated in upland fields. Hence, the timing and required amount of water vary greatly, further rendering drought response challenging. In this study, we evaluated the agricultural drought vulnerability of South Korean upland fields, considering the lack of water resources, to establish preliminary drought damage prevention measures. The Technique for Order of Preference method was used for the drought vulnerability assessment, and the assessment indicators used were annual rainfall, number of dry days, upland field area, available soil water capacity, and groundwater usage. The 20 areas of highest vulnerability comprised large cultivation areas with minimal subsurface-water usage, except for areas where the number of dry days appeared to be the major factor for drought vulnerability. Damage caused by recurring droughts accumulated over time; thus, upland-field-oriented management may be required and can even be used in cases where insufficient drought information is available. Future studies can use the proposed method while considering assessment factors that describe upland field conditions. Full article
(This article belongs to the Special Issue Integrated Watershed Management for Adaptation to Climate Change)
Show Figures

Figure 1

22 pages, 3894 KiB  
Article
Ecological Drought Condition Index to Monitor Vegetation Response to Meteorological Drought in Korean Peninsula
by Jeongeun Won and Sangdan Kim
Remote Sens. 2023, 15(2), 337; https://doi.org/10.3390/rs15020337 - 6 Jan 2023
Cited by 20 | Viewed by 4254
Abstract
Droughts caused by meteorological factors such as a long-term lack of precipitation can propagate into several types of drought through the hydrological cycle. Among them, a phenomenon in which drought has a significant impact on the ecosystem can be defined as an ecological [...] Read more.
Droughts caused by meteorological factors such as a long-term lack of precipitation can propagate into several types of drought through the hydrological cycle. Among them, a phenomenon in which drought has a significant impact on the ecosystem can be defined as an ecological drought. In this study, the Ecological Drought Condition Index-Vegetation (EDCI-veg) was newly proposed to quantitatively evaluate and monitor the effects of meteorological drought on vegetation. A copula-based bivariate joint probability distribution between vegetation information and drought information was constructed, and EDCI-veg was derived from the joint probability model. Through the proposed EDCI-veg, it was possible to quantitatively estimate how much the vegetation condition was affected by the drought, and to identify the timing of the occurrence of the vegetation drought and the severity of the vegetation drought. In addition, as a result of examining the applicability of the proposed EDCI-veg by comparing past meteorological drought events with the corresponding vegetation conditions, it was found that EDCI-veg can reasonably monitor vegetation drought. It has been shown that the newly proposed EDCI-veg in this study can provide useful information on the ecological drought condition that changes with time. On the other hand, the ecological drought analysis based on the type of land cover showed that the response of vegetation to meteorological drought was different depending on the land cover. In particular, it was revealed that the vegetation inhabiting the forest has a relatively high resistance to meteorological drought. Full article
Show Figures

Graphical abstract

27 pages, 12201 KiB  
Article
Framework for Healthiness Assessment of Water Cycle to Decide the Priority of Enhancement and Restoration Plans
by Youngkyu Jin, Sangho Lee, Taeuk Kang, Yeulwoo Kim and Namjoo Lee
Water 2023, 15(1), 6; https://doi.org/10.3390/w15010006 - 20 Dec 2022
Cited by 1 | Viewed by 2129
Abstract
The water cycle in watersheds is vulnerable due to climate change; hence, the need for sustainable watershed management is increasing. This paper suggests a framework for a healthiness assessment of the water cycle to provide a guideline for systematic watershed management considering the [...] Read more.
The water cycle in watersheds is vulnerable due to climate change; hence, the need for sustainable watershed management is increasing. This paper suggests a framework for a healthiness assessment of the water cycle to provide a guideline for systematic watershed management considering the previous and current states. The suggested framework aims to prioritize restoration and enhancement plans based on the graded healthiness of the water cycle elements by the watersheds. The framework is composed of two assessment procedures: a problem-focused assessment to identify problems such as flood, drought, and river depletion in the watershed and the highest priority assessment to select the watershed for enhancement and restoration plans. The healthiness assessment method for each metric is suggested based on the Korean Framework Act on Water Management. The framework was applied to four different watersheds in South Korea. The framework is proven to be an effective method to identify practical emerging problems for the water cycle in each watershed. The framework can contribute to providing technical information to detect the water problem of the watershed by objectively diagnosing the watersheds with various potential water problems via the healthiness assessment. Full article
(This article belongs to the Special Issue Advance in Water Management and Water Policy Research)
Show Figures

Figure 1

11 pages, 1529 KiB  
Technical Note
Performance of Drought Indices in Assessing Rice Yield in North Korea and South Korea under the Different Agricultural Systems
by Seonyoung Park, Jaese Lee, Jongmin Yeom, Eunkyo Seo and Jungho Im
Remote Sens. 2022, 14(23), 6161; https://doi.org/10.3390/rs14236161 - 5 Dec 2022
Cited by 3 | Viewed by 3514
Abstract
Drought affects a region’s economy intensively and its severity is based on the level of infrastructure present in the affected region. Therefore, it is important not only to reflect on the conventional environmental properties of drought, but also on the infrastructure of the [...] Read more.
Drought affects a region’s economy intensively and its severity is based on the level of infrastructure present in the affected region. Therefore, it is important not only to reflect on the conventional environmental properties of drought, but also on the infrastructure of the target region for adequate assessment and mitigation. Various drought indices are available to interpret the distinctive meteorological, agricultural, and hydrological characteristics of droughts. However, these drought indices do not consider the effective assessment of damage of drought impact. In this study, we evaluated the applicability of satellite-based drought indices over North Korea and South Korea, which have substantially different agricultural infrastructure systems to understand their characteristics. We compared satellite-based drought indices to in situ-based drought indices, standardized precipitation index (SPI), and rice yield over the Korean Peninsula. Moderate resolution imaging spectroradiometer (MODIS), tropical rainfall measuring mission (TRMM), and global land data assimilation system (GLDAS) data from 2001 to 2018 were used to calculate drought indices. The correlations of the indices in terms of monitoring meteorological and agricultural droughts in rice showed opposite correlation patterns between the two countries. The difference in the prevailing agricultural systems including irrigation resulted in different impacts of drought. Vegetation condition index (VCI) and evaporative stress index (ESI) are best suited to assess agricultural drought under well-irrigated regions as in South Korea. In contrast, most of the drought indices except for temperature condition index (TCI) are suitable for regions with poor agricultural infrastructure as in North Korea. Full article
(This article belongs to the Special Issue Monitoring Environmental Changes by Remote Sensing)
Show Figures

Figure 1

12 pages, 2740 KiB  
Article
Enhanced Prediction and Determination of Hydrological Drought at Ungauged River Intake Stations under Changing Climate
by Dian Wu, Jong-Suk Kim, Seo-Yeon Park, Guyoung Park, Woosung Nam and Joo-Heon Lee
Appl. Sci. 2022, 12(22), 11379; https://doi.org/10.3390/app122211379 - 9 Nov 2022
Cited by 1 | Viewed by 1770
Abstract
Droughts, which are expected to worsen under global climate change, have major impacts on human life and the natural environment. In this study, an analysis system was established for predicting and determining hydrological drought conditions at ungauged water stations and in watersheds connected [...] Read more.
Droughts, which are expected to worsen under global climate change, have major impacts on human life and the natural environment. In this study, an analysis system was established for predicting and determining hydrological drought conditions at ungauged water stations and in watersheds connected to municipal river water intake facilities. The aim was to help prevent drought damage or minimize its effects based on an immediate response to severe drought events. A system is presented for the selection of ungauged watersheds that take in river water, and three methodologies are proposed for identifying and forecasting hydrological drought conditions. Two South Korean pilot sites among the numerous ungauged water intake plants that lack local data collection facilities were selected as study areas. In addition, a roadmap for the establishment of standards for the determination of drought conditions in ungauged river basins was proposed. The methodologies introduced in this study assume nationwide expansion and construction. Their utilization can facilitate effective drought responses, based on drought forecasting and restricted water supply criteria for each phase of water intake, at local (and other) waterworks. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

21 pages, 2579 KiB  
Article
Drought Vulnerability Assessment and Cluster Analysis of Island Areas Taking Korean Island Areas at Eup (Town) and Myeon (Subcounty) Levels as Study Targets
by Intae Shim, Heejin Kim, Bongchang Hong, Jusuk An and Taemun Hwang
Water 2021, 13(24), 3657; https://doi.org/10.3390/w13243657 - 20 Dec 2021
Cited by 5 | Viewed by 3806
Abstract
The purpose of this study is to conduct drought vulnerability assessment and cluster analysis of Korean island areas at eup (town) myeon (subcounty) level. Drought vulnerability assessment was conducted using factor analysis and entropy method, and cluster analysis was analyzed using K-means, a [...] Read more.
The purpose of this study is to conduct drought vulnerability assessment and cluster analysis of Korean island areas at eup (town) myeon (subcounty) level. Drought vulnerability assessment was conducted using factor analysis and entropy method, and cluster analysis was analyzed using K-means, a nonhierarchical cluster analysis method. Vulnerability consisted of climate exposure, sensitivity, and adaptive capacity. Twenty-two indicators were used to evaluate and analyze vulnerability of drought in small island areas. The results of entropy method showed that winter rainfall, no rainfall days, agricultural population rate, cultivation area rate, water supply rate and groundwater capacity have a substantial impact on drought assessment. The overall assessment of vulnerability indicated that Seodo-myeon Ganghwa-gun, Seolcheon-myeon Namhae-gun, and Samsan-myeon Ganghwa-gun were most vulnerable to drought. The cluster analysis was evaluated by categorizing the regions into three clusters, and policy support and planning are needed to suit the characteristics of each cluster was observed. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

14 pages, 8145 KiB  
Technical Note
RAIN-F+: The Data-Driven Precipitation Prediction Model for Integrated Weather Observations
by Yeji Choi, Keumgang Cha, Minyoung Back, Hyunguk Choi and Taegyun Jeon
Remote Sens. 2021, 13(18), 3627; https://doi.org/10.3390/rs13183627 - 11 Sep 2021
Cited by 8 | Viewed by 4920
Abstract
Quantitative precipitation prediction is essential for managing water-related disasters, including floods, landslides, tsunamis, and droughts. Recent advances in data-driven approaches using deep learning techniques provide improved precipitation nowcasting performance. Moreover, it has been known that multi-modal information from various sources could improve deep [...] Read more.
Quantitative precipitation prediction is essential for managing water-related disasters, including floods, landslides, tsunamis, and droughts. Recent advances in data-driven approaches using deep learning techniques provide improved precipitation nowcasting performance. Moreover, it has been known that multi-modal information from various sources could improve deep learning performance. This study introduces the RAIN-F+ dataset, which is the fusion dataset for rainfall prediction, and proposes the benchmark models for precipitation prediction using the RAIN-F+ dataset. The RAIN-F+ dataset is an integrated weather observation dataset including radar, surface station, and satellite observations covering the land area over the Korean Peninsula. The benchmark model is developed based on the U-Net architecture with residual upsampling and downsampling blocks. We examine the results depending on the number of the integrated dataset for training. Overall, the results show that the fusion dataset outperforms the radar-only dataset over time. Moreover, the results with the radar-only dataset show the limitations in predicting heavy rainfall over 10 mm/h. This suggests that the various information from multi-modality is crucial for precipitation nowcasting when applying the deep learning method. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

Back to TopTop