Modeling Tree Mortality Induced by Climate Change-Driven Drought: A Case Study of Korean Fir in the Subalpine Forests of Jirisan National Park, South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Field Data
2.3. Drought Information
2.4. Analysis of Drought’s Impacts on Korean Fir Mortality
2.5. Development of Random Forest-Based Korean Fir Mortality Models
2.6. Confirming the Effect of Climate Change on Korean Fir Mortality
3. Results
3.1. CWD of Growing Stages in the Study Area
3.2. Seasonal and Legacy Effects of Drought on Korean Fir Mortality
3.3. Evaluation of the Korean Fir Mortality Model
3.4. Effect of Climate Change on Korean Fir Mortality
4. Discussion
4.1. Drought’s Impact on Korean Fir Mortality
4.2. The Korean Fir Mortality Model
4.3. Application and Limitations of the Korean Fir Mortality Model
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A Global Overview of Drought and Heat-Induced Tree Mortality Reveals Emerging Climate Change Risks for Forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Allen, C.D.; Breshears, D.D.; McDowell, N.G. On Underestimation of Global Vulnerability to Tree Mortality and Forest Die-off from Hotter Drought in the Anthropocene. Ecosphere 2015, 6, art129. [Google Scholar] [CrossRef]
- Feddema, J.J. A Revised Thornthwaite-Type Global Climate Classification. Phys. Geogr. 2005, 26, 442–466. [Google Scholar] [CrossRef]
- Thornthwaite, C.W. An Approach toward a Rational Classification of Climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Mather, J.R.; Yoshioka, G.A. The Role of Climate in the Distribution of Vegetation. Ann. Assoc. Am. Geogr. 1968, 58, 29–41. [Google Scholar] [CrossRef]
- Stephenson, N. Actual Evapotranspiration and Deficit: Biologically Meaningful Correlates of Vegetation Distribution across Spatial Scales. J. Biogeogr. 1998, 25, 855–870. [Google Scholar] [CrossRef]
- Stephenson, N.L. Climatic Control of Vegetation Distribution: The Role of the Water Balance. Am. Nat. 1990, 135, 649–670. [Google Scholar] [CrossRef]
- Jump, A.S.; Ruiz-Benito, P.; Greenwood, S.; Allen, C.D.; Kitzberger, T.; Fensham, R.; Martínez-Vilalta, J.; Lloret, F. Structural Overshoot of Tree Growth with Climate Variability and the Global Spectrum of Drought-Induced Forest Dieback. Glob. Change Biol. 2017, 23, 3742–3757. [Google Scholar] [CrossRef]
- Tilman, D. Resources: A Graphical-Mechanistic Approach to Competition and Predation. Am. Nat. 1980, 116, 362–393. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Schwalm, C.; Biondi, F.; Camarero, J.J.; Koch, G.; Litvak, M.; Ogle, K.; Shaw, J.D.; Shevliakova, E.; Williams, A.P.; et al. Pervasive Drought Legacies in Forest Ecosystems and Their Implications for Carbon Cycle Models. Science 2015, 349, 528–532. [Google Scholar] [CrossRef] [PubMed]
- Senf, C.; Buras, A.; Zang, C.S.; Rammig, A.; Seidl, R. Excess Forest Mortality Is Consistently Linked to Drought Across Europe. Nat. Commun. 2020, 11, 6200. [Google Scholar] [CrossRef] [PubMed]
- McDowell, N.; Pockman, W.T.; Allen, C.D.; Breshears, D.D.; Cobb, N.; Kolb, T.; Plaut, J.; Sperry, J.; West, A.; Williams, D.G.; et al. Mechanisms of Plant Survival and Mortality during Drought: Why Do Some Plants Survive While Others Succumb to Drought? New Phytol. 2008, 178, 719–739. [Google Scholar] [CrossRef] [PubMed]
- IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES Secretariat: Bonn, Germany, 2019; p. 56. [Google Scholar]
- Bigler, C.; Gavin, D.G.; Gunning, C.; Veblen, T.T. Drought Induces Lagged Tree Mortality in a Subalpine Forest in the Rocky Mountains. Oikos 2007, 116, 1983–1994. [Google Scholar] [CrossRef]
- Krumm, F.; Kulakowski, D.; Risch, A.C.; Spiecker, H.; Brändli, U.-B.; Bebi, P. Stem Exclusion and Mortality in Unmanaged Subalpine Forests of the Swiss Alps. Eur. J. For. Res. 2012, 131, 1571–1583. [Google Scholar] [CrossRef]
- Smith, J.M.; Paritsis, J.; Veblen, T.T.; Chapman, T.B. Permanent Forest Plots Show Accelerating Tree Mortality in Subalpine Forests of the Colorado Front Range from 1982 to 2013. For. Ecol. Manag. 2015, 341, 8–17. [Google Scholar] [CrossRef]
- Van Mantgem, P.J.; Stephenson, N.L. Apparent Climatically Induced Increase of Tree Mortality Rates in a Temperate Forest. Ecol. Lett. 2007, 10, 909–916. [Google Scholar] [CrossRef] [PubMed]
- Gentili, R.; Bacchetta, G.; Fenu, G.; Cogoni, D.; Abeli, T.; Rossi, G.; Salvatore, M.C.; Baroni, C.; Citterio, S. From Cold to Warm-Stage Refugia for Boreo-Alpine Plants in Southern European and Mediterranean Mountains: The Last Chance to Survive or an Opportunity for Speciation? Biodiversity 2015, 16, 247–261. [Google Scholar] [CrossRef]
- Hewitt, G.M. Genetic Consequences of Climatic Oscillations in the Quaternary. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2004, 359, 183–195. [Google Scholar] [CrossRef]
- Provan, J.; Bennett, K.D. Phylogeographic Insights into Cryptic Glacial Refugia. Trends Ecol. Evol. 2008, 23, 564–571. [Google Scholar] [CrossRef]
- Dobrowski, S.Z. A Climatic Basis for Microrefugia: The Influence of Terrain on Climate. Glob. Change Biol. 2011, 17, 1022–1035. [Google Scholar] [CrossRef]
- Gonzalez, P.; Neilson, R.P.; Lenihan, J.M.; Drapek, R.J. Global Patterns in the Vulnerability of Ecosystems to Vegetation Shifts Due to Climate Change. Glob. Ecol. Biogeogr. 2010, 19, 755–768. [Google Scholar] [CrossRef]
- Harsch, M.A.; Hulme, P.E.; McGlone, M.S.; Duncan, R.P. Are Treelines Advancing? A Global Meta-Analysis of Treeline Response to Climate Warming. Ecol. Lett. 2009, 12, 1040–1049. [Google Scholar] [CrossRef]
- Ahn, U.-S.; Yun, Y.-S. Causes of Decline in the Korean Fir Based on Spatial Distribution in the Mt. Halla Region in Korea: A Meta-Analysis. Forests 2020, 11, 391. [Google Scholar] [CrossRef]
- Seo, J.-W.; Choi, E.-B.; Park, J.-H.; Kim, Y.-J.; Lim, H.-I. The Role of Aging and Wind in Inducing Death and/or Growth Reduction in Korean Fir (Abies Koreana Wilson) on Mt. Halla, Korea. Atmosphere 2021, 12, 1135. [Google Scholar] [CrossRef]
- Chun, Y.-M.; Kim, S.-M.; Park, E.-H.; Park, S.-H.; Lee, H.-Y.; Kim, J.-W. Monitoring on the Vegetation Structure and Dynamics of Abies Koreana Populations in Jirisan National Park. Korean J. Ecol. Environ. 2021, 35, 408–423. [Google Scholar] [CrossRef]
- Kim, J.-W.; Jeon, J.-Y.; Park, H.-C. Survey on the Annual Mortality of Evergreen Conifers (Abies koreana, Abies nephrolepis) in the Major National Park: A Case Study on Seoraksan, Deogyusan, Jirisan National Park. J. Nat. Park Res. 2021, 12, 79–84. [Google Scholar] [CrossRef]
- Park, H.-C.; Moon, G.-S.; Lee, H.; Lee, N.-Y. A Study on the Spatial Information and Location Environment of Dead Coniferous Tree in Subalpine Zone in Jirisan National Park. Korean J. Ecol. Environ. 2020, 34, 42–54. [Google Scholar] [CrossRef]
- Koo, K.-A.; Kim, D.-B. Review Forty-Year Studies of Korean Fir (Abies Koreana Wilson). Korean J. Ecol. Environ. 2020, 34, 358–371. [Google Scholar] [CrossRef]
- Kong, W.-S. Species Composition and Distribution of Korean Alpine Plants. J. Korean Geogr. Soc. 2002, 37, 357–370, (In Korean with English abstract). [Google Scholar]
- Koo, K.-A.; Park, W.-K.; Kong, W.-S. Dendrochronological Analysis of Abies Koreana W. at Mt. Halla, Korea: Effects of Climate Change on the Growths. Korean J. Ecol. 2001, 24, 281–288. (In Korean) [Google Scholar]
- Lim, C.-H.; Kim, H.-J. Machine Learning Application for Identifying Habitat Suitability Changes of Indicator Tree Species against Recent Climate Change. J. Clim. Change Res. 2020, 11, 793–805. [Google Scholar] [CrossRef]
- Park, W.-K.; Seo, J.-W. A Dendroclimatic Analysis on Abies Koreana in Cheonwang-Bong Area of Mt. Chiri, Korea. Korean J. Quat. Res. 1999, 13, 25–33, (In Korean with English abstract). [Google Scholar]
- Yoo, S.; Lim, C.-H.; Kim, M.; Song, C.; Kim, S.-J.; Lee, W.K. Potential Distribution of Endangered Coniferous Tree Species under Climate Change. J. Clim. Change Res. 2020, 11, 215–226. [Google Scholar] [CrossRef]
- Lim, J.-H.; Woo, S.-Y.; Kwon, M.-J.; Chun, J.-H.; Shin, J.-H. Photosynthetic Capacity and Water Use Efficiency under Different Temperature Regimes on Healthy and Declining Korean Fir in Mt. Halla. J. Korean For. Soci. 2006, 95, 705–710, (In Korean with English abstract). [Google Scholar]
- Anderegg, L.D.L.; Anderegg, W.R.L.; Berry, J.A. Not All Droughts Are Created Equal: Translating Meteorological Drought into Woody Plant Mortality. Tree Physiol. 2013, 33, 672–683. [Google Scholar] [CrossRef]
- Rathgeber, C.B.K.; Cuny, H.E.; Fonti, P. Biological Basis of Tree-Ring Formation: A Crash Course. Front. Plant Sci. 2016, 7, 734. [Google Scholar] [CrossRef]
- Seo, J.-W.; Eckstein, D.; Jalkanen, R.; Schmitt, U. Climatic Control of Intra- and Inter-Annual Wood-Formation Dynamics of Scots Pine in Northern Finland. Environ. Exp. Bot. 2011, 72, 422–431. [Google Scholar] [CrossRef]
- Malik, R.; Rossi, S.; Sukumar, R. Variations in the Timing of Different Phenological Stages of Cambial Activity in Abies Pindrow (Royle) along an Elevation Gradient in the North-Western Himalaya. Dendrochronologia 2020, 59, 125660. [Google Scholar] [CrossRef]
- Rossi, S.; Deslauriers, A.; Anfodillo, T. Assessment of Cambial Activity and Xylogenesis by Microsampling Tree Species: An Example at the Alpine Timberline. IAWA J. 2006, 27, 383–394. [Google Scholar] [CrossRef]
- Rossi, S.; Deslauriers, A.; Anfodillo, T.; Carrer, M. Age-Dependent Xylogenesis in Timberline Conifers. New Phytol. 2008, 177, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Hollunder, R.K.; Mariotte, P.; Carrijo, T.T.; Holmgren, M.; Luber, J.; Stein-Soares, B.; Guidoni-Martins, K.G.; Ferreira-Santos, K.; Scarano, F.R.; Garbin, M.L. Topography and Vegetation Structure Mediate Drought Impacts on the Understory of the South American Atlantic Forest. Sci. Total Environ. 2021, 766, 144234. [Google Scholar] [CrossRef]
- Schwartz, N.B.; Feng, X.; Muscarella, R.; Swenson, N.G.; Umaña, M.N.; Zimmerman, J.K.; Uriarte, M. Topography and Traits Modulate Tree Performance and Drought Response in a Tropical Forest. Front. For. Glob. Change 2020, 3, 596296. [Google Scholar] [CrossRef]
- Crouchet, S.E.; Jensen, J.; Schwartz, B.F.; Schwinning, S. Tree Mortality After a Hot Drought: Distinguishing Density-Dependent and -Independent Drivers and Why It Matters. Front. For. Glob. Change 2019, 2, 21. [Google Scholar] [CrossRef]
- He, F.; Duncan, R.P. Density-Dependent Effects on Tree Survival in an Old-Growth Douglas Fir Forest. J. Ecol. 2000, 88, 676–688. [Google Scholar] [CrossRef]
- Bottero, A.; D’Amato, A.W.; Palik, B.J.; Bradford, J.B.; Fraver, S.; Battaglia, M.A.; Asherin, L.A. Density-Dependent Vulnerability of Forest Ecosystems to Drought. J. Appl. Ecol. 2017, 54, 1605–1614. [Google Scholar] [CrossRef]
- Young, D.J.N.; Stevens, J.T.; Earles, J.M.; Moore, J.; Ellis, A.; Jirka, A.L.; Latimer, A.M. Long-Term Climate and Competition Explain Forest Mortality Patterns under Extreme Drought. Ecol. Lett. 2017, 20, 78–86. [Google Scholar] [CrossRef]
- Bennett, A.C.; McDowell, N.G.; Allen, C.D.; Anderson-Teixeira, K.J. Larger Trees Suffer Most during Drought in Forests Worldwide. Nat. Plants 2015, 1, 1–5. [Google Scholar] [CrossRef]
- Etzold, S.; Ziemińska, K.; Rohner, B.; Bottero, A.; Bose, A.K.; Ruehr, N.K.; Zingg, A.; Rigling, A. One Century of Forest Monitoring Data in Switzerland Reveals Species- and Site-Specific Trends of Climate-Induced Tree Mortality. Front. Plant Sci. 2019, 10, 307. [Google Scholar] [CrossRef]
- Macalady, A.K.; Bugmann, H. Growth-Mortality Relationships in Piñon Pine (Pinus edulis) during Severe Droughts of the Past Century: Shifting Processes in Space and Time. PLoS ONE 2014, 9, e92770. [Google Scholar] [CrossRef]
- Ma, Q.; Su, Y.; Niu, C.; Ma, Q.; Hu, T.; Luo, X.; Tai, X.; Qiu, T.; Zhang, Y.; Bales, R.C.; et al. Tree Mortality during Long-Term Droughts Is Lower in Structurally Complex Forest Stands. Nat. Commun. 2023, 14, 7467. [Google Scholar] [CrossRef]
- Nepstad, D.C.; Tohver, I.M.; Ray, D.; Moutinho, P.; Cardinot, G. Mortality of Large Trees and Lianas Following Experimental Drought in an Amazon Forest. Ecology 2007, 88, 2259–2269. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.; Cabral, O.M.R.; De Aguiar, L.F. Stomatal and Boundary-Layer Conductances in an Amazonian Terra Firme Rain Forest. J. Appl. Ecol. 1990, 27, 336–353. [Google Scholar] [CrossRef]
- Floyd, M.L.; Clifford, M.; Cobb, N.S.; Hanna, D.; Delph, R.; Ford, P.; Turner, D. Relationship of Stand Characteristics to Drought-Induced Mortality in Three Southwestern Piñion-Juniper Woodlands. Ecol. Appl. 2009, 19, 1223–1230. [Google Scholar] [CrossRef]
- Looney, C.E.; Sullivan, B.W.; Kolb, T.E.; Kane, J.M.; Hart, S.C. Pinyon Pine (Pinus edulis) Mortality and Response to Water Addition across a Three Million Year Substrate Age Gradient in Northern Arizona, USA. Plant Soil 2012, 357, 89–102. [Google Scholar] [CrossRef]
- Allen, C.D.; Breshears, D.D. Drought-Induced Shift of a Forest–Woodland Ecotone: Rapid Landscape Response to Climate Variation. Proc. Natl. Acad. Sci. USA 1998, 95, 14839–14842. [Google Scholar] [CrossRef]
- Cartwright, J.M.; Littlefield, C.E.; Michalak, J.L.; Lawler, J.J.; Dobrowski, S.Z. Topographic, Soil, and Climate Drivers of Drought Sensitivity in Forests and Shrublands of the Pacific Northwest, USA. Sci. Rep. 2020, 10, 18486. [Google Scholar] [CrossRef] [PubMed]
- Dorman, M.; Svoray, T.; Perevolotsky, A.; Moshe, Y.; Sarris, D. What Determines Tree Mortality in Dry Environments? A Multi-Perspective Approach. Ecol. Appl. 2015, 25, 1054–1071. [Google Scholar] [CrossRef]
- Resler, L.M.; Butler, D.R.; Malanson, G.P. Topographic Shelter and Conifer Establishment and Mortality in an Alpine Environment, Glacier National Park, Montana. Phys. Geogr. 2005, 26, 112–125. [Google Scholar] [CrossRef]
- Trugman, A.T.; Anderegg, L.D.L.; Anderegg, W.R.L.; Das, A.J.; Stephenson, N.L. Why Is Tree Drought Mortality so Hard to Predict? Trends Ecol. Evol. 2021, 36, 520–532. [Google Scholar] [CrossRef]
- McDowell, N.G.; Fisher, R.A.; Xu, C.; Domec, J.C.; Hölttä, T.; Mackay, D.S.; Sperry, J.S.; Boutz, A.; Dickman, L.; Gehres, N.; et al. Evaluating Theories of Drought-Induced Vegetation Mortality Using a Multimodel–Experiment Framework. New Phytol. 2013, 200, 304–321. [Google Scholar] [CrossRef]
- Meir, P.; Mencuccini, M.; Dewar, R.C. Drought-Related Tree Mortality: Addressing the Gaps in Understanding and Prediction. New Phytol. 2015, 207, 28–33. [Google Scholar] [CrossRef]
- Parolari, A.J.; Katul, G.G.; Porporato, A. An Ecohydrological Perspective on Drought-Induced Forest Mortality. J. Geophys. Res. Biogeosci. 2014, 119, 965–981. [Google Scholar] [CrossRef]
- Sala, A.; Piper, F.; Hoch, G. Physiological Mechanisms of Drought-Induced Tree Mortality Are Far from Being Resolved. New Phytol. 2010, 186, 274–281. [Google Scholar] [CrossRef]
- McNellis, B.E.; Smith, A.M.S.; Hudak, A.T.; Strand, E.K. Tree Mortality in Western U.S. Forests Forecasted Using Forest Inventory and Random Forest Classification. Ecosphere 2021, 12, e03419. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards, T.C., Jr.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random Forests for Classification in Ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef] [PubMed]
- Fox, E.W.; Hill, R.A.; Leibowitz, S.G.; Olsen, A.R.; Thornbrugh, D.J.; Weber, M.H. Assessing the Accuracy and Stability of Variable Selection Methods for Random Forest Modeling in Ecology. Environ. Monit. Assess. 2017, 189, 316. [Google Scholar] [CrossRef]
- Baguskas, S.A.; Peterson, S.H.; Bookhagen, B.; Still, C.J. Evaluating Spatial Patterns of Drought-Induced Tree Mortality in a Coastal California Pine Forest. For. Ecol. Manag. 2014, 315, 43–53. [Google Scholar] [CrossRef]
- Cho, N.; Agossou, C.; Kim, E.; Lim, J.-H.; Seo, J.-W.; Kang, S. Machine-Learning Modeling on Tree Mortality and Growth Reduction of Temperate Forests with Climatic and Ecophysiological Parameters. Ecol. Modell. 2023, 483, 110456. [Google Scholar] [CrossRef]
- Cordeiro, N.G.; Pereira, K.M.; Terra, M.D.; de Oliveira Silveira, E.M.; de Oliveira, I.M.; Júnior, F.W.; van den Berg, E.; de Mello, J.M. The Role of Environmental Filters in Brazilian Savanna Vegetation Dynamics. For. Ecol. Manag. 2021, 500, 119645. [Google Scholar] [CrossRef]
- Kong, W.-S.; Kim, K.; Lee, S.; Park, H.; Cho, S.-H. Distribution of High Mountain Plants and Species Vulnerability Against Climate Change. J. Environ. Impact Assess. 2014, 23, 119–136. [Google Scholar] [CrossRef]
- Korea National Arboretum. Ecology of Woody Plants in South Korea (I): Conifers; Korea National Arboretum: Pocheon, Republic of Korea, 2015. (In Korean)
- Andrus, R.A.; Chai, R.K.; Harvey, B.J.; Rodman, K.C.; Veblen, T.T. Increasing Rates of Subalpine Tree Mortality Linked to Warmer and Drier Summers. J. Ecol. 2021, 109, 2203–2218. [Google Scholar] [CrossRef]
- Bentz, B.J.; Millar, C.I.; Vandygriff, J.C.; Hansen, E.M. Great Basin Bristlecone Pine Mortality: Causal Factors and Management Implications. For. Ecol. Manag. 2022, 509, 120099. [Google Scholar] [CrossRef]
- Redmond, M.D. CWD and AET Function, V1.0.2; Zenodo: Geneva, Switzerland, 2019. Available online: https://zenodo.org/records/4490031 (accessed on 12 September 2024). [CrossRef]
- Thornthwaite, C.W.; Mather, J.R. Publication in Climatology, Volume 10, Number 3: Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance; Laboratory of Climatology: Centerton, AR, USA, 1957; pp. 185–311. [Google Scholar]
- Thornthwaite, C.W.; Mather, J.R. Publication in Climatology, Volume 8, Number 1: The Water Balance; Laboratory of Climatology: Centerton, AR, USA, 1955; pp. 1–104. [Google Scholar]
- Park, J.-H.; Choi, E.-B.; Park, H.-C.; Lee, N.-Y.; Seo, J.-W. Intra-Annual Dynamics of Cambial and Xylem Phenology in Subalpine Conifers at Deogyusan National Park in the Republic of Korea. J. Wood Sci. 2021, 67, 22. [Google Scholar] [CrossRef]
- Rao, C.R. The Use and Interpretation of Principal Component Analysis in Applied Research. Sankhyā Ser. A 1964, 26, 329–358. [Google Scholar]
- van den Wollenberg, A.L. Redundancy Analysis an Alternative for Canonical Correlation Analysis. Psychometrika 1977, 42, 207–219. [Google Scholar] [CrossRef]
- Dixon, P. VEGAN, a Package of R Functions for Community Ecology. J. Veg. Sci. 2003, 14, 927–930. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. R package version 2.5-7. 2020, p. 295. Available online: https://cran.r-project.org/web/packages/vegan/vegan.pdf (accessed on 25 September 2024).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; p. 3802. [Google Scholar]
- Borcard, D.; Gillet, F.; Legendre, P. Canonical Ordination. In Numerical Ecology with R; Borcard, D., Gillet, F., Legendre, P., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 203–297. ISBN 978-3-319-71404-2. [Google Scholar]
- Legendre, P.; Legendre, L. Numerical Ecology, 3rd ed.; Elsevier: Oxford, UK, 2012; p. 990. [Google Scholar]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-Sampling Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- He, H.; Garcia, E.A. Learning from Imbalanced Data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284. [Google Scholar] [CrossRef]
- Menardi, G.; Torelli, N. Training and Assessing Classification Rules with Imbalanced Data. Data Min. Knowl. Disc. 2014, 28, 92–122. [Google Scholar] [CrossRef]
- Mohammed, R.; Rawashdeh, J.; Abdullah, M. Machine Learning with Oversampling and Undersampling Techniques: Overview Study and Experimental Results. In Proceedings of the 2020 11th International Conference on Information and Communication Systems (ICICS), Irbid, Jordan, 7–9 April 2020; Institute of Electrical and Electronics Engineers, Inc.: Danvers, MA, USA, 2020; pp. 243–248. [Google Scholar]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Restaino, C.M.; Peterson, D.L.; Littell, J. Increased Water Deficit Decreases Douglas Fir Growth throughout Western US Forests. Proc. Natl. Acad. Sci. USA 2016, 113, 9557–9562. [Google Scholar] [CrossRef]
- Guarín, A.; Taylor, A.H. Drought Triggered Tree Mortality in Mixed Conifer Forests in Yosemite National Park, California, USA. For. Ecol. Manag. 2005, 218, 229–244. [Google Scholar] [CrossRef]
- Foster, T.E.; Schmalzer, P.A.; Fox, G.A. Timing Matters: The Seasonal Effect of Drought on Tree Growth. J. Torrey Bot. Soc. 2014, 141, 225–241. [Google Scholar] [CrossRef]
- McDowell, N.G.; Allen, C.D. Darcy’s Law Predicts Widespread Forest Mortality under Climate Warming. Nat. Clim. Change 2015, 5, 669–672. [Google Scholar] [CrossRef]
- Ryan, M.G.; Phillips, N.; Bond, B.J. The Hydraulic Limitation Hypothesis Revisited. Plant Cell Environ. 2006, 29, 367–381. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Meinzer, F.C.; Hao, G.Y.; Scholz, F.G.; Bucci, S.J.; Takahashi, F.S.C.; Villalobos-Vega, R.; Giraldo, J.P.; Cao, K.F.; Hoffmann, W.A.; et al. Size-Dependent Mortality in a Neotropical Savanna Tree: The Role of Height-Related Adjustments in Hydraulic Architecture and Carbon Allocation. Plant Cell Environ. 2009, 32, 1456–1466. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, D.L.; Weisberg, P.J. Density-Dependent Tree Mortality in Pinyon-Juniper Woodlands. For. Ecol. Manag. 2008, 255, 2129–2137. [Google Scholar] [CrossRef]
- Moore, I.D.; Grayson, R.B. Terrain-Based Catchment Partitioning and Runoff Prediction Using Vector Elevation Data. Water Resour. Res. 1991, 27, 1177–1191. [Google Scholar] [CrossRef]
- Sunada, K.; Hong, T.F. Effects of Slope Conditions on Direct Runoff Characteristics by the Interflow and Overland Flow Model. J. Hydrol. 1988, 102, 323–334. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, J.; Peng, J.; Zou, L.; Fan, Y.; Yang, F.; Hu, Z. Alp-Valley and Elevation Effects on the Reference Evapotranspiration and the Dominant Climate Controls in Red River Basin, China: Insights from Geographical Differentiation. J. Hydrol. 2023, 620, 129397. [Google Scholar] [CrossRef]
- Peng, H.; Jia, Y.; Zhan, C.; Xu, W. Topographic Controls on Ecosystem Evapotranspiration and Net Primary Productivity under Climate Warming in the Taihang Mountains, China. J. Hydrol. 2020, 581, 124394. [Google Scholar] [CrossRef]
- Bradford, J.B.; Shriver, R.K.; Robles, M.D.; McCauley, L.A.; Woolley, T.J.; Andrews, C.A.; Crimmins, M.; Bell, D.M. Tree Mortality Response to Drought-Density Interactions Suggests Opportunities to Enhance Drought Resistance. J. Appl. Ecol. 2022, 59, 549–559. [Google Scholar] [CrossRef]
- Condés, S.; Vallet, P.; Bielak, K.; Bravo-Oviedo, A.; Coll, L.; Ducey, M.J.; Pach, M.; Pretzsch, H.; Sterba, H.; Vayreda, J.; et al. Climate Influences on the Maximum Size-Density Relationship in Scots Pine (Pinus sylvestris L.) and European Beech (Fagus sylvatica L.) Stands. For. Ecol. Manag. 2017, 385, 295–307. [Google Scholar] [CrossRef]
- Seo, J.-W.; Jeong, H.-M.; Lee, K.-H.; Park, H.-C. Dating the Dead Years of Korean Fir (Abies Koreana E.H. Wilson) at Imgeollyeong in Jirisan National Park. J. Nat. Park Res. 2019, 10, 219–223, (In Korean with English abstract). [Google Scholar]
- Bekker, M.F.; Malanson, G.P. Linear Forest Patterns in Subalpine Environments. Prog. Phys. Geogr. Earth Environ. 2008, 32, 635–653. [Google Scholar] [CrossRef]
- Sato, K.; Iwasa, Y. Modeling of Wave Regeneration in Subalpine Abies Forests: Population Dynamics with Spatial Structure. Ecology 1993, 74, 1538–1550. [Google Scholar] [CrossRef]
- Li, H.; Sheffield, J.; Wood, E.F. Bias Correction of Monthly Precipitation and Temperature Fields from Intergovernmental Panel on Climate Change AR4 Models Using Equidistant Quantile Matching. J. Geophys. Res. Atmos. 2010, 115, D10. [Google Scholar] [CrossRef]
- Mehrotra, R.; Sharma, A. A Resampling Approach for Correcting Systematic Spatiotemporal Biases for Multiple Variables in a Changing Climate. Water Resour. Res. 2019, 55, 754–770. [Google Scholar] [CrossRef]
- Wehrli, K.; Guillod, B.P.; Hauser, M.; Leclair, M.; Seneviratne, S.I. Assessing the Dynamic Versus Thermodynamic Origin of Climate Model Biases. Geophys. Res. Lett. 2018, 45, 8471–8479. [Google Scholar] [CrossRef]
- Hagemann, S.; Chen, C.; Haerter, J.O.; Heinke, J.; Gerten, D.; Piani, C. Impact of a Statistical Bias Correction on the Projected Hydrological Changes Obtained from Three GCMs and Two Hydrology Models. J. Hydrometeorol. 2011, 12, 556–578. [Google Scholar] [CrossRef]
- Johnson, F.; Sharma, A. A Nesting Model for Bias Correction of Variability at Multiple Time Scales in General Circulation Model Precipitation Simulations. Water Resour. Res. 2012, 48, 1. [Google Scholar] [CrossRef]
- Wood, A.W.; Leung, L.R.; Sridhar, V.; Lettenmaier, D.P. Hydrologic Implications of Dynamical and Statistical Approaches to Downscaling Climte Model Outputs. Clim. Change 2004, 62, 189–216. [Google Scholar] [CrossRef]
- Cannon, A.J.; Sobie, S.R.; Murdock, T.Q. Bias Correction of GCM Precipitation by Quantile Mapping: How Well Do Methods Preserve Changes in Quantiles and Extremes? J. Clim. 2015, 28, 6938–6959. [Google Scholar] [CrossRef]
- Kum, D.; Lim, K.-J.; Jang, C.-H.; Ryu, J.; Yang, J.-E.; Kim, S.-J.; Kong, D.-S.; Jung, Y. Projecting Future Climate Change Scenarios Using Three Bias-Correction Methods. Adv. Meteorol. 2014, 2014, e704151. [Google Scholar] [CrossRef]
Site | Local Name | Quadrat Size (m2) | Elevation (m a.s.l.) | Slope (Degrees) | Aspect (Degrees) | Survey Start Year |
---|---|---|---|---|---|---|
JR_01 | Jeseokbong | 400 | 1786 | 12.7 | 248 | 2012 |
JR_02 | Jangteomok | 900 | 1651 | 10.2 | 86 | 2012 |
JR_03 | Seseokpyeongjeon | 900 | 1549 | 8.7 | 241 | 2012 |
JR_04 | Youngsinbong | 600 | 1600 | 18.8 | 264 | 2012 |
JR_05 | Byeoksoryeong | 400 | 1342 | 17.6 | 55 | 2012 |
JR_06 | Banyabong | 1600 | 1656 | 30.2 | 86 | 2012 |
JR_07 | Banyabong | 1600 | 1642 | 24.9 | 207 | 2012 |
JR_08 | Norumok | 1600 | 1343 | 26.4 | 177 | 2017 |
JR_09 | Dwaejipyeongjeon | 1600 | 1355 | 9.6 | 33 | 2017 |
JR_10 | Yimgeolryeong | 400 | 1387 | 13.9 | 258 | 2017 |
Type | Variable | Abbreviation | Unit |
---|---|---|---|
Weather | Early growing season CWD i years ago | EG_CWD_i | mm |
Late growing season CWD i years ago | LG_CWD_i | mm | |
Dormant season CWD i years ago | D_CWD_i | mm | |
Topography | Slope | Slope | % |
Elevation | Elevation | m | |
Aspect-Northness | Aspect | - | |
Individual | Diameter at breast height | DBH | cm |
Relative DBH by 95th percentile | RDBH | ratio | |
Stand | Density of Korean fir | DensityK | n/ha |
Basal area of Korean fir | BAK | m2/ha | |
Density of all trees | DensityA | n/ha | |
Basal area of all trees | BAA | m2/ha |
Variable | VIF | Variance | Proportion |
---|---|---|---|
EG_CWD_0 | 1.5033 | 1.5278 *** | 0.2183 |
EG_CWD_1 | 2.5053 | 0.9606 ** | 0.1372 |
EG_CWD_2 | 3.0588 | 1.7325 *** | 0.2475 |
EG_CWD_3 | 1.2261 | 1.1112 ** | 0.1587 |
LG_CWD_1 | 1.4984 | 1.0719 ** | 0.1531 |
Variance explained by significant variables | 0.9149 |
Model | Reference | User’s Accuracy | |
---|---|---|---|
Class | Dead | Alive | |
Dead | 243 | 143 | 0.630 |
Alive | 10 | 2500 | 0.996 |
Producer’s accuracy | 0.960 | 0.946 |
Site | Recent Scenario (%) | Scenario-Based Difference (%) | |
---|---|---|---|
20-Years-Ago | 30-Years-Ago | ||
All site | 12.8 | 6.4 | 4.6 |
JR_01 | 11.5 | 10.0 | 8.8 |
JR_02 | 11.7 | 9.9 | 5.8 |
JR_03 | 0.0 | 0.0 | 0.0 |
JR_04 | 13.4 | 11.7 | 9.0 |
JR_05 | 8.1 | 1.5 | 0.0 |
JR_06 | 25.5 | 8.3 | 8.6 |
JR_07 | 22.7 | 3.0 | 4.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, W.; Park, H.-C.; Park, S.; Seo, J.-W.; Kim, J.; Ko, D.W. Modeling Tree Mortality Induced by Climate Change-Driven Drought: A Case Study of Korean Fir in the Subalpine Forests of Jirisan National Park, South Korea. Forests 2025, 16, 84. https://doi.org/10.3390/f16010084
Lim W, Park H-C, Park S, Seo J-W, Kim J, Ko DW. Modeling Tree Mortality Induced by Climate Change-Driven Drought: A Case Study of Korean Fir in the Subalpine Forests of Jirisan National Park, South Korea. Forests. 2025; 16(1):84. https://doi.org/10.3390/f16010084
Chicago/Turabian StyleLim, Wontaek, Hong-Chul Park, Sinyoung Park, Jeong-Wook Seo, Jinwon Kim, and Dongwook W. Ko. 2025. "Modeling Tree Mortality Induced by Climate Change-Driven Drought: A Case Study of Korean Fir in the Subalpine Forests of Jirisan National Park, South Korea" Forests 16, no. 1: 84. https://doi.org/10.3390/f16010084
APA StyleLim, W., Park, H.-C., Park, S., Seo, J.-W., Kim, J., & Ko, D. W. (2025). Modeling Tree Mortality Induced by Climate Change-Driven Drought: A Case Study of Korean Fir in the Subalpine Forests of Jirisan National Park, South Korea. Forests, 16(1), 84. https://doi.org/10.3390/f16010084