Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (86)

Search Parameters:
Keywords = Kelvin–Helmholtz Instability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 3168 KiB  
Article
Frequency Spectrum Characterization of Infrared Thermal Images of Methane Diffusion Flames
by Qinglin Niu, Zengjie Zhou, Ao Sun, Xiaying Meng and Pengjun Zhang
Fire 2025, 8(7), 255; https://doi.org/10.3390/fire8070255 - 28 Jun 2025
Viewed by 353
Abstract
Experimental measurements of midwave infrared thermal images of methane diffusion flames at different concomitant flow velocities were obtained as snapshot data to analyze the flame scintillation effect. The spectral proper orthogonal decomposition (SPOD) method was used to extract the frequency-spectral features of the [...] Read more.
Experimental measurements of midwave infrared thermal images of methane diffusion flames at different concomitant flow velocities were obtained as snapshot data to analyze the flame scintillation effect. The spectral proper orthogonal decomposition (SPOD) method was used to extract the frequency-spectral features of the flame to characterize the effect of the co-flow on the flame scintillation characteristics. The results show that, under the effect of the Kelvin-Helmholtz instability, a rolled-up vortex structure is formed within the shear layer, which triggers periodic flickering during flame combustion. The frequency-spectral characteristics of the flickering phenomenon corresponding to unstable combustion show an octave distribution. An increase in the co-flow velocity leads to an increase in the peak flicker frequency. The peak frequency was 11.6 Hz in the case without associated flow and 16.6 Hz in the case with associated flow. The SPOD analysis results indicated that the high-frequency first-order modes dominated by the flickering phenomenon exhibited an axisymmetric distribution, whereas the second-order modes exhibited an antisymmetric distribution. In contrast, the low-frequency first-order modes exhibit an antisymmetric distribution, whereas the second-order modes exhibit an axisymmetric distribution. Full article
(This article belongs to the Special Issue Sooting Flame Diagnostics and Modeling)
Show Figures

Figure 1

20 pages, 6698 KiB  
Article
A Quasi-Direct Numerical Simulation of a Compressor Blade with Separation Bubbles and Inflow Turbulence
by Guglielmo Vivarelli, João Anderson Isler, Chris D. Cantwell, Francesco Montomoli, Spencer J. Sherwin, Yuri Frey-Marioni, Marcus Meyer, Iftekhar Naqavi and Raul Vazquez-Diaz
Int. J. Turbomach. Propuls. Power 2025, 10(2), 8; https://doi.org/10.3390/ijtpp10020008 - 27 May 2025
Viewed by 671
Abstract
Within the turbomachinery industry, components are currently assessed deploying standard second-order steady solvers. These are unable to capture complicated unsteady phenomena that have a critical impact on component performance. In this work, the high-order spectral h/p solver Nektar++ will be applied to a [...] Read more.
Within the turbomachinery industry, components are currently assessed deploying standard second-order steady solvers. These are unable to capture complicated unsteady phenomena that have a critical impact on component performance. In this work, the high-order spectral h/p solver Nektar++ will be applied to a compressor blade to study the turbulent transition mechanisms and assess the effect of incoming disturbances with quasi-DNS resolution. The case will be modelled at an angle of incidence of 53.5° to match the original experimental loading at 52.8°. At clean inflow conditions, Kelvin–Helmholtz instabilities appear on both sides of the blade due to a double separation, with the pressure side one not being reported in the experiments. The separation is gradually removed by the incoming turbulent structures but at different rates on the two sides of the blade. It will be shown that there is an optimal amount of turbulence intensity that minimises momentum thickness, which is strongly related to losses. Moreover, a discussion on the spanwise extrusion will be included, this being a major player in the modelling costs. Finally, the wall-clock time and the exact expenditure to run this case will be outlined, providing quantitative evidence of the feasibility of considering a quasi-DNS resolution in an industrial setting. Full article
Show Figures

Graphical abstract

17 pages, 16712 KiB  
Article
Large-Eddy Simulation of Flows Past an Isolated Lateral Semi-Circular Cavity
by Yiqing Gong, Yun Xu, Jingqiao Mao, Jie Dai, Lei He, Hao Zhang and Qianshun Xu
J. Mar. Sci. Eng. 2025, 13(5), 859; https://doi.org/10.3390/jmse13050859 - 25 Apr 2025
Viewed by 360
Abstract
Lateral cavities along coastlines strongly influence sedimentary morphology and ecological processes by modifying local flow dynamics. This study employed high-resolution large-eddy simulation to investigate flow structures and momentum exchange mechanisms in a semi-circular lateral cavity driven by longshore currents. Model validation against experimental [...] Read more.
Lateral cavities along coastlines strongly influence sedimentary morphology and ecological processes by modifying local flow dynamics. This study employed high-resolution large-eddy simulation to investigate flow structures and momentum exchange mechanisms in a semi-circular lateral cavity driven by longshore currents. Model validation against experimental data confirmed the LES’s capability to capture both recirculating flow and turbulent structures accurately. The impact of Reynolds number was examined across three cases (Re = 12,000, 17,000, and 22,000). From Re = 12,000 to 17,000, a significant upstream shift of the primary vortex core occurred, accompanied by stronger shear layer turbulence and intensified secondary vortices. Between Re = 17,000 and 22,000, the flow features stabilized, indicating a transition toward quasi-equilibrium. These changes enhanced vertical momentum transfer and turbulence production within the cavity. Spectral analysis revealed dominant KH frequencies governing periodic momentum exchange and indicating a transition from viscosity-damped upstream turbulence to fully developed shedding downstream. Full article
Show Figures

Figure 1

23 pages, 8729 KiB  
Article
PSE-Based Aerodynamic Flow Transition Prediction Using Automated Unstructured CFD Integration
by Nathaniel Hildebrand, Meelan M. Choudhari, Fei Li, Pedro Paredes and Balaji S. Venkatachari
Mathematics 2025, 13(7), 1034; https://doi.org/10.3390/math13071034 - 22 Mar 2025
Viewed by 455
Abstract
The accurate, robust, and efficient prediction of transition in viscous flows is a significant challenge in computational fluid dynamics. We present a coupled high-fidelity iterative approach that leverages the FUN3D flow solver and the LASTRAC stability code to predict transition in low-disturbance environments, [...] Read more.
The accurate, robust, and efficient prediction of transition in viscous flows is a significant challenge in computational fluid dynamics. We present a coupled high-fidelity iterative approach that leverages the FUN3D flow solver and the LASTRAC stability code to predict transition in low-disturbance environments, initiated by the linear growth of boundary-layer instability modes. Our method integrates the ability of FUN3D to compute mixed laminar–transitional–turbulent mean flows via transition-sensitized Reynolds-Averaged Navier–Stokes equations with the ability of LASTRAC to perform linear stability analysis, all within an automated framework that requires no intermediate user involvement. Unlike conventional frameworks that rely on classical stability theory or reduced-order metamodels, our approach employs parabolized stability equations to provide more accurate and reliable estimates of disturbance growth for multiple instability mechanisms, including Tollmien–Schlichting, Kelvin–Helmholtz, and crossflow modes. By accounting for the effects of mean-flow nonparallelism as well as the surface curvature, this approach lays the foundation for improved N-factor correlations for transition onset prediction in a broad class of flows. We apply this method to three distinct flow configurations: (1) flow over a zero-pressure-gradient flat plate, (2) the NLF-0416 airfoil with both natural and separation-induced transition, and (3) a 6:1 prolate spheroid, where transition is primarily driven by crossflow instability. For two-dimensional cases, a formulated intermittency distribution is used to model the transition zone between the laminar and fully turbulent flows. The results include comparisons with experimental measurements, similar numerical approaches, and transport-equation-based models, demonstrating good agreement in surface pressure coefficients, transition onset locations, and skin-friction coefficients for all three configurations. In addition to contributing a couple of new insights into boundary-layer transition in these canonical cases, this study presents a powerful tool for transition modeling in both research and design applications in aerodynamics. Full article
(This article belongs to the Special Issue Numerical Methods and Simulations for Turbulent Flow)
Show Figures

Figure 1

37 pages, 2141 KiB  
Article
Cavity Instabilities in a High-Speed Low-Pressure Turbine Stage
by Lorenzo Da Valle, Antonino Federico Maria Torre, Filippo Merli, Bogdan Cezar Cernat and Sergio Lavagnoli
Int. J. Turbomach. Propuls. Power 2025, 10(1), 4; https://doi.org/10.3390/ijtpp10010004 - 4 Mar 2025
Viewed by 1044
Abstract
This study investigates the time-resolved aerodynamics in the cavity regions of a full-scale, high-speed, low-pressure turbine stage representative of geared turbofan engines. The turbine stage is tested in the von Karman Institute’s short-duration rotating facility at different purge rates (PR) injected through the [...] Read more.
This study investigates the time-resolved aerodynamics in the cavity regions of a full-scale, high-speed, low-pressure turbine stage representative of geared turbofan engines. The turbine stage is tested in the von Karman Institute’s short-duration rotating facility at different purge rates (PR) injected through the upstream hub cavity. Spectra from the shroud and downstream hub cavity show perturbations linked to blade passing frequency and rotor speed. Asynchronous flow structures associated with ingress/egress mechanisms are observed in the rim seal of the purged cavity. At 0% PR, the ingress region extends to the entire rim seal, and pressure fluctuations are maximized. At 1% PR, the instability is suppressed and the cavity is sealed. At 0.5%, the rim-seal instability exhibits multiple peaks in the spectra, each corresponding to a state of the instability. Kelvin–Helmholtz instabilities are identified as trigger mechanisms. A novel technique based on the properties of the cross-power spectral density is developed to determine the speed and wavelength of the rotating structures, achieving higher precision than the commonly used cross-correlation method. Moreover, unlike the standard methodology, this approach allows researchers to calculate the structure characteristics for all the instability states. Spectral analysis at the turbine outlet shows that rim-seal-induced instabilities propagate into regions occupied by secondary flows. A methodology is proposed to quantify the magnitude of the induced fluctuations, showing that the interaction with secondary flows amplifies the instability at the stage outlet. Full article
Show Figures

Figure 1

19 pages, 8205 KiB  
Article
Large-Eddy Simulation of Droplet Deformation and Fragmentation Under Shock Wave Impact
by Viola Rossano and Giuliano De Stefano
Appl. Sci. 2025, 15(3), 1233; https://doi.org/10.3390/app15031233 - 25 Jan 2025
Cited by 2 | Viewed by 1054
Abstract
This study employs the large-eddy simulation (LES) approach, together with the hybrid volume of fluid—discrete phase model, to examine the deformation and breakup of a water droplet impacted by a traveling shock wave. The research investigates the influence of Weber number on transient [...] Read more.
This study employs the large-eddy simulation (LES) approach, together with the hybrid volume of fluid—discrete phase model, to examine the deformation and breakup of a water droplet impacted by a traveling shock wave. The research investigates the influence of Weber number on transient deformation and breakup characteristics. Particular focus is given to the detailed analysis of sub-droplet-size distributions, which are frequently overlooked in existing studies, providing a novel insight into droplet fragmentation dynamics. The predicted deformation and breakup patterns of droplets in the shear breakup regime align well with experimental data, validating the computational approach. Notably, LES is able to reproduce the underlying physical mechanisms, highlighting the significant role of recirculation zones and the progression of Kelvin–Helmholtz instabilities in droplet breakup. Additionally, it is shown that higher Mach numbers significantly amplify both cross-stream and streamwise deformations, leading to earlier breakup at higher airflow pressures. Increasing the Weber number from 205 to 7000 results in 25% reduction in the average size of the sub-droplets, indicating the strong influence of aerodynamic forces on droplet fragmentation. This comprehensive analysis, while aligning with experimental observations, also provides new insights into the complex dynamics of droplet breakup under post-shock conditions, highlighting the robustness and applicability of the proposed hybrid Eulerian–Lagrangian formulation for such advanced applications in fluid engineering. Full article
Show Figures

Figure 1

21 pages, 1572 KiB  
Article
Classical Waves and Instabilities Using the Minimalist Approach
by Nektarios Vlahakis
Symmetry 2025, 17(2), 150; https://doi.org/10.3390/sym17020150 - 21 Jan 2025
Viewed by 886
Abstract
The minimalist approach in the study of perturbations in fluid dynamics and magnetohydrodynamics involves describing their evolution in the linear regime using a single first-order ordinary differential equation, dubbed the principal equation.The dispersion relation is determined by requiring that the solution of the [...] Read more.
The minimalist approach in the study of perturbations in fluid dynamics and magnetohydrodynamics involves describing their evolution in the linear regime using a single first-order ordinary differential equation, dubbed the principal equation.The dispersion relation is determined by requiring that the solution of the principal equation be continuous and satisfy specific boundary conditions for each problem. The formalism is presented for flows in Cartesian geometry and applied to classical cases such as the magnetosonic and gravity waves, the Rayleigh–Taylor instability, and the Kelvin–Helmholtz instability. For the latter, we discuss the influence of compressibility and the magnetic field, and also derive analytical expressions for the growth rates and the range of instability in the case of two fluids with the same characteristics. Full article
(This article belongs to the Special Issue Feature Papers in 'Physics' Section 2024)
Show Figures

Figure 1

35 pages, 96586 KiB  
Article
Mechanistic Understanding of Field-Scale Geysers in Stormsewer Systems Using Three-Dimensional Numerical Modeling
by Sumit R. Zanje, Pratik Mahyawansi, Abbas Sharifi, Arturo S. Leon, Victor Petrov and Yuriy Yu Infimovskiy
Processes 2025, 13(1), 32; https://doi.org/10.3390/pr13010032 - 26 Dec 2024
Viewed by 971
Abstract
Consecutive oscillatory eruptions of a mixture of gas and liquid in urban stormwater systems, commonly referred to as sewer geysers, are investigated using transient three-dimensional (3D) computational fluid dynamics (CFD) models. This study provides a detailed mechanistic understanding of geyser formation under partially [...] Read more.
Consecutive oscillatory eruptions of a mixture of gas and liquid in urban stormwater systems, commonly referred to as sewer geysers, are investigated using transient three-dimensional (3D) computational fluid dynamics (CFD) models. This study provides a detailed mechanistic understanding of geyser formation under partially filled dropshaft conditions, an area not previously explored in depth. The maximum geyser eruption velocities were observed to reach 14.58 m/s under fully filled initial conditions (hw/hd = 1) and reduced to 5.17 m/s and 3.02 m/s for partially filled conditions (hw/hd = 0.5 and 0.23, respectively). The pressure gradients along the horizontal pipe drove slug formation and correlated directly with the air ingress rates and dropshaft configurations. The influence of the dropshaft diameter was also assessed, showing a 116% increase in eruption velocity when the dropshaft to horizontal pipe diameter ratio (Dd/Dt) was reduced from 1.0 to 0.5. It was found that the strength of the geyser (as represented by the eruption velocity from the top of the dropshaft) increased with an increase in the initial water depth in the dropshaft and a reduction in the dropshaft diameter. Additionally, the Kelvin–Helmholtz instability criteria were satisfied during transitions from stratified to slug flow, and they were responsible for the jump and transition of the flow during the initial rise and fallback of the water in the dropshaft. The present study shows that, under an initially lower water depth in the dropshaft, immediate spillage is not guaranteed. However, the subsequent mixing of air from the horizontal pipe generated a less dense mixture, causing a change in pressure distribution along the tunnel, which drove the entire geyser mechanism. This study underscores the critical role of the initial conditions and geometric parameters in influencing geyser dynamics, offering practical guidelines for urban drainage infrastructure. Full article
Show Figures

Figure 1

16 pages, 8772 KiB  
Article
The Influence of Exogenous Particles on the Behavior of Non-Newtonian Mucus Fluid
by Agata Penconek, Urszula Michalczuk, Małgorzata Magnuska and Arkadiusz Moskal
Processes 2024, 12(12), 2765; https://doi.org/10.3390/pr12122765 - 5 Dec 2024
Viewed by 760
Abstract
Every day, approximately 7 m3 of air flows through the lungs of an adult, which comes into contact with 80 m2 of the lung surface. This air contains both natural and anthropogenic particles, which can deposit on the surface of the [...] Read more.
Every day, approximately 7 m3 of air flows through the lungs of an adult, which comes into contact with 80 m2 of the lung surface. This air contains both natural and anthropogenic particles, which can deposit on the surface of the mucus lining the respiratory tract. The presence of particles in the mucus leads to changes in its rheology and, consequently, in its functions. Therefore, this research aimed to determine how a non-Newtonian fluid suspension will behave during flow, illustrating the movement of mucus during coughing. The model mucus was an aqueous solution of carboxymethylcellulose (CMC). The tested particles suspended in a non-Newtonian fluid were Arizona Fine Dust, diesel exhaust particles, polyethylene microparticles, and pine pollen. It was noticed that as the fluid viscosity increases, the number of Kelvin–Helmholtz instabilities increases. The fluid’s expansion angle at the output of the measuring cell decreased, and the values of parameters characterizing the aerosol generated at the outlet decrease for selected particles present in the fluid. The research shows that the deposition of particles from polluted air in the respiratory tract, although they do not enter the bloodstream, may affect the human body. Deposited particles can change the behavior of mucus, which may translate into its functions. Full article
(This article belongs to the Special Issue Technological Processes for Chemical and Related Industries)
Show Figures

Figure 1

29 pages, 11222 KiB  
Article
Computational Study on Flow Characteristics of Shocked Light Backward-Triangular Bubbles in Polyatomic Gas
by Salman Saud Alsaeed and Satyvir Singh
Axioms 2024, 13(12), 843; https://doi.org/10.3390/axioms13120843 - 1 Dec 2024
Cited by 1 | Viewed by 710
Abstract
This study computationally examined the Richtmyer–Meshkov instability (RMI) evolution in a helium backward-triangular bubble immersed in monatomic argon, diatomic nitrogen, and polyatomic methane under planar shock wave interactions. Using high-fidelity numerical simulations based on the compressible Navier–Fourier equations based on the Boltzmann–Curtiss kinetic [...] Read more.
This study computationally examined the Richtmyer–Meshkov instability (RMI) evolution in a helium backward-triangular bubble immersed in monatomic argon, diatomic nitrogen, and polyatomic methane under planar shock wave interactions. Using high-fidelity numerical simulations based on the compressible Navier–Fourier equations based on the Boltzmann–Curtiss kinetic framework and simulated via a modal discontinuous Galerkin scheme, we analyze the complex interplay of shock-bubble dynamics. Key findings reveal distinct thermal non-equilibrium effects, vorticity generation, enstrophy evolution, kinetic energy dissipation, and interface deformation across gases. Methane, with its molecular complexity and higher viscosity, exhibits the highest levels of vorticity production, enstrophy, and kinetic energy, leading to pronounced Kelvin–Helmholtz instabilities and enhanced mixing. Conversely, argon, due to its simpler atomic structure, shows weaker deformation and mixing. Thermal non-equilibrium effects, quantified by the Rayleigh–Onsager dissipation function, are most significant in methane, indicating delayed energy relaxation and intense turbulence. This study highlights the pivotal role of molecular properties, specific heat ratio, and bulk viscosity in shaping RMI dynamics in polyatomic gases, offering insights on uses such as high-speed aerodynamics, inertial confinement fusion, and supersonic mixing. Full article
Show Figures

Figure 1

18 pages, 58007 KiB  
Article
On the Use of Different Sets of Variables for Solving Unsteady Inviscid Flows with an Implicit Discontinuous Galerkin Method
by Luca Alberti, Emanuele Cammalleri, Emanuele Carnevali and Alessandra Nigro
Fluids 2024, 9(11), 248; https://doi.org/10.3390/fluids9110248 - 25 Oct 2024
Viewed by 864
Abstract
This article presents a comparison between the performance obtained by using a spatial discretization of the Euler equations based on a high-order discontinuous Galerkin (dG) method and different sets of variables. The sets of variables investigated are as follows: (1) conservative variables; (2) [...] Read more.
This article presents a comparison between the performance obtained by using a spatial discretization of the Euler equations based on a high-order discontinuous Galerkin (dG) method and different sets of variables. The sets of variables investigated are as follows: (1) conservative variables; (2) primitive variables based on pressure and temperature; (3) primitive variables based on the logarithms of pressure and temperature. The solution is advanced in time by using a linearly implicit high-order Rosenbrock-type scheme. The results obtained using the different sets are assessed across several canonical unsteady test cases, focusing on the accuracy, conservation properties and robustness of each discretization. In order to cover a wide range of physical flow conditions, the test-cases considered here are (1) the isentropic vortex convection, (2) the Kelvin–Helmholtz instability and (3) the Richtmyer–Meshkov instability. Full article
(This article belongs to the Section Mathematical and Computational Fluid Mechanics)
Show Figures

Figure 1

16 pages, 3632 KiB  
Article
Numerical Study of High-g Combustion Characteristics in a Channel with Backward-Facing Steps
by Zhen Gong and Hao Tang
Aerospace 2024, 11(9), 767; https://doi.org/10.3390/aerospace11090767 - 19 Sep 2024
Cited by 2 | Viewed by 945
Abstract
High gravity (high-g) combustion can significantly increase flame propagation speed, thereby potentially shortening the axial length of aero-engines and increasing their thrust-to-weight ratio. In this study, we utilized the large eddy simulation model to investigate the combustion characteristics and flame morphology evolution of [...] Read more.
High gravity (high-g) combustion can significantly increase flame propagation speed, thereby potentially shortening the axial length of aero-engines and increasing their thrust-to-weight ratio. In this study, we utilized the large eddy simulation model to investigate the combustion characteristics and flame morphology evolution of premixed propane–air flames in a channel with a backward-facing step. The study reveals that both the increase in centrifugal force and flow velocity can enhance pressure fluctuations during combustion and increase the turbulence intensity. The presence of centrifugal force promotes the occurrence of Rayleigh–Taylor instability (RTI) between hot and cold fluids. The combined effects of RTI and Kelvin–Helmholtz instability (KHI) enhance the disturbance between hot and cold fluids, shorten the fuel combustion time, and intensify the dissipation of large-scale vortices. The increase in fluid flow velocity can raise the flame front’s hydrodynamic stretch rate, thereby enhancing the turbulence level during combustion to a certain extent and increasing the fuel consumption rate. When a strong centrifugal force is applied, the global flame propagation speed can be more than doubled. Within a certain range, the increase in high-g field strength can enhance the intensity of RTI and accelerate the transition of RTI to the nonlinear stage. Full article
Show Figures

Figure 1

32 pages, 6740 KiB  
Review
Magnetohydrodynamic Waves in Asymmetric Waveguides and Their Applications in Solar Physics—A Review
by Robertus Erdélyi and Noémi Kinga Zsámberger
Symmetry 2024, 16(9), 1228; https://doi.org/10.3390/sym16091228 - 18 Sep 2024
Cited by 3 | Viewed by 1217
Abstract
The solar atmosphere is a complex, coupled, highly dynamic plasma environment, which shows rich structuring due to the presence of gravitational and magnetic fields. Several features of the Sun’s atmosphere can serve as guiding media for magnetohydrodynamic (MHD) waves. At the same time, [...] Read more.
The solar atmosphere is a complex, coupled, highly dynamic plasma environment, which shows rich structuring due to the presence of gravitational and magnetic fields. Several features of the Sun’s atmosphere can serve as guiding media for magnetohydrodynamic (MHD) waves. At the same time, these waveguides may contain flows of various magnitudes, which can then destabilise the waveguides themselves. MHD waves were found to be ubiquitously present in the solar atmosphere, thanks to the continuous improvement in the spatial, temporal, and spectral resolution of both space-born and ground-based observatories. These detections, coupled with recent theoretical advancements, have been used to obtain diagnostic information about the solar plasma and the magnetic fields that permeate it, by applying the powerful concept of solar magneto-seismology (SMS). The inclusion of asymmetric shear flows in the MHD waveguide models used may considerably affect the seismological results obtained. Further, they also influence the threshold for the onset of the Kelvin–Helmholtz instability, which, at high enough relative flow speeds, can lead to energy dissipation and contribute to the heating of the solar atmosphere—one of the long-standing and most intensely studied questions in solar physics. Full article
(This article belongs to the Special Issue Symmetry in Magnetohydrodynamic Flows and Their Applications)
Show Figures

Figure 1

23 pages, 2143 KiB  
Article
The Effect of Domain Length and Initialization Noise on Direct Numerical Simulation of Shear Stratified Turbulence
by Vashkar Palma, Daniel MacDonald and Mehdi Raessi
Fluids 2024, 9(8), 171; https://doi.org/10.3390/fluids9080171 - 27 Jul 2024
Viewed by 1062
Abstract
Direct numerical simulation (DNS) has been employed with success in a variety of oceanographic applications, particularly for investigating the internal dynamics of Kelvin–Helmholtz (KH) billows. However, it is difficult to relate these results directly with observations of ocean turbulence due to [...] Read more.
Direct numerical simulation (DNS) has been employed with success in a variety of oceanographic applications, particularly for investigating the internal dynamics of Kelvin–Helmholtz (KH) billows. However, it is difficult to relate these results directly with observations of ocean turbulence due to the significant scale differences involved (ocean shear layers are typically on the order of tens to hundreds of meters in thickness, compared to DNS studies, with layers on the order of one to tens of centimeters). As efforts continue to inform our understanding of geophysical-scale turbulence by extrapolating DNS results, it is important to understand the impact of model setup and initial conditions on the resulting turbulent quantities. Given that geophysical-scale measurements, whether through microstructures or other techniques, can only provide estimates of averaged TKE quantities (e.g., TKE dissipation or buoyancy flux), it may be necessary to compare mean turbulent quantities derived from DNS (i.e., across one or more complete billow evolutions) with ocean measurements. In this study, we analyze the effect of domain length and initial velocity noise on resulting turbulent quantities. Domain length is important, as dimensions that are not integer multiples of the natural KH billow wavelength may compress or stretch the billows and impact their energetics. The addition of random noise in the initial velocity field is often used to trigger turbulence and suppress secondary instabilities; however, the impact of noise on the resulting turbulent energetics is largely unknown. In this study, we conclude that domain lengths on the order of 1.5 times the natural wavelength or less can affect the resulting turbulent energetics by a factor of two or more. We also conclude that increasing the amplitude of random initial velocity noise decreases the resulting turbulent energetics, but that different realizations of the random noise field may have an even greater impact than amplitude. These results should be considered when designing a DNS experiment. Full article
(This article belongs to the Collection Advances in Geophysical Fluid Dynamics)
Show Figures

Figure 1

22 pages, 5524 KiB  
Article
Evaluation of Film Cooling Adiabatic Effectiveness and Net Heat Flux Reduction on a Flat Plate Using Scale-Adaptive Simulation and Stress-Blended Eddy Simulation Approaches
by Rosario Nastasi, Nicola Rosafio, Simone Salvadori and Daniela Anna Misul
Energies 2024, 17(11), 2782; https://doi.org/10.3390/en17112782 - 6 Jun 2024
Cited by 1 | Viewed by 1547
Abstract
The use of film cooling is crucial to avoid high metal temperatures in gas turbine applications, thus ensuring a high lifetime for vanes and blades. The complex turbulent mixing process between the coolant and the main flow requires an accurate numerical prediction to [...] Read more.
The use of film cooling is crucial to avoid high metal temperatures in gas turbine applications, thus ensuring a high lifetime for vanes and blades. The complex turbulent mixing process between the coolant and the main flow requires an accurate numerical prediction to correctly estimate the impact of ejection conditions on the cooling performance. Recent developments in numerical models aim at using hybrid approaches that combine high precision with low computational cost. This paper is focused on the numerical simulation of a cylindrical film cooling hole that operates at a unitary blowing ratio, with a hot gas Mach number of Mam = 0.6, while the coolant is characterized by plenum conditions (Mac = 0). The adopted numerical approach is the Stress-Blended Eddy Simulation model (SBES), which is a blend between a Reynolds-Averaged Navier–Stokes approach and a modeled Large Eddy Simulation based on the local flow and mesh characteristics. The purpose of this paper is to investigate the ability of the hybrid model to capture the complex mixing between the coolant and the main flow. The cooling performance of the hole is quantified through the film cooling effectiveness, the Net Heat Flux Reduction (NHFR), and the discharge coefficient CD calculation. Numerical results are compared both with the experimental data obtained by the University of Karlsruhe during the EU-funded TATEF2 project and with a Scale Adaptive Simulation (SAS) run on the same computational grid. The use of λ2 profiles extracted from the flow field allows for isolating the main vortical structures such as horseshoe vortices, counter-rotating vortex pairs (e.g., kidney vortices), Kelvin–Helmholtz instabilities, and hairpin vortices. Eventually, the contribution of the unsteady phenomena occurring at the hole exit section is quantified through Proper Orthogonal Decomposition (POD) and Spectral Proper Orthogonal Decomposition methods (SPOD). Full article
Show Figures

Figure 1

Back to TopTop